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Abstract

Most of nowadays applications of electronic devices demand secure communication, which

justifies the existence of embedded cryptographic algorithms in these devices. The Elliptic Curve

Cryptography public key system has revealed to be more appropriate to embedded systems with

limited power and memory resources, when compared with other approaches, such as the widely

used Rivest-Shamir-Adleman (RSA) public key system. In this thesis the Elliptic Curve properties

are carefully analyzed in order to develop a complete cryptographic processor, which can compute

all the necessary arithmetic needed to implement security protocols supported on elliptic curves.

Different algorithms to perform the elliptic curve cryptography are analyzed in order to select the

most appropriate ones, regarding the introduction of a new efficient method that uses a compact

representation of elliptic curve elements. This method, which is designated coordinate collapsing,

allows to perform the elliptic curve exponentiation without using the traditional two coordinates to

represent a curve element. This improvement allows to reduce the bandwidth requirements by

half.

A prototype of the developed processor is also presented. This prototype provides to the host

system the complete arithmetic support to elliptic curve cryptographic capabilities when commu-

nicating with remote systems. This prototype was thoroughly tested using real protocols which

confirms this processor applicability into commercial systems.
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Resumo

A maioria das aplicações de dispositivos electrónicos de hoje em dia requerem comunicação

segura, o que justifica a existência de algoritmos criptográficos embebidos nestes dispositivos. O

sistema de chaves públicas de Criptografia por Curvas Elı́pticas tem revelado ser mais apropri-

ado para sistemas embebidos com limitados recursos de potência e memória quando comparado,

por exemplo, com o sistema geralmente mais usado de chaves públicas Rivest-Shamir-Adleman

(RSA). Nesta tese as propriedades das Curvas Elı́pticas são cuidadosamente analisadas com

o objectivo de desenvolver um processador criptográfico completo, capaz de calcular eficiente-

mente a aritmética necessária para implementar protocolos de segurança suportados em cur-

vas elı́pticas. Vários algoritmos para realizar a aritmética sobre curvas elı́pticas são analisados,

seleccionando-se os mais apropriados tendo em conta a introdução de um método capaz de

usar uma representação compacta dos elementos da curva elı́ptica. Este novo método, desig-

nado por colapso de coordenadas, permite a realização eficiente da exponenciação sobre curvas

elı́pticas sem utilizar as tradicionais duas coordenadas para representar um elemento da curva.

Esta melhoria permite a redução dos requisitos de largura de banda para metade.

Um protótipo do processador desenvolvido é também apresentado. Este protótipo fornece ao

sistema anfitrião um suporte aritmético completo de criptografia sobre curvas elı́pticas aquando

da comunicação com um sistema remoto. Este protótipo foi minuciosamente testado usando

protocolos reais, confirmando a aplicabilidade deste processador em sistemas comerciais.

Palavras Chave

Criptografia sobre Curvas Elı́pticas, Colapso de Coordenadas, Sistemas Embebidos, FPGA,

ASIC
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1. Introduction

Most electronic devices, in particular embedded ones, such as cell phones, personal comput-

ers, smart cards, attempt to provide secure communication and/or authentication for their users.

With such security features, these electronic devices allow the users to keep their privacy, e.g. to

manage their online bank accounts prevented from attacks, and to unequivocally identify them-

selves. It is within this scenario that cryptographic algorithms and related data processing are

used. Asymmetric key cryptosystems, sometimes called public key cryptosystems, allow to per-

form these tasks over public unsecure channels. Unlike the symmetric key cryptosystems, public

key cryptosystems do not need the existence of pre-defined values to establish a secure com-

munication channel between two entities. The secret key is formed by private information, that

is never communicated, and public information that can be communicated without compromising

the secret.

Because secure communication is so often used, a significant effort has been spent in the

literature in performing the cryptographic procedures as efficient as possible, regarding circuit

area, power consumption, throughput, and bandwidth requirements. For this reason, dedicated

hardware implementations of cryptographic processors are suitable for applications where this

efficiency is the key for the success. The requirements depend on the applications. For example,

if a large amount of data, such as a video stream, has to be transferred or if there is a server which

needs to establish a large amount of secure connections, the throughput requisite is prioritized.

Otherwise, if a small message transfer or a single identification routine is to be performed by a

portable device, the power consumption is more important.

The Elliptic Curve Cryptography (ECC) appears as a competitive solution which can balance

both power needs and bandwidth reduction by mitigating the communication overhead due to

the keys transmission. This thesis discusses the implementations of ECC and proposes a pro-

cessor based on this cryptosystem. Original properties are exploited to reduce the bandwidth

requirements.

1.1 Motivation and Related Work

The Elliptic Curve (EC) cryptosystems were proposed by Koblitz and Miller, in 1985 [1, 2].

However, until now, other public key cryptosystems have been widely used, such as Rivest,

Shamir, and Adleman (RSA). The motivation to research a different cryptosystem arose from

a new set of constraints, namely the increasing usage of portable devices with reduced power

and computing resources, the increasing demand for higher communication security and the fact

that the communication bandwidth becomes more valuable. Since EC cryptosystems were initially

proposed, the analysis of its properties revealed that the same security level can be achieved for

significantly smaller key sizes, allowing for the computation and transmission of less bits, which,

in turn, enhances the performance, decreases the computing effort, and the bandwidth require-

2



1.1 Motivation and Related Work

ments.

RSA remains the most known and widely used cryptosystem. However, the use of RSA in

portable and autonomous embedded systems is becoming critical, due to its power consumption

needs and used key lengths. ECC appears as an interesting alternative since its arithmetic is

computationally more efficient and present higher security per key bit [3]. In the last years several

ECC implementations were proposed, and designed to be integrated in standard network commu-

nication protocols that require public key systems, such as Transport Layer Security (TLS), Secure

Sockets Layer (SSL), Secure Internet Protocol (IP), and Wireless Encryption Protocol (WEP) [4].

These related works propose co-processors for network servers, offering time and power efficient

alternatives for computing the encryption. Other proposals have targeted these implementations

to embedded systems with scarce resources, which can be used, for example, in medical ap-

plications [5]. The existent proposed implementations can be classified into three groups: full

hardware, full software, and software implementations with dedicated hardware co-processors.

In full hardware implementations all the operations, from finite field operations to EC arithmetic,

are performed in dedicated hardware structures. Results suggest that the arithmetic operations

over binary extension fields (Galois field GF
(
2k
)
) are better suited for hardware implementations,

where polynomial basis, normal basis, and optimal normal basis are used to represent the field

elements [6]. Nevertheless, there are also a few implementations using prime finite fields (Galois

field GF (p)) [7]. Full software solutions are supported by general purpose processors and are

mostly developed by using GF (p). Few software implementations also exist using GF
(
2k
)

[8].

Software implementations using dedicated co-processors consist of a general purpose proces-

sor extended with a dedicated co-processor, used to compute dedicated ECC arithmetic opera-

tions [9].

Alternative (projective) representations of the EC elements can also be used, in order to im-

prove the computation performance. This reduces the use of the most expensive operations over

the field, namely the inversion operation [10].

Another important issue is the resistance to attacks. A processor for cryptographic applica-

tions should not reveal the secret data being processed through its time and power consumption

characteristics. This can be achieved using appropriate algorithms which take fixed time and use,

during the same time, the same arithmetic units independently of the secrets being processed.

The first requisite leads to designs that are more resistant to time attacks, while the second

requisite leads to designs with increased power analysis resistance, since using the same units

reduces the fluctuations of the power consumption figure. In other words, there should be minimal

correlation between the data being processed and processors characteristics, thus all the meth-

ods which allow to reduce this correlation improve the resistance of the processor from attacks.

More details about time and power attacks can be found in [11].

The motivation of this thesis is the design of a dedicated hardware processor capable of com-

3



1. Introduction

puting all the required cryptographic procedures for the EC cryptography calculation. This thesis

also contributes to the design of more competitive EC cryptosystems by studying and exploiting

its properties from different and new approaches.

1.2 Objectives

This thesis objectives are the analysis of the mathematical background which support the EC

operations in order to identify which approach is better suited for dedicated hardware processor

designs. This background is used to design algorithms which allow to compute the EC operations

inserting an optimization level, which may be of concept, parallelization and elements representa-

tion. The properties of these algorithms are then discussed in order to obtain the basic arithmetic

units and an efficient method to interconnect them, obtaining the complete processor. The pro-

posed processor is then tested by using a Field Programmable Gate Array (FPGA) technology as

the target, and the results for this complete implementation are obtained and presented for this

technology. Other implementations in software and Application Specific Integrated Circuit (ASIC)

are also performed and described, allowing a comparative evaluation with the FPGA processor.

This thesis also presents the results obtained with the proposed processor into a real system ap-

plication. These results allow to confirm the feasibility of the proposed processor as a complete

system which provides all the ECC support to a host computer.

1.3 Original Contributions

Some original contributions can be identified in this thesis. The first allow to efficiently exploit

compact representations of EC points. An EC point has two coordinates, however, these two

coordinates can be represented by an element with the size of only one of their coordinates, par-

ticularly if the arithmetic of the EC is performed over a cyclic subgroup with prime order. However,

this property has not been exploited in the literature for the designing of cryptographic processors,

since more attention is left on the cryptographic computation speed up or/and power efficiency,

regardless the communication issues. In this thesis a new algorithm is proposed, which allows the

full computation of point exponentiation using the compact representation without compromising

the algorithm performance regarding the related art. A new unit to be integrated in point addition

is also developed allowing this operation to efficiently support the compact representation. These

contributions allow the proposed processor to use only half of the bandwidth comparing with an

usual EC system, which uses the two coordinates to represent a point. These original contri-

butions led to a communication that was accepted to be presented this year in one of the top

conferences in the area of reconfigurable technology and systems [ICFPT08] and in a publication

that is now being prepared to submit to a journal.

4



1.4 Organization

1.4 Organization

This thesis is organized in six chapters. In Chapter 2 the mathematical notions of group, field

and EC group are introduced. The EC is first presented in a generic way and then particularized

for finite fields, which are the fields used in this thesis. The choice of the finite field for a hardware

implementation is also discussed in this chapter.

Chapter 3 describes the algorithms proposed in the related art to deal with the EC arithmetic.

The analysis of these algorithms is performed in order to select the more adequate ones to be

integrated in the proposed processor. The compact EC representation (collapsed representation)

is also introduced in this chapter, leading to new algorithms used to perform the point addition and

exponentiation.

Chapter 4 describes the proposed units used for computing the algorithms presented and

selected in Chapter 3. In this chapter the characteristics of these implemented units are analyzed.

The characteristics of the complete proposed design are discussed regarding the related art for

FPGA technologies. An implementation for an ASIC target is also presented, in order to evaluate

the design characteristics for this technology and to compare it with the FPGA implementation.

In Chapter 5 is presented a software implementation to compare with the obtained hardware

processor. This software implementation is a mirror of the hardware processor, in terms of imple-

mented algorithms. A prototype using the FPGA processor for a real system application is also

presented and the obtained results discussed. The results for these systems are also presented

and discussed.

Concluding remarks are presented in Chapter 6 based on the results obtained for the ECC

processor proposed in this thesis. Future work is also suggested in this chapter.

1.5 Publication that results from this Thesis

[ICFPT08] S. Antão, R. Chaves, L. Sousa, ”FPGA Elliptic Curve Cryptographic Processor over

GF (2m) with Coordinate Collapsing”, International Conference on Field-Programmable Technol-

ogy (ICFPT’08), Taiwan, December 2008.
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2. Mathematical Support

In this chapter, the EC arithmetic is formally introduced. First, algebraic groups and fields

properties are discussed, followed by the definition of the operations over a special class of fields:

the finite fields. To conclude, the high-level EC arithmetic is introduced.

The information introduced in this chapter is the base of an EC cryptosystem, for whose the

computed procedures are realized over elements belonging to fields and groups, using differ-

ent operations defined for these fields and groups. Moreover, the optimization of the computed

arithmetic for the cryptosystem arises from specific properties of these entities.

Different fields may suit different applications and different computing support. In this chapter

some considerations are introduced in order to justify the project choices for the system proposed

in this thesis.

2.1 Groups and Fields

In this section, the properties of groups and fields will be presented. Both groups and fields are

algebraic structures defined to describe a set of elements and the relationship between them. The

nature of these elements varies, depending on the application. The relationship between these

elements is defined in operations, which permit to achieve an element combining other elements.

The way this combination is performed depends on the type of group or field. In this sense a field

has more stringent properties than a group, because it is assured that two operations (and their

inverses) are defined for fields, instead of only one operation for groups. This means that it is

possible to combine elements in a field in more different ways than in a group. Furthermore, a

field may contain groups supported on its operations.

2.1.1 Groups

Generally, a group is a set of elements and one operation which permit to combine two el-

ements in order to obtain a third one. A group is the fundamental algebraic entity over which

multiple other entities are constructed, such as rings or fields.

The group theory origin is related to three different subjects: the algebraic equations solving,

number theory and geometry aspects. The first mathematicians which address this theory were

the Norwegian Niels Abel and the French Joseph Louis Lagrange and Évariste Galois. This last

mathematician name is applied to a special class of fields (finite fields) which are particularly

important for cryptographic applications.

Formally, a group (G,+) is a set of elements along with an operation + that obeys the following

axioms [12]:

• The operation + has the property of closure: for any g1, g2 ∈ G, (g1 + g2) ∈ G;

• The operation + is associative: for any g1, g2, g3 ∈ G, (g1 + g2) + g3 = g1 + (g2 + g3);

8



2.1 Groups and Fields

• The operation + has an identity element: there is an element gid+ ∈ G such that for any

g1 ∈ G, g1 + gid+ = gid+ + g1 = g1;

• Any element g1 has an inverse towards the operation +: there is an element g2 ∈ G such

that g1 + g2 = g2 + g1 = gid+.

If a group (G,+), besides the previous axioms, obeys the following:

• The operation + is commutative: for any g1, g2 ∈ G, g1 + g2 = g2 + g1,

it is called an abelian or commutative group.

The exponentiation over a group (G,+) is defined as the recurrent application of the operation

+. A group is said to be cyclic if there is an element gg, called a generator, such that all its powers

generate the group. Thus, any element of the group can be written as:

g1 = gi
g = gg + gg + . . . + gg

︸ ︷︷ ︸

i

, i ∈ N.

Groups may contain subgroups inside, particularly cyclic subgroups. A cyclic subgroup (Gc,+)

has an order p which consists of the smallest integer p such that gp
g = gid+. In practice, p is the

number of elements in the subgroup. For p prime, it holds that for all g1 ∈ Gc, exists an element

g2 ∈ Gc such that g1 = g2 + g2 = 2g2 [13]. When a group is not cyclic, its order is defined as the

number of elements that constitute this group.

2.1.2 Fields

A field, as a group, is an algebraic entity. A field is constructed over a group, thus inherits its

properties. To establish a field, a set of elements must allow the definition of another operation,

other than the group operation. For this reason the field properties are more stringent. The

concept of field was first introduced by the German mathematician Richard Dedekind.

The formal definition of a field (F,+,×) is a set of elements along with the operations + and

×, such that the following properties hold:

• The field elements have the properties of a commutative group towards the operation +;

• The operation × has the property of closure: for any f1, f2 ∈ F , (f1f2) ∈ F ;

• The operation × is associative: for any f1, f2, f3 ∈ F , (f1f2)f3 = f1(f2f3);

• The operation × is distributive towards the operation +: for all f1, f2, f3 ∈ F , f1(f2 + f3) =

f1f2 + f1f3 and (f1 + f2)f3 = f1f3 + f2f3;

• The operation × is commutative: for any f1, f2 ∈ F , f1f2 = f2f1;

• Any element f1 has an inverse towards the operation ×: there is an element f2 ∈ F such

that f1f2 = f2f1 = fid×.

9



2. Mathematical Support

• Except for the operation + identity, any field element has an inverse towards the operation ×:

for any element f1 ∈ F , with f1 6= fid+, there is an element f2 ∈ F such that f1f
−1
2 = fid×.

Note that the × operation is usually expressed as the concatenation of the elements which inter-

vene in the operation, i.e., f1 × f2 ≡ f1f2.

2.2 Finite Fields

In this section the properties and operations over a particular type of fields are described.

These fields have a finite number of elements. Thus, they are called finite fields or Galois fields.

From these fields, two of them have a major importance in cryptographic applications, namely

prime fields (GF (p)) and binary extension fields (GF (2k)).

2.2.1 Prime Fields GF (p)

This field is composed by the set Zp of integers {0, 1, 2, . . . , p − 1} and the operations modulo

p, with p a prime. The following depicts an example of the addition, subtraction and multiplication

operations over a field with p = 19:

(7 + 15) ≡ 22 ≡ 22 − 19 ≡ 3 mod 19;

(7 − 15) ≡ −8 ≡ −8 + 19 ≡ 11 mod 19;

(7 × 15) ≡ 105 ≡ 105 − (19 × 5) ≡ 10 mod 19,

where a ≡ b ≡ c mod p means that a mod p = b mod p = c mod p. Note that n× p ≡ 0 mod p, with

n an integer.

Since p is prime, multiplying an element by every elements of the set, certainly all the residues

from 0 to p− 1 will be obtained. The multiplicative inverse of that field element will be the element

that had originated the residue 1. For example 7×11 ≡ 1+4×19 ≡ 1 mod 19, thus 7−1×7×11 ≡
7−1 × 1 ≡ 11 ≡ 7−1 mod 19. The most used algorithm to perform field elements inversion is the

Extended Euclidean Algorithm [12], which can compute an element which has 1 as the greatest

common divider with a given element. The computed element is the multiplicative inverse of the

given one.

2.2.2 Binary Extension Fields GF (2k)

A binary extension field GF (2k) is constructed by projecting a binary field GF (2) for k dimen-

sions. These fields have the advantage of not waste the possible representations of a number

with a binary vector, as is the case of GF (p).

The operations over this field cannot be performed modulo 2k, since the set Z2k does not

create a field. Hence, the operations over this kind of fields are defined differently.
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2.2 Finite Fields

It is important to introduce the polynomial representation of a field element. In this represen-

tation a polynomial of order k, with binary coefficients, is used to represent an element. This

way, an element A of GF (2k) with the binary representation (ak−1ak−2, . . . , a1, a0) is written as a

polynomial of powers of x:

A =

k−1∑

i=0

aix
i (2.1)

For a binary field GF(2k) it is possible to get an order k irreducible polynomial with binary coef-

ficients P (x). An irreducible polynomial is a polynomial which cannot be factorized into polynomi-

als with lower order. There are algorithms to obtain those irreducible polynomials with reasonable

computer effort [14]. Nonetheless, in this thesis, there will be used already known polynomials.

It is common to use trinomials or pentanomials [15], which are polynomials with three or five non

zero coefficients, respectively. Known this polynomial, all the operations are performed modulo

this irreducible polynomial.

There are alternative representations of field elements. It is possible to use a canonical base

which consists of the first k powers of an element α ∈ GF (2k) [16]. Then, it is possible to obtain

any of the 2k elements β of the field using this basis (1, α, α2, . . . , αk−1):

β =

k−1∑

i=0

aiα
i (2.2)

Another type of bases is the normal basis. In this basis there is an element α ∈ GF (2k)

which generates k linear independent vectors as (α20

, α21

, . . . , α2k−1

) [16]. There are specific

normal bases called optimal normal bases type I and type II. The type II optimal normal basis is

more usual and leads to efficient multipliers. A type II optimal normal basis is constructed like

a normal basis but with α = γ + γ−1, where γ has the properties γ2k+1 = 1 and γn 6= 1, with

0 < n < 2k + 1. This kind of basis do not exist for every field GF (2k), since k must obey to the

following conditions [16]:

1. p = 2k + 1 is a prime number;

2. 2 is a primitive root modulo p, which means that all the powers of 2 generate the set Zp;

3. p ≡ 7 mod 8 and k is the smallest integer that verifies 2k ≡ 1 mod p, which means that (−1)

is a quadratic nonresidue modulo p and 2 generate all the quadratic residues modulo p.

The advantage of such basis is related to the minimization of the dependencies of each product

bit from the input operand bits. Another advantage of normal basis is the squaring operation which

can be efficiently performed with a cyclic left shift. This property can be observed considering the

Fermat Little Theorem which states that for any field element α ∈ GF (2k), α = α2k

. Representing

a field element in terms of a normal basis:

β =

k−1∑

i=0

aiα
2i

, (2.3)

11



2. Mathematical Support

thus its squaring is defined as:

β2 =

(
k−1∑

i=0

aiα
2i

)2

=
k−1∑

i=0

aiα
2i+1

= akα2k

+
k−2∑

i=0

aiα
2i+1

= akα +
k−1∑

i=1

ai−1α
2i

. (2.4)

Nevertheless, in this thesis the polynomial representation is adopted, because it brings inter-

esting properties for the proposed EC units, as discussed later on.

Using polynomial basis, the operations over GF (2k) can be summarized as:

1. Addition: bitwise XOR reduction P (x), (A XOR B) mod P (x);

2. Multiplication: polynomial multiplication reduction P (x), (A × B) mod P (x);

3. Inversion: find the element (A−1) which multiplied by the operand (A) results 1 reduction

P (x), (AA−1) ≡ 1 mod P (x).

As explained, GF (2k) is obtained by expanding GF (2) into k dimensions. In the binary field

GF (2) the addition is performed with a XOR between the two input bits. Thus, in GF (2k), the

operation in GF (2) must be expanded for the k dimensions resulting in a bitwise XOR between

the k bits that represent the field elements, for example (k = 5):

(x4 + x3 + x + 1) + (x3 + 1) ≡ x4 + x mod
(
x5 + x2 + 1

)
.

The multiplication of two polynomials:

A(x) = ak−1x
k−1 + . . . + a1x + a0 and B(x) = bk−1x

k−1 + . . . + b1x + b0,

can be written as:

A(x)B(x) =

k−1∑

i=0

aix
i

k−1∑

j=0

bjx
j =

k−1∑

i=0

k−1∑

j=0

aibjx
i+j =

k−1∑

j=0

bjxjA(x). (2.5)

For example:

(x4 + x3 + x + 1) × (x3 + 1) ≡ x4 + x3 + x + 1+

+ x7 + x6 + x4 + x3

≡ x7 + x6 + x + 1 mod x5 + x2 + 1.

Now, it is necessary to reduce the result to a polynomial of order smaller than k = 5. One

alternative is to calculate the remainder of the division by the irreducible polynomial:

x7 + x6 + x + 1 = (x5 + x2 + 1)(x2 + x) + (x4 + x3 + x2 + 1),

thus, x7 + x6 + x + 1 ≡ x4 + x3 + x2 + 1 mod x5 + x2 + 1.

Another alternative is to compute the multiplication by powers of the polynomial x and to

embed the reduction in this operation. It holds that for a polynomial P (x) with order k:
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2.2 Finite Fields

xk mod P (x) = P (x) − xk (2.6)

Then:

A (x) × x = ak−1x
k + ak−2x

k−1 + . . . + a1x
2 + a0x (2.7)

Using the (2.6) result, in GF (2k), (2.7) can be written as:

A (x) × x = ak−1

(
P (x) − xk

)
+ ak−2x

k−1 + . . . + a1x
2 + a0x (2.8)

This result shows that if ak−1 = 0 a multiplication by x corresponds to a one position left shift,

while for ak−1 = 1, beside the shift, the irreducible polynomial that generates the field must be

added. To divide by x one can perform the inverse: if a0 = 0 it may be performed as a one position

right shift; if a0 = 1, before the shift, the subtraction of the irreducible polynomial without the k

order term must be performed. Note that the subtraction and the addition are the same operation

over these fields. This allows the computation of the previous multiplication example as:

(x4 + x3 + x + 1) × (x3 + 1) ≡ x4 + x3 + x + 1+

+ (x4 + x3 + x + 1)x3.

Since (x4 + x3 + x + 1)x3 = ((((x4 + x3 + x + 1)x)x)x), using (2.8) for three times we obtain that

(x4 + x3 + x + 1)x3 ≡ x2 + x mod x5 + x2 + 1. Then the multiplication is performed as:

(x4 + x3 + x + 1) × (x3 + 1) ≡ x4 + x3 + x + 1+

+ x2 + x

≡ x4 + x3 + x2 + 1 mod x5 + x2 + 1.

To compute the multiplicative inverse it is possible to recall the Fermat Little Theorem, which

states that for every field element A ∈ GF (2k), A = A2k

[17]. Thus, A−1 = A2k−2 which can be

computed, regarding the property 2k − 2 = 2 + 22 + . . . + 2k−1, as A−1 = A2A22

. . . A2k−1

. This

means that it is possible to compute a multiplicative inverse using multiplications recurrently.

There is other method to compute the multiplicative inverse, which is the Extended Euclidean

Algorithm that computes an element (the multiplicative inverse) which has 1 as the greatest com-

mon divisor with a given element. This algorithm is presented in Algorithm 2.1.

For example, to invert the polynomial x3 + 1 modulo x5 + x2 + 1, at the first iteration Q = x2,

D1 = x2 and D2 = 1. Thus, the algorithm stops at the second iteration and the multiplicative

inverse x2 of x3 + 1 is returned.

From the presented properties, one may conclude that the fields GF (2k) are better suited for

hardware implementations than prime fields. These former fields allow to efficiently represent

their elements with binary vectors and permit to perform the operations with few logical gates and

simple bit manipulations.
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2. Mathematical Support

Algorithm 2.1 Extended Euclidean Algorithm
Require: P (x) (irreducible polynomial) and A(x);
Ensure: A(x)−1 mod P (x);

C1 := 0; C2 := P (x); D1 := 1; D2 := A(x);
while D2 6= 1 do

Q := C2/D2;
E1 := C1 − QD1; E2 := C2 − QD2;
C1 := D1; C2 := D2;
D1 := E1; D2 := E2;

end while
return D1;

2.3 Elliptic Curve Definition

An EC over a field F, is a smooth curve that can be defined with a long Weierstrass form [18]:

y2 + a1xy + a2y = x3 + a3x
2 + a4x + a5, ai ∈ F (2.9)

The points (x,y) which obey (2.9), along with a point at infinity called O, define a group E(F)

where new operations can be defined. Note that (2.9) corresponds to a generic description, over

a generic field. However, depending on coefficients ai and performing the appropriate coordinate

changing, it is possible to rewrite (2.9), obtaining EC equations suited for particular fields F. One

of these equations is obtained for fields with characteristic different from 2 and 3, where charac-

teristic of a field is the minimum number of times one can add the multiplicative identity to itself

and obtain the additive identity:

y2 = x3 + ax + b, a, b ∈ F, (2.10)

In (2.10), in order to obey a smoothness condition, a and b must have the relation: −
(
4a3 + 27b2

)
6=

0 [18]. Considering F the set of real numbers, the ECs described as in (2.10) have the shape de-

picted in the Figure 2.1 for different values of the parameters.

The group E(F) is additive and commutative, which means that the addition of its elements is

defined as well as the additive inverse. From this point onwards, these elements will be designated

as points. Particularly, it is also possible to define a doubling operation. These operations can be

described by a geometrical interpretation as depicted in Figure 2.1.

The inverse (−P ) of a point (P ) is defined as the point (−P ) such that (−P ) + P = O, with O
the point at infinity which acts as the additive identity. To obtain the inverse of an addition, a line

that cross the points to add may be marked. Since O is vertically at infinity, to obtain −(P + O)

a vertical line that crosses P may be marked. The other point in the curve crossed by this line is

(−P ), as depicted in Figure 2.1(c). Thus, the group inversion operation is analytically computed

as:

P−1 = (xP , yP )−1 = (xP ,−yP ). (2.11)
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P

Q

-(P+Q)

(P+Q)

P

-2P

2P

P

-P

(a) (b) (c)

Figure 2.1: Elliptic Curve Operation Geometrical Interpretation over a Real Field

The addition operation is defined as explained for the inversion. For P,Q 6= O, P 6= Q and

P 6= −Q the addition result is different from O, thus the marked line crosses P , Q and −(P + Q).

Then, −(P +Q) may be inverted. This procedure is depicted in Figure 2.1(a). Note that if P = −Q

the marked line will be vertical and the result would be O. Analytically, the computation of the

addition of two point R = P + Q, with P = (xP , yP ), Q = (xQ, yQ) and R = (xR, yR), is performed

as [12]:

λ =
yQ − yP

xQ − xP
, (2.12)

xR = λ2 − xP − xQ,

yR = −yP + λ(xP − xR).

The doubling operation is depicted in Figure 2.1(b), and differs from the additions in the sense

that the marked line is a tangent at the point to be doubled. Note that, to double P = (xP , yP ),

if yP = 0 the tangent is vertical, thus the result would be O. For the other cases the analytical

expression for R = 2P is [12]:

xR =

(
3x2

P + a

2yP

)2

− 2xP , (2.13)

yR =

(
3x2

P + a

2yP

)

(xP − xR) − yP .

The above operations are combined in order to perform the point exponentiation, which is an

operation computationally hard to invert. Thus, it is this operation that holds the security of this
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cryptosystem. The exponentiation of the point is obtained through the recurrently application of

the group operation, which means that Pn = P + P + . . . + P , with P a point and n a scalar. From

this point onwards, this operation will be designated as point multiplication (nP ). The provided

security is determined by the difficulty of obtaining n, where only P and Q(= nP ) are known.

The above operations description over the set of real numbers is important to illustrate the

concept. However, in real implementations, the field elements representation must be finite, thus

the presented operations are adapted to finite fields in order to achieve the point multiplication as

in Figure 2.2.

Adding Squaring Multiplication

Elliptic Curve 
Point Doubling

(Q=2P)

Elliptic Curve 
Point Adding

(R=Q+P)

Elliptic Curve Scalar 
Multiplication

(P=kG)

Inversion
Finite Field
Operations

Stage

Elliptic 
Curve 

Elementar 
Operations

Stage

Elliptic 
Curve

Composed
Operations

Stage

Figure 2.2: Elliptic Curve Operations Hierarchy

2.3.1 Elliptic Curves over GF (p)

For this kind of fields, the EC description is the same as the one used for the real number

field (2.10), except for the curve parameters a, b, which belong to GF (p):

y2 = x3 + ax + b, a, b ∈ GF (p), (2.14)

In GF (p), (2.14) does not have solution for every value of x. It only has a solution if ζ =

x3 + ax + b is a quadratic residue modulo p, which means that it has a square root in GF (p). This

property can be tested using the Legendre Symbol
(

ζ
p

)

[18]:

(
ζ

p

)

≡ ζ(p−1)/2 mod p. (2.15)

If (2.15) is 0, then p divides ζ and the coordinate y will be 0. If (2.15) is 1 then ζ is a quadratic

residue and there are two different coordinates y that correspond to the coordinate x. Otherwise,

(2.15) is −1 and ζ is not a quadratic residue, which means that there is no EC point with the

correspondent x coordinate.

In these fields the geometrical interpretation vanishes, because of the modular operations. An

EC example over GF (p) is presented in Figure 2.3. However, since the EC representation is the

same, the addition and doubling analytical expressions in GF (p) are similar to the ones used for

the real number field, except for the operations that are performed modulo p.
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Figure 2.3: Elliptic Curve Example over GF (p)

The order of an EC is the number N of points into an EC or, in other words, the number

of points that obey (2.14). This number has an upper and bottom bound given the Corollary

sometimes called Hasse’s Theorem [18]. This Corollary establishes that for an EC over GF (p)

the number of points N in this EC is delimited by:

p + 1 − 2
√

p ≤ N ≤ p + 1 + 2
√

p. (2.16)

This result may be important to discuss the security of a cryptosystem based on these curves [18].

2.3.2 Elliptic Curves over GF (2k)

As explained in Section 2.1.2, GF (2k) has more interesting properties than GF (p) for hard-

ware implementations. Since in this thesis the interest is hardware, it will be given more details

about EC in GF (2k).

A different equation is used to describe the EC over GF (2k). This equation is derived from

(2.9) with the appropriate coordinates change, and generate a so called non-supersingular curve,

because the coefficient a1 6= 0. The obtained expression is:

y2 + xy = x3 + ax2 + b, a, b ∈ GF (2k). (2.17)

Choosing a polynomial basis, the parameters a, b are polynomials of powers of x; it is worth to

notice that the x coordinate in (2.17), can not get mixed up with the x term in the polynomials.

As in GF (p), in GF (2k) not all the coordinates x correspond to EC points¡. To find a EC point

from (2.17) it is necessary to introduce a field operand, called trace operand. If we have a field

GF(2k) and a polynomial A(x) in this field, the trace of this polynomial is given by [13]:

T (A(x)) =

k−1∑

i=0

A(x)2
i

. (2.18)
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The trace function is known to assume two possible values: 0 or 1. It is also well known that

the trace is a linear function, thus can be calculated as an inner product of the form:

T (A(x)) =

k−1∑

i=0

tiai, (2.19)

where ti is obtained through:

ti = T (αi) (2.20)

where αi represent the various elements of the basis that constructs the field GF (2k). In the case

of a polynomial basis αi = xi. The computation of the trace of a field element is more efficient for

vectors t with fewer coefficients different from zero. A normal basis, for example, generate a vector

t with all the coefficients different from zero, while the polynomial bases presents vectors t with

few coefficients different from zero [13]. This means that the trace is more efficiently computed

over polynomial basis. The trace of a polynomial also has the property T (A(x)2) = T (A(x)).

With the trace operand introduced, it is possible to return to the computation of the EC points.

By considering z = y/x, (2.17) can be rewritten as:

z2 + z = x + a + bx−2 = g (x) ⇔ z2 + z + g (x) = 0, (2.21)

with g(x) = x + a + bx−2. Applying the trace operator:

T (z2) + T (z) + T (g(x)) = 0 ⇔ T (z) + T (z) + T (g(x)) = 0 ⇔ T (g(x)) = 0.

This is the condition that a coordinate x has to obey in order to create an EC point. In general,

it is also the condition to a quadratic equation to be solvable. Moreover, if there is a solution z1,

there is another solution z2 = z1 + 1, which is equivalent to y2 = y1 + x1, recalling zi = yi/xi.

The following equalities hold for GF (2k) fields with k odd [19]:

g (x) = z2 + z

g (x)
22

= z23

+ z22

...

g (x)
2k−1

= z2k

+ z2k−1

.

Recalling the property z2k

= z, the sum of those equalities is equivalent to:

∑

i∈E

g (x)
2i

= T (z) + z, E = {0, 2, 4, . . . , k − 1} and T (z) ∈ {0, 1} . (2.22)

Note that it is also possible to obtain a similar result in the form:

∑

i∈O

g (x)
2i

= T (z) + z, O = {1, 3, . . . , k − 2} and T (z) ∈ {0, 1} . (2.23)
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It is possible to obtain (2.23) from (2.22), and vice-versa, because it holds that:

T (g (x)) +
∑

i∈E

g (x)
2i

= T (z) + z + 0, E = {0, 2, 4, . . . , k − 1} . (2.24)

From (2.23) we can calculate the two solutions of (2.21) z1 and z2: one of them corresponds to

T (z) = 0, and the other to T (z) = 1. From these results, it is possible to conclude that to code an

EC point it is only necessary the coordinate x and the trace of y/x, because this later value allows

to distinguish between the two possible solutions y for the same coordinate x. Summarizing, to

compute an EC point the following steps may be taken:

• Calculate g(x) = x + a + bx−2;

• Use (2.23) or (2.22), the trace of y/x and g(x), to calculate y/x;

• Perform y/x × x = y to obtain the y coordinate.

In the case of GF (2k) the geometrical interpretation also vanishes. This result is justified by

the definition of non-linear operations, such as the XOR operation to add field elements. In Figure

2.4 is depicted an EC example over GF (2k) with k = 5, using the irreducible polynomial x5+x2+1.

The used polynomials, including the EC parameters, are in hexadecimal notation. The analytical

Figure 2.4: Elliptic Curve Example over GF (2k)

expressions for these fields are different from the ones used for GF (p), since the EC equation

changed.

Considering two points P1 = (x1, y1) and P2 = (x2, y2) that obeys (2.17), if x1 6= 0, x2 6= 0 and

x1 6= x2 it is obtained a point P3 = P1 + P2 = (x3, y3) that obeys (2.17) with:
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2. Mathematical Support

x3 = λ2 + λ + x1 + x2 + a

y3 = λ (x1 + x3) + x3 + y1

λ =
(y1 + y2)

(x1 + x2)
.

(2.25)

The addition inverse is defined for a point P1 = (x1, y1), as a point P2 = (x2, y2) such that

P1 + P2 = O. The coordinates of the addition inverse can be obtained by:

x2 = x1

y2 = x1 + y1

(2.26)

To add two points with the same coordinates, the doubling operation equations hold. Consider

a point P1 = (x1, y1) that respects equation (2.17). If P1 6= O, a point P2 = 2P1 = (x2, y2) that

respects (2.17) can be obtained with:

x2 = λ2 + λ + a

y2 = x2
1 + (λ + 1)x2

λ = x1 +
y1

x1

(2.27)

If P1 = O, then P2 = O.

To perform point multiplication, a sequence of doubling operations can be applied within con-

ditional addition, which means that there will be only an addition operation for each bit different

from zero in the scalar binary representation. The possible ways to perform point multiplication

efficiently will be discussed in the Chapter 3.

2.4 Summary

In this section were introduced the fields and groups properties. The various operations over

these fields were also introduced, and the most suitable fields to implement efficient cryptosys-

tems on dedicated hardware have been identified. The field GF (2k) suggests better characteris-

tics to this purpose, since it is supported over operations that can be efficiently implemented at

the low level hardware with simple bit manipulations.

There were also introduced various forms of representing field elements. The polynomial

basis showed to be efficient to achieve this representation. Furthermore, with this basis, some

operands may be more efficiently computed, namely the trace operator, which is important to

perform the computation of an EC coordinate, from the other element of a pair of coordinates.

Since an optimal normal basis only exists for few fields GF (2k), a polynomial basis is a better

choice if generality is a requirement. In fact, the proposed operations require odd k, but since

the standards [15] for ECC use odd k, it is not a demerit factor. Therefore, a polynomial basis is

adopted to take advantage of the original work herein proposed.

The EC properties supported over different fields were presented, specially for GF (2k). The

operations performed over an EC were described, namely the point addition and doubling, and
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2.4 Summary

how these operations were constructed from the field operations. It was also introduced the

complete hierarchy, from the field operation to the EC operation, in order to perform the EC point

multiplication (or exponentiation), which is the support of an EC cryptographic system.

In the next chapter algorithms and architectures are discussed and proposed to efficiently

perform operations over the finite field GF (2k) and over the groups supported by ECs.
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3. Algorithms

This chapter presents the related art for the algorithms and architectures used in ECC, since

the field arithmetic till the complete EC arithmetic. These algorithms are introduced by using some

of the properties of the finite fields, particularly for the field GF (2k), and EC groups presented in

the last chapter.

Different representations of field elements (polynomial and normal basis) are accounted and

its advantages are exploited to suggest different algorithms. For each different possibility, the

relative performance is analyzed in order to support the design options for the final EC processor

suggested in this thesis. Some considerations about point representation are also made to sup-

port some of the original contributions in this thesis, namely minimal point representation, which

are also introduced in this chapter.

3.1 Field Operations

This section introduces algorithms used to perform the operations over the finite field GF (2k).

The high-level EC arithmetic is achieved by interconnecting these algorithms resulting units and

by scheduling the operations in an appropriate way.

3.1.1 Field Multiplication

Two main classes of field multipliers can be identified: one of them includes the multipliers

supported over optimal normal basis, which explore the properties of this basis to reduce the nec-

essary dependencies of the output product from the input operands’ bits; the other class includes

multipliers for polynomial basis, exploring the maximum parallelism to improve performance.

The normal basis multipliers are called Massey-Omura multipliers. These multipliers have the

property of applying exactly the same function for any output bit, changing only the input of this

function. These multipliers can be efficiently implemented changing the function inputs shifting

the input operands. To parallelize this algorithm one only needs to replicate this function. Details

about this multiplier can be found in [20]. The complexity of this function depends on the normal

basis used, and is minimal for special normal basis. These bases were discussed in Section 2.2.2

and are called optimal normal basis. The most used optimal normal basis is the type II optimal

normal basis, because comparing with the type I optimal normal basis, there are more values of

k for fields GF (2k) for which such basis exist [16].

Optimizations for the Massey-Omura multiplier are described in [6, 16]. These optimizations

suggest the realization of a basis change to realize the multiplication. Starting from the normal

basis, a permutation is made in order to obtain a new temporary base called canonical basis,

which consists of a base generated by a field element α as (α, . . . , αk). The multiplication can be

performed over the basis obtained after the permutation and in the end the inverse permutation is

performed. This optimization permits to save area resources [16].
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3.1 Field Operations

One of the algorithms used to multiply over a polynomial basis is called Montgomery Modular

Multiplier, which can be adapted to a finite field GF (2k) [21]. This kind of multiplier is suited to

architectures which compute the operation through the division of the field elements representa-

tion for various equal sized words [22], as is the case of software solutions [21]. This algorithm

consist on substituting the calculus A(x)B(x) by the calculus A(x)B(x)R(x)−1, with R(x)−1 a

special fixed element in GF (2k). This will lead to a more efficient implementation which, for 32

bits processors, represents a throughput about 20 times higher [21].

The Karatsuba-Offman multipliers are also presented in the literature to perform GF (2k) mul-

tiplications. This kind of multipliers allows to achieve a time complexity lower than O(k2) [23].

These multipliers require the division of the input operands (A(x), B(x)) into two parts (low and

high) so they can be written as A(x) = A(x)Hxk′/2 + A(x)L and B(x) = B(x)Hxk′/2 + B(x)L.

Thus, the product (C(x)) is obtained as:

C(x) = A(x)HB(x)Hxk′

(3.1)

+ [A(x)HB(x)H + A(x)LB(x)L + (A(x)H + A(x)L)(B(x)H + B(x)L)]xk′/2

+ A(x)LB(x)L

Nonetheless, for binary finite fields, the most efficient solutions do not divide the input polynomials

at k/2. It is usual to rewrite k = 2n + r, with n, r integers in order not to waste area resources,

thus k′ = 2n. Thus a polynomial may be rewritten as A(x) = A(x)Hx2n

+ A(x)L [23]. The

reason for the presented rewrite of k is that (3.1) can be applied several times, implementing the

recursive Algorithm 3.1. The result for each algorithm step is calculated from the partial results

obtained with the recursive call of the algorithm that progressively reduce the number of bits of

the operands by half. This means that in each algorithm call the input polynomials order will be

divided by 2, explaining the rewriting of k with a power of two and other integer r. This last integer

can be represented with the power of two immediately above (2m), but since it might be a small

integer, the performance decrease is reduced. After using Algorithm 3.1, to compute the partial

results from the two terms resulting from the rewrite of k (2n and 2m), these partial results are

combined employing (3.1) once again. These multipliers may be very time efficient, but require

a separated step to perform the reduction. This reduction step will be discussed later. Another

disadvantage is that the rewriting of k imposes restrictions to the scalability of the multiplier for

arbitrary fields, which means that this structure may be more or less efficient depending on how

close the integer r is from 2m.

Other method to perform the multiplication A(x)B(x) follows directly from:

A(x)B(x) =

k−1∑

j=0

bjx
jA(x). (3.2)

The multiplication in (3.2) is supported on multiplications by powers of the polynomial x. The mul-

tiplication by polynomial x is described in (2.8). This procedure is very efficiently implemented,
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Algorithm 3.1 Karatsuba Multiplication Algorithm KM(A(x), B(x), n)

Require: A(x), B(x) and n (A(x) and B(x) number of bits);
Ensure: M(x) = A(x)B(x);

if n = 1 then
return a0b0

end if
{creating 3 pairs of n/2 bit sized polynomials}
A(x)L := (an/2−1 . . . a0);
B(x)L := (bn/2−1 . . . b0);
A(x)H := (an−1 . . . an/2);
B(x)H := (bn−1 . . . bn/2);
A(x)M := A(x)L + A(x)H ;
B(x)M := B(x)L + B(x)H ;
{recursive calling of multiplication obtaining partial results with n bits}
R(x)L := KM(A(x)L, B(x)L, n/2);
R(x)M := KM(A(x)M , B(x)M , n/2);
R(x)H := KM(A(x)H , B(x)H , n/2);
{combining the partial results in order to obtain the final 2n bit sized result}
M(x) := R(x)Hxn + (R(x)H + R(x)M + R(x)L)xn/2 + R(x)L;
return M(x);

since the irreducible polynomials would have at most five non zero coefficients. Thus, a multipli-

cation by the polynomial x can be computed with at most three XOR gates and hardwire shifts. To

obtain other powers it is possible to serialize this procedure and since the irreducible polynomial

is sparse there will not be a significant degradation of the time performance to compute higher

powers. A parallelization of this method is proposed in [24], so (3.2) can be written for a two level

parallelization and a field with odd k, as:

A(x)B(x) =
[
b0A(x) + b2x

2A(x) + . . . + bk−1x
k−1A(x)

]
+ (3.3)

+ x
[
b1A(x) + b3x

2A(x) + . . . + bk−2x
k−2A(x)

]
.

The adoption of a polynomial basis discards any of the normal basis inspired multipliers dis-

cussed in Section 3.1.1, namely Massey-Omura multipliers. It is not of interest to consider mul-

tipliers constructed with a fixed word processor to obtain large polynomials multiplications when

the target is an EC hardware processor. The reason to adopt polynomial basis is that it brings

more interesting properties for computing important operations, namely the trace operator, which

supports some of this thesis original work. From Section 3.1.1, one of the possible approaches is

to use a Karatsuba-Offman multiplier. This multiplier architecture allows to more efficient area uti-

lization when performing parallel optimizations. Although, it will be used a multiplier as suggested

in [24], which, for a 2-level parallelization, is supported in (3.2). This multiplication is supported

on the multiplication by powers of polynomial x, which can be efficiently implemented, as will be

discussed in Section 4.1.1. Comparing with other multipliers, this implementation has the advan-

tage of embed the reduction in the multiplication by polynomial x unit, avoiding an additional step

of reduction. Other known advantages are the fact that can be easily adapted to any irreducible

polynomial, affecting only the multiplication by polynomial x unit, and is easily scalable to any field
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3.1 Field Operations

size and any level of parallelization.

3.1.2 Field Squaring

With normal basis the squaring is a cyclic left shift. For polynomial basis, to compute a squar-

ing, the dependencies of each output bit may be pre-computed from the input operand. This may

be done regarding that the squaring is a particular case of field multiplication:

C(x) = A(x)2 =

k−1∑

i=0

k−1∑

i=0

aiaix
ixi =

k−1∑

i=0

aix
2i. (3.4)

Observing (3.4), when i < ⌈k/2⌉ the ci coefficient depends directly from the a2i coefficients.

For i ≥ ⌈i/2⌉ the dependencies are calculated through the irreducible polynomial observing the

property in (2.6). For these values of i, one shall compute x2i using (2.8) and any of the mul-

tiplication algorithms discussed, and the dependencies arise from the result’s coefficients which

do not equal zero. Since the irreducible polynomial has at most five non zero coefficients, there

will be few dependencies and (3.4) can be efficiently computed. An example will be presented to

calculate a squaring operation modulo x5 + x2 + 1.

Table 3.1 lists the binary representation of all the first 2k−1 = 9 powers of polynomial x modulo

the irreducible polynomial x5 + x2 + 1. The input operand is described as (a4, a3, a2, a1, a0). For

Table 3.1: Powers of polynomial x modulo x5 + x2 + 1
Polynomial Binary representation

1 00001

x 00010

x2 00100

x3 01000

x4 10000

x5 00101

x6 01010

x7 10100

x8 01101

example, to obtain the coefficient 3 of the reduced result, one may look the Table 3.1 even entries

which have the coefficient 3 different from zero. In this particular case, these entries correspond

to x6, x8. Thus, c3 = a6/2 + a8/2 = a3 + a4, because any input coefficient ai, as obtained in (3.4),

influence the 2i − th power of the polynomial x in the result. The same procedure is repeated for

the other coefficients.

The squaring operation is performed very efficiently in hardware solutions and its complexity is

assumed to be similar to the addition operation. This method can be used to perform the reduction

of an element not only for the squaring. For example, if there is a vector (a8, a7, a6, a5, a4, a3, a2, a1, a0)

to reduce, the coefficient c2 of the reduction may be computed as c2 = a8 + a7 + a5 + a2.
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3.1.3 Field Inverters

There are two major methods to perform the inversion. One of them is based on the Fermat

Little Theorem discussed in Section 2.2.2, which results in:

A−1 = A2k−2 = A2A22

. . . A2k−1

. (3.5)

There are architectures that implement directly (3.5) [22]. However, there are other architec-

tures that apply an algorithm inspired in (3.5) but with optimizations [25]. These later inverters are

called Itoh and Tsujii inverters, and are supported on a rewritten version of (3.5), regarding that

the squaring operation may be more efficiently computed than general multiplication:

A−1 = A2k−2 =
(

A2k−1−1
)2

=







(

A2(k−1)/2−1
)2

A if k odd,
[(

A2(k−1)/2−1
)2(k−1)/2+1

]2

A if k even.
(3.6)

From (3.6) follows the Algorithm 3.2. This algorithm requires ⌊log2(k − 1)⌋ + h(k − 1) + 1

Algorithm 3.2 Itoh and Tsujii Inversion Algorithm

Require: A(x) ∈ GF (2k), P (x) (irreducible polynomial);;
Ensure: A(x)−1

s := log2(n) − 1;
result := A;
while s ≥0 do

r := n >> s; {right shift}
q := result;
for i from 1 to r >> 1 do

q := q2 mod P (x);
end for
t := result × q mod P (x);
if r is odd then

t := t2 mod P (x);
result := t × A mod P (x);

else
result := t;

end if
s := s − 1;

end while
result := result2 mod P (x);
return result;

multiplications [25], where h(·) is the binary Hamming weight. This result is better than the one

obtained from the direct application of (3.5), which needs k − 2 multiplications.

The other methods to perform the inversion are based on the Extended Euclidean Algorithm

presented in Algorithm 2.1. In [17] it is proposed the Algorithm 3.3 which adapts the Extended

Euclidean Algorithm to invert polynomials over GF (2k). This last algorithm is a better solution to

dedicated implementations, being more time efficient [17]. There are parallel implementations of

this algorithm that can be found in [24].
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Algorithm 3.3 Brunner Inversion Algorithm:

Require: A(x) ∈ GF (2k) and P (x) {irreducible polynomial};
Ensure: A(x)−1;

F := P (x);
S := F ; {S and R are assumed to have the same degree of P (x)}
R := B(x); {R is initialized with the input polynomial}
U := 1; {maximum degree k-1}
V := 0; {maximum degree k-1}
delta := 0; {delta represents the difference between S and R instant degrees}
for i = 1 to 2k do

if rm = 0 then
R := xR;
U := (xU) mod F ;
delta + +; {R degree decreases}

else
if sm = 1 then

S := S − R;
V := (V − U) mod F ;

end if
S := xS; {S degree decrease}
if delta = 0 then

{degree of S inferior to R}
(R ↔ S); (U ↔ V ); {polynomials exchange}
U := (xU) mod F ;
delta + +;

else
U := (U/x) mod F ;
delta −−;

end if
end if

end for
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In order to the Itoh and Tsujii method to be efficient, very fast multipliers have to be used.

There is no possible parallelization of multiplications for this method, as it can be seen in the

Algorithm 3.2, where the presented multiplications always have data dependencies from the pre-

vious one. The alternative method, the Brunner Inversion Algorithm presented in Algorithm 3.3

is well suited for hardware implementations and has a fixed duration of 2k iterations. This in-

verter has also other interesting properties: i) it can be parallelized [24], and ii) a divider can be

implemented over the inversion algorithm differing only on an initialization step. Observing the

Algorithm 3.3 to invert B(x), if one wants to obtain A(x)/B(x), the initialization step U := 1, may

be substituted by U := A(x) [17]. For these reasons, the inverter proposed for the processor

presented in this thesis adopts the Brunner Inversion Algorithm.

3.2 Elliptic Curve Operations

In this section methods to perform the operation over an EC are discussed, not only the exis-

tent but also some alternatives that lead to more efficient implementations. Among these meth-

ods it is the utilization of different projective representations that allow to reduce the number of

the most expensive field operation (the inversion) employed in point exponentiation. Integer re-

coding methods for reducing the number of required operations are also discussed. A protocol to

communicate private data supported in the ECC is also presented.

3.2.1 Projective Coordinates

As discussed before, the field operations are four: addition, squaring, multiplication and in-

version. The most costly of these four operations is by far the inversion operation. For a scalar

with m bits, the presented point addition and doubling operations over an EC can be performed

with 2 (m − 1) inversions. A change of coordinates may be used to avoid this amount of inver-

sions, in order to increase system’s performance. These new coordinates are called projective

coordinates, and the original coordinates are called affine coordinates. To define the projective

coordinates, consider the integers c, d and an equivalent class in (GF (2k))3 except for the set

(0, 0, 0) [10]:

(X1, Y1, Z1) ∼ (X2, Y2, Z2)|if X1 = λcX2, Y1 = λdY2, Z1 = λZ2.

The following class is called a projective point:

(X : Y : Z) = (λcX,λdY, λZ) : λ ∈ GF (2k),

and the tuple (X,Y,Z) is called a representative point. Considering Z 6= 0 and λZ = 1 ⇔ λ = 1/Z,

it is possible to take one of the representative points of the class (X : Y : Z) as (X/Zc, Y/Zd, 1).

Therefore, for an appropriate λ, there is an isomorphism between the projective points (X : Y : Z),

with X,Y,Z ∈ GF (2k) and Z 6= 0 and the affine points defined by x, y ∈ GF (2k). Working with

these projective coordinates, to perform a scalar multiplication the following steps must be taken:
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3.2 Elliptic Curve Operations

1. Convert affine coordinates to projective coordinates, which may be a straight forward oper-

ation.

2. Perform the EC arithmetic in projective coordinates, free of inversions.

3. Convert the result to the original affine coordinates, which involve an inversion operation.

In summary, the great advantage of using projective coordinates is to perform only a final inver-

sion on the last step of the processing corresponding to a point multiplication. This description

may suggest that one should always work with projective coordinates, but there are some disad-

vantages of using this method. One of those is that the projective coordinates are three, versus

the original two coordinates that can perform better bandwidth usage. Another disadvantage is

that the amount of multiplication operations increases in the projective arithmetic. However, since

it is guaranteed that the multiplication algorithm requires far less computing effort, projective co-

ordinates arithmetic remains more efficient.

The used projective coordinates may be standard (x = X/Z, y = Y/Z) [23], Jabobian (x =

X/Z2, y = Y/Z3) [26] or Lopez-Dahab (x = X/Z, y = Y/Z2) [6, 25]. From this three representa-

tions, the most widely used are the standard and Lopez-Dahab.

3.2.2 Lopez-Dahab Projective Coordinates

Using the relation x = X/Z, y = Y/Z2 the EC equation (2.17) can be rewritten as:

Y 2 + XY Z = X3Z + aX2Z2 + bZ4. (3.7)

With the curve in (3.7), the doubling operation over the EC Q = 2P with P = (X1, Y1, Z1) and

Q = (X2, Y2, Z2) is obtained as [6]:

Z2 = Z2
1X2

1 ; (3.8)

X2 = X4
1 + bZ4

1 ;

Y2 = bZ4
1 + X2(aZ2 + Y 2

1 + bZ4
1 ).

The doubling operation is performed with four multiplications. The addition operation in these

projective coordinates is in fact a mixed coordinates operation because, as it will be discussed

later, in the point multiplication algorithm there is an input that is always invariant and can be

represented with its affine coordinates as (X2, Y2, 1). Thus, the addition of two points R = P + Q,
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with R = (X3, Y3, Z3), Q = (X2, Y2, 1) and P = (X1, Y1, Z1), is performed as:

A = Y2Z
2
1 + Y1; (3.9)

B = X2X1 + X1;

C = Z1B;

D = B2(C + aZ1);

Z3 = C2;

E = AC;

X3 = A2 + D + E;

F = X3 + X2Z3;

G = X3 + Y2Z
2
3 ;

Y3 = EF + Z3G.

Therefore, the presented point addition takes ten multiplication operations to be perform.

3.2.3 Standard Projective Coordinates

Given the relationship x = X/Z and y = Y/Z, the correspondent EC equation to (2.17) using

standard projective coordinates becomes:

Y 2Z + XY Z = X3 + aX2Z + bZ3 (3.10)

An efficient way to use the equation (3.10) representation is called Montgomery Method and

should not be confounded with the field multiplication Montgomery Algorithm. The following de-

scribes the Montgomery Method/Algorithm

Montgomery Method

Considering four points: P1 = (x1, y1), P2 = (x2, y2), Padd = (xadd, yadd) = P2 + P1 and

Psub = (xsub, ysub) = P2 − P1. Then it holds the following [27]:

xadd =







xsub + x1

x1+x2
+
(

x1

x1+x2

)2

, P1 6= P2

x2
1 + b

x2
1

, P1 = P2
(3.11)

If a standard projective representation is used, thus xadd = Xadd/Zadd. Then it is possible to

define the arithmetic in projective representation to add (P1 6= P2) and double (P1 = P2) EC

points, using the results in (3.11). Note that this arithmetic does not involve the y coordinate

of the affine representation point, thus the resultant y coordinate may be only calculated when

performing the final projective do affine coordinates conversion. The double and add operation is

defined in projective coordinates as follows.

Xdouble = X4
1 + bZ4

1 , (3.12)

Zdouble = X2
1Z2

1
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Zadd = (X1Z2 + X2Z1)
2
, (3.13)

Xadd = xsubZadd + X1Z2X2Z1.

Note that in the addition expression, the polynomial xsub is one of the operands. When performing

a scalar multiplication over an EC, this polynomial is invariant and corresponds to the original

affine x coordinate of the point to be multiplied. The algorithm to compute a point multiplication

by a scalar k with n bits using this method is the Algorithm 3.4 [27]. In Algorithm 3.4 the routine

Algorithm 3.4 Montgomery Point Multiplication Algorithm

Require: k := (kn−1kn−2 . . . k0) with kn−1 = 1 and P (x, y) ∈ E(GF (2k));
Ensure: Q := kP ;

X1 := x; Z1 := 1; X2 := x4 + b; Z2 := x2;
for i = n − 2 downto 0 do

if ki = 1 then
(X1, Z1)=Madd(X1, Z1,X2, Z2),(X2, Z2)=Mdouble(X2, Z2);

else
(X2, Z2)=Madd(X2, Z2,X1, Z1),(X1, Z1)=Mdouble(X1, Z1);

end if
end for
return Q :=Mxy(X1, Z1,X2, Z2);

Madd corresponds to the point addition, the routine Mdouble corresponds to the point doubling and

the routine Mxy corresponds to the conversion to affine coordinates. In this last routine the results

xR = X1/Z1 and yR are computed. An expression was presented in [27] to calculate yR, which

can be written in terms of X1, Z1,X2, Z2 as [10]:

yR = (x + X1/Z1)(xZ1Z2)
−1
[
(X1 + xZ1)(X2 + xX2) + (x2 + y)(Z1Z2)

]
+ y, (3.14)

with y the algorithm input coordinate. The time this algorithm takes only depends on the scalar

binary size, but not on the number of the binary coefficients different from zero, which is an

advantage in the sense that it can not be time attacked. Even a differential power attack may be

useless to attack this algorithm, since the amount of operations performed are the same for every

scalar with the same size, thus the power is the same independently of the secret scalar.

This algorithm and point representation method is adopted in this thesis, because this algo-

rithm has interesting properties to handle with a compact representation of EC points. These

properties avoid the y coordinate to be used in most of the algorithm. Only in a final step, in the

conversion from projective to affine coordinates, the y coordinate is required. This last step will

be exploited in more detail in order to adapt it to the computation of a compact representation, as

it will be introduced later.

3.2.4 Scalar Recoding

A scalar k with n bits can be written as [10]:

k = kn−12
n−1 + kn−22

n−2 + . . . + k12 + k0 = 2(2(. . . 2(2kn−1 + kn−2) + . . .) + k1) + k0. (3.15)
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The point multiplication Q = kP over an EC can be supported on the scalar written as in (3.15),

using a basic double and add algorithm as Algorithm 3.5.

Algorithm 3.5 Double and Add Point Multiplication Algorithm

Require: k := (kn−1kn−2 . . . k0) with kn−1 = 1 and P (x, y) ∈ E(GF (2k));
Ensure: Q := kP ;

P := Q;
for i = n − 2 downto 0 do

Q := 2Q;
if ki = 1 then

Q := Q + P ;
end if

end for
return Q;

In the Algorithm 3.5, it is possible to observe that one of the terms of the point addition opera-

tion (P ) is always the input operand, which means that this algorithm support the mixed coordinate

algorithm explained in Section 3.2.2.

For improving the performance of the double and add algorithm, there may be used scalar

recodings in order to reduce the Hamming weight of the scalar and to reduce the amount of

addition operations. To do this, it will be admitted three possible coefficients to code the scalar

(0, 1 and -1) and the Algorithm 3.5 may be adapted to perform a point subtraction, which can be

easy since the point addition inverse is obtained with a simple k bits XOR operation (see (2.26)).

One of the recoding techniques is supported on the identity [10]:

2i+j−1 + 2i+j−2 + . . . 2i = 2i+j − 2i. (3.16)

For example, the scalar (01110)b = 23 + 22 + 21 may be recoded using (3.16) as (1000 − 10)b =

24 − 21. Using this recoding the scalar size may increase from n to n + 1.

There are other methods for recoding the scalar, but require pre-computed results and extra

memory to store them, namely the Non-Adjacent Forms (NAF) recoding [10].

The using of the recoding has some weaknesses. All the algorithms that exploit the recoding

can increase performance by avoiding some operations, thus the power consumption or time per-

formance will be different depending on the scalar used on a particular point multiplication. One

consequence is that the system would be more sensitive to differential power and time attacks. In

this thesis design no recoding will be used, thus the power or time spent into a point multiplication

will be the same independently of the scalar used.

3.2.5 Encrypting and Decrypting Messages

The hardware design may be optimized for the application, in what respects the EC arithmetic.

This application may be a digital signature protocol or communication of messages with key ex-

change. When two entities wish to exchange data, it is usual to use public key cryptography to
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secretly change a symmetric key, which is then used to cipher or decipher the messages using an

appropriate symmetric key algorithm, such as Advanced Encryption Standard (AES). This pro-

cedure is due to a better efficiency for symmetric cryptography, which offers a higher throughput

with more attractive power and area characteristics.

ECC may be used for message cipher/decipher, namely to encrypt symmetric keys. The most

common protocol that uses ECC to send messages is a protocol El-Gamal analog [18]. The

El-Gamal protocol definition assumes the existence of a primitive element α which generates a

prime field, as well as a secret a and an element β such that β = αa. The elements a and β are

the receiver private and public keys, respectively. In this protocol, to transfer secure information a

pair (γ1, γ2) is created, such that γ1 = αk and γ2 = mβk, where k is the sender private key and m

is the information to be sent. The element γ1 represents the sender public key. In order to obtain

the message , the receiver has to compute m = γ2γ
−a
1 . It may be observed that γ−a

1 = α−ak and

γ2 = mαak, thus γ2γ
−a
1 = mαak−ak = m.

The EC protocol has some differences from the generic description of the El-Gamal protocol.

First of all, an EC cryptosystem is defined over a group and not over a prime field, thus the

operation used for the exponentiation is different. Second, the operation to perform EC arithmetic

is applied over EC points. Thus, it is assumed that, somehow, there is a mapping between

message symbols or strings and EC points, and this mapping is bijective. This mapping may

be performed by the sender as a trial algorithm [8], reserving a fixed part of the coordinate x to

represent the message and the other part to represent a random redundancy such that the whole

coordinate x is an EC point. The receiver just discards the random part and keeps the message.

It is assumed that there is a point G that is known by both parties, sender (A) and receiver (B).

To perform a communication of a message from A to B, the procedure may be the following:

1. A and B choose a random integer, kA and kB , respectively. These integers are the private

keys and both A and B only know about their own private keys.

2. A and B generate their public keys, computing KA = kAG and KB = kBG, respectively.

3. A transmits its public key to B and B transmits its public key to A.

4. A maps its message into EC points M and computes (encrypt) an EC point to transmit as

C = M + kAKB

5. B receive the EC point C and computes C − kBKA = M (decrypt). This identity is true
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because, with KA = kAG:

C − kBKA = C − kB (kAG) =

= C − (kAkBG) =

= (M + kAKB) − (kAkBG) =

= (M + kAkBG) − (kAkBG) =

= M + (kAkBG) − (kAkBG) =

= M.

6. B does the reverse mapping of M and obtains the message.

To choose the random private keys it is important to bear in mind the concept of group order.

The point G is called a generator and its powers generate a subgroup of EC points. This generator

has a known order OG. Thus, it must be assured that when the above operations are performed

the random keys k that multiply G must obey k < OG. This condition guaranties that the public

key will not be O (the group identity) or a lower power of G that would be easily attacked, since

multiply G by a scalar k is the same than multiply by k mod OG. To avoid this situation, the scalar

k employed usually has the same size n than OG, which means that the most significant bits

coincide, and the remaining n − 1 bits assure that k < OG.

These properties will be regarded for the real system application of the proposed design, in

order to create and transmit public keys and perform a secure communication.

3.3 Minimal Elliptic Point Representation

In this section is introduced a method suggested in [13] that allows to code all the elliptic point

information into a single coordinate, without the extra bit. This method will support some of the

original contributions of the structure proposed in Section 4.1.

Attending that the EC equation over GF (2k) may be written as in (2.21), it is possible to rewrite

the doubling point formula to the x coordinate in (2.27) as:

x2 =

(

x1 +
y1

x1

)2

+ x1 +
y1

x1
+ a = (3.17)

=

((
y1

x1

)2

+
y1

x1

)

+ x2
1 + x1 + a =

=

(

x1 + a +
b

x2
1

)

+ x2
1 + x1 + a = x2

1 +
b

x2
1

.

As referred in Section 2.3.2, to guarantee that a coordinate x belong to an EC point it must obey:

T

(

x1 + a +
b

x2
1

)

= 0. (3.18)
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Regarding the linearity of the trace operator, then:

T

(

x1 +
b

x2
1

)

= T (a) . (3.19)

Using the result in (3.17) it holds that:

T (x2) = T (a) . (3.20)

In Section 3.2.5 was suggested the utilization of a generator point, which means that, in prac-

tice, the arithmetic over the EC will be performed over a subgroup generated by this generator

point. In Section 2.1.1 were introduced some of the properties of subgroups, particularly of prime

order subgroups, which are usually used in most of the EC protocols [28]. One of these properties

for prime sized subgroups is that every point in such subgroup can be written as doubling of other

one. Thus, the property in (3.20) is general for a prime order subgroup.

As described in Section 2.3.2, the trace operator can be written as an inner product with a

trace vector. This means that only the coefficients in this vector different from zero intervene in

the trace operator result. Since this trace vector can be pre-computed and is known at the time

of the system setup, it is known which coefficients are these. In this case, one is free to arbitrate

one of these coefficients, because the condition in (3.20) will always allow to correct this one

coefficient by scanning the other ones.

As an example, in GF (25) supported with the irreducible polynomial x5 + x2 + 1, the trace

vector is (01001)b. Considering that the parameter a of the EC is (10101)b, then T (a) = 1. Now,

considering the EC point (x, y) = (19, 5) = ((10011)b, (00101)b) picked from Figure 2.4, one can

compute y/x = (00110)b, thus T (y/x) = 0. With this information the picked point can be coded as

(1001T (y/x))b = (10010)b.

To decode (10010)b, from the first coefficient one reads T (y/x) = 0 and the x coordinate

become (1001ξ)b. Then, scanning the trace vector, besides the coefficient 0, only the coefficient

3 is involved in the trace calculation. Since, looking at (1001ξ)b the third coordinate is 0. Thus,

T (a) = 0 + ξ, which is the same than ξ = 0 + T (a) = 1. The coordinate is now corrected (10011)b.

To compute y it may be used (2.23) and T (y/x) to obtain y/x and, finally, a last multiplication by

x results in the y coordinate.

These methods will be called from now on coordinate collapsing and coordinate uncollapsing.

3.4 Efficient Units to Deal with Coordinate Collapsing

This section presents original contributions proposed to improve the computation of EC arith-

metic efficiency, starting from a minimal representation of the EC points which leads to a more

efficient bandwidth resources utilization. This detail in not often taken into account on the related

art implementations of EC cryptosystems.
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In Section 2.3.2 it was stated that it is possible to code an EC point with the coordinate x

and one more bit which corresponds to T (y/x). This additional bit distinguish the two possible

coordinates y which correspond to the coordinate x. It was also discussed how this information

can be used to compute the y coordinate. This last point is related to the resolution of a quadratic

equation over GF (2k). In this section it is proposed a method to efficiently use the collapsed

representation in point multiplication and a unit to compute y/x from x and the trace of y/x, by

using (2.23).

3.4.1 Point Multiplication

The Algorithm 3.4 allows to efficiently multiply EC points using only the coordinate x. This

algorithm permits to obtain the product’s x coordinate using only the input x coordinate. The

routine Mxy is the only one that requires the y coordinate. This routine is supported by (3.14).

In [10] a schedule to compute Mxy is suggested. This schedule is presented in the Algorithm 3.6.

The schedule in Algorithm 3.6 requires 9 field multiplication and 1 inversion.

Algorithm 3.6 Mxy routine

Require: P = (X1, Z1), Q = (X2, Z2) and (x, y) ∈ E(GF (2k)){starting affine coordinate};
Ensure: (xR, yR) {result affine coordinates};

1: λ1 = Z1Z2;
2: λ2 = Z1x;
3: λ3 = λ2 + X1;
4: λ4 = Z2x;
5: λ5 = λ4 + X1;
6: λ6 = λ4 + X2;
7: λ7 = λ3λ6;
8: λ8 = x2 + y;
9: λ9 = λ1λ8;

10: λ10 = λ7 + λ9;
11: λ11 = xλ1;
12: λ12 = λ−1

11 ;
13: λ13 = λ12λ10;
14: xR = λ14 = λ5λ12;
15: λ15 = λ14 + x;
16: λ16 = λ15λ13;
17: yR = λ16 + y;
18: return (xR, yR);

In order to efficiently use the compact representation presented in Section 3.3, it is proposed

a manipulation of (3.14), in order to Mxy calculate the result xR and T (yR/xR) from X1, Z1,X2, Y2

38



3.4 Efficient Units to Deal with Coordinate Collapsing

and T (y/x), thus without having to calculate y or yR:

yR = (x + X1/Z1)(xZ1Z2)
−1
[
(X1 + xZ1)(X2 + xX2) + (x2 + y)(Z1Z2)

]
+ y ⇔ (3.21)

⇔ yR =
(X1 + xZ1)(X2 + xZ2)

Z1Z2
+ (x2 + y) +

xR(X1 + xZ1)(X2 + xZ2)

xZ1Z2
+

xR(x2 + y)

x
+ y ⇔

⇔ yR

xR
= (X1 + xZ1)(X2 + xZ2)

(
1

xRZ1Z2
+

1

xZ1Z2

)

+
x2

xR
+

y

xR
+

x2

x
+

y

x
+

y

xR
⇔

⇔ T

(
yR

xR

)

= T

(
(X1 + xZ1)(X2 + xZ2)

Z1Z2

(
1

xR
+

1

x

)

+
x2

xR

)

+ T (x) + T
(y

x

)

.

From (3.21) one can conclude that it is possible to compute T (yR/xR) of a point multiplication

from T (y/x) and terms that depend only on x. Considering xR = X1/Z1, is proposed a final

manipulation of (3.21):

T

(
yR

xR

)

= T
(y

x

)

+ T

(
(xZ1 + X1) (x(X1Z2 + X2Z1) + X1X2)

xX1Z1Z2

)

(3.22)

The schedule presented in Algorithm 3.7 is proposed to compute the expression in (3.22). Comparing

Algorithm 3.7 Proposed Mxy routine

Require: P = (X1, Z1), Q = (X2, Z2), x ∈ GF (2k) and T (y/x) ∈ GF (2);
Ensure: xR and T (yR/xR); {collapsed representation of the result affine coordinates}

1: Ax2 = xZ1;
2: Ax3 = X2Z1 + (Ax1 = X2Z2);
3: Ax1 = Ax2Ax1;
4: Ax3 = Ax3x + X1X2;
5: X2 = Ax2 + X1;
6: Ax1 = A−1

x1 ;
7: Ax3 = X2Ax3;
8: Ax2 = xZ2;
9: X1 = Ax2X

2
1 ;

10: xR = X1Ax1;
11: T (yR/xR) = T (Ax3Ax1) + T (y/x);
12: return (xR, T (yR/xR));

the proposed Algorithm 3.7 with the Algorithm 3.6, one may notice that it needs one more multipli-

cation. However, in the proposed algorithm there is no data dependencies on steps 7) to 9) from

step 6), thus a parallelization may be performed. Moreover, the trace of a multiplication can be

obtained without computing the product, but only the bits that define the trace. For this reason the

trace of a multiplication is computed more efficiently than the multiplication operation. The con-

struction of an unit that calculate the trace of a multiplication will be introduced later. The number

of inversions is the same in both proposed related art solutions. These considerations guaran-

tee that adapting the algorithm Mxy to work with a collapsed representation does not increase its

complexity.

3.4.2 Point Addition

For point addition was not found an efficient employ of the collapsed representation. In other

words, employing the collapsed representation brings no complexity compensation comparing
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with the basic addition algorithm supported by (2.25) and the y coordinate calculus. For these

reasons, to perform addition it is proposed a method which permits to efficiently compute the y

coordinate. This method is supported by (2.23). It would also be possible to use (2.22), however,

(2.22) has one more term, thus computing (2.23) is more efficient.

To implement (2.23) over GF (2k) a parallelization is possible rewriting (2.23) as:

∑

i∈O

(

g (x)
2i

+ g (x)
2i+2

)

= T (z) + z, O = {1, 5, 9, 13, . . . , n − 4, n} (3.23)

with n < k and T (z) ∈ {0, 1}.

3.5 Summary

In this chapter the related art algorithms to perform the operations over GF (2k) were pre-

sented, and were discussed some of their characteristics. The different methods to multiplying

are discussed, regarding the basis used to support the field. The squaring operation was shown

to be efficiently computed on hardware platforms, both in polynomial basis and normal basis. Two

kinds of inverters were presented, one supported on recurrent use of the multiplication and other

supported on the Extended Euclidean Algorithm. The inversion algorithm was shown to be less

time efficient than the multiplication, remaining the hardest field operation to compute.

The EC basic algorithms were also introduced. There were discussed different ways of repre-

senting the EC group’s elements, namely the different projective coordinates, in order to improve

performance by reducing the use of field inversions. For these different representations, different

algorithms, their properties, and the achieved performance improvement of point multiplication

were presented.

Techniques to improve point multiplication regarding a scalar recoding as well as a notion on

how to cipher and decipher messages using EC operations, were also presented.

A method was introduced to collapse the representation of an EC point in order to save band-

width in the EC information transmission. Furthermore, original algorithms to deal with this col-

lapsed representation were also introduced. The utilization of these algorithms suggest better

solutions in terms of bandwidth saving and new functionalities.

In the following chapter, the algorithms herein presented will be adopted in order to create a

reconfigurable logic platform, based on FPGA technology.
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In this chapter a full cryptographic processor supported over EC arithmetic is presented. The

proposed structure was targeted for a FPGA technology. Some of the previous discussed field

and groups properties, as well as some algorithms, are considered to efficiently perform the re-

quired EC operations. New units resulting from the original algorithms related to the minimization

of EC points representation and its use are also introduced. This chapter also presents the imple-

mentation results of the proposed EC design in a FPGA technology and the comparison with the

related state of the art. In order to fully evaluate the proposed structure, an ASIC technology was

also used as an implementation target. Since the main target is the FPGA implementation, more

attention will be given to the implementation on this technology.

4.1 Proposed Elliptic Curve Processor Design

This section describes the processor proposed to compute the EC arithmetic, starting with

the description of the field operation units and finalizing with the description of the top level EC

operations, namely the point multiplication and point addition. The proposed design is focused in

a particular GF (2k) field with k = 163, supported by the irreducible polynomial P (x) = x163 +x7 +

x6 + x3 + 1. These field parameters are suggested by NIST [15]. Nevertheless, this design can

be easily generalized to any odd k and any irreducible polynomial.

4.1.1 Multiplication and Division by polynomial x

The multiplication and division by polynomial x is important to support the field operations,

namely the multiplication and inversion. These operations are supported by (2.8). The multipli-

cation by polynomial x is computed with a hardwired left shift followed by the reduction of the

resulting order k coefficient. To perform this reduction the irreducible polynomial can be added

with the shifted input if this coefficient is different from zero, otherwise the left shift is sufficient.

The resulting unit is depicted in Figure 4.1.

...

...

a162 a162 a7 a6 a5 a4 a3 a2 a1 a0

a162 a162 a162

a162

r162 r162 r7 r6 r5 r4 r3 r2 r1 r0

Figure 4.1: Multiplication by polynomial x unit
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Since the irreducible polynomial is sparse (usually a pentanomial or trinomial), this unit can be

constructed with very few logic gates. For the presented implementation, using a pentanomial, the

number of logic gates is 3. To divide by the polynomial x, the inverse can be computed. Observing

that the coefficient 0 of the irreducible polynomial must be different from the value 0, if the input

coefficient 0 is different from 0 a XOR operation with the irreducible polynomial can be performed

(undo a reduction), and a right shift completes the calculation. If the input coefficient 0 is 0, only

the right shift is required. The division by polynomial x unit is depicted in Figure 4.2.

...

...

a162 a162 a7 a6 a5 a4 a3 a2 a1 a0

a0 a0

a0

r162 r162 r7 r6 r5 r4 r3 r2 r1 r0

a0

Figure 4.2: Division by polynomial x unit

It is possible to serialize the multiplication and division by polynomial x structures, in order

to obtain multiplication and division by any power of the polynomial x. These structures are very

area efficient, allowing multiplications and divisions by powers of polynomial x to be designed with

minimal area complexity. The hardwire shift operations also limit the number of serial XOR gates

in the critical path, thus performance efficient units can be obtained.

4.1.2 Field Multiplication

The proposed multiplication unit, depicted in Figure 4.3, is obtained from the parallelization of

the equation (3.2) in four subtasks [24]:

Z0 (x) = b0A (x) + b4x
4A (x) + . . . + b160x

160A (x) ; (4.1)

Z1 (x) = x
[
b1A (x) + b5x

4A (x) + . . . + b161x
160A (x)

]
;

Z2 (x) = x2
[
b2A (x) + b6x

4A (x) + . . . + b162x
160A (x)

]
;

Z3 (x) = x3
[
b3A (x) + b7x

4A (x) + . . . + b159x
156A (x)

]
;

with Z (x) = Z0 (x) + Z1 (x) + Z2 (x) + Z3 (x). In order to achieve a good compromise between

the available area and time performance, a 4 level parallelization is used. This structure can be

further parallelized in order to achieve higher performances. No degradation of the critical path is

expected when increasing the parallelization level [24], due to the sparse irreducible polynomials.
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Z0 Z1 Z2 Z3

x x2 x3

A Bx4

0 1 Iteration
counter

input A
input B

output

Figure 4.3: Proposed Field Multiplication Unit

The counter controls the iterations needed to complete the multiplication, which in this case is

⌈k/4⌉ = 41. In the last iteration the register Z3 is not updated, which follows directly from Z3 in

(4.1). In conclusion, considering that multiplying by the polynomial xi takes 3i XOR operations,

the proposed multiplier can be constructed with:

- 6 × 163 bit registers;

- 4 × 163 bit, 2 input XOR gates;

- 1 × 163 bit, 4 input XOR gate;

- 30 × 1 bit, 2 input XOR gates (multiplication by xi);

- 1 × 163 bit, 2:1 multiplexer;

- 1 × 6 bit counter.

4.1.3 Squaring Unit

The squaring unit has a very efficient implementation in hardware platforms and is computed

as described in Section 3.1.2. This implementation is performed with a pre-calculated table which

translates the dependencies of each output bit from the input operand, regarding the even powers

of the polynomial x. The complexity of this operation is greater for irreducible polynomials with

higher Hamming weight. Using trinomials or pentanomials (as in the presented implementation)

this complexity is small. Using the field size and irreducible polynomial for the implementation

herein proposed, it is possible to obtain a GF (2163) equivalent table for the example over GF (25)

presented in Table 3.1. The obtained dependencies can be calculated as presented in the GF (25)

example. The difference is that the table dependencies are spread over 2 × 163 rows instead of
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2×5 rows as in the example. The number of dependencies per output coefficient are 5 for 2 output

coefficients, 4 for 2 output coefficients, 3 for 79 output coefficients, and, finally, 2 dependencies

for 80 output coefficients. For example, in the proposed implementation, the even powers of the

polynomial x which have the coefficient 10 different from zero are: 10, 166, 170, 322, 324. Thus,

the resulting coefficient 10 of the squaring of A = (a163, . . . , a1, a0) is c10 = a10/2+a166/2+a170/2+

a322/2 + a324/2 or c10 = a5 + a83 + a85 + a161 + a162. In sum, the squaring unit is constituted by:

- 2 × 5 input XOR gates;

- 2 × 4 input XOR gates;

- 79 × 3 input XOR gates;

- 80 × 3 input XOR gates.

4.1.4 Trace of a Multiplication

Calculating the trace of a multiplication can be performed more efficiently than calculating the

multiplication and obtain the trace from the product. This observation is due to the properties of

the trace vector calculated as in (2.20). This trace vector, if polynomial basis is being used, may

be sparse. In fact, for the particular field properties used in this implementation, this trace vector

has only two non-zero coefficients. These coefficients are 0 and 157, which means that if one

wants to calculate the trace of a polynomial A = (a163, . . . , a1, a0), a simple XOR operation is

enough:

T (A) = a0 + a157. (4.2)

The result in (4.2) suggests that to calculate the multiplication trace, only two bits of the product

are needed. The multiplication operation may be computed as:

A(x)B(x) =

k−1∑

i=0

aix
i

k−1∑

j=0

bjx
j =

k−1∑

i=0

k−1∑

j=0

aibjx
i+j . (4.3)

Generating a table of the 2k first powers of the polynomial x:

• The powers with non-zero coefficient 0 are: 0, 163, 319, 320, 323;

• The powers with non-zero coefficient 157 are: 157, 313, 314, 317, 320.

Regarding (4.3), the trace of a multiplication can be computed by the addition (XOR) of all the

terms aibj such that:

(i + j) = {0, 157, 163, 313, 314, 317, 319, 323} . (4.4)

Note that the terms such that (i+j) = 320 will cancel, thus are not considered. Using the previous

information, the trace of a multiplication can be computed as:
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T (A × B) = a0b0 +

157∑

i=0

aib(157−i) +

162∑

i=1

aib(163−i)+ (4.5)

+

162∑

i=151

aib(313−i) +

162∑

i=152

aib(314−i) +

162∑

i=155

aib(317−i)+

+
162∑

i=157

aib(319−i) +
162∑

i=161

aib(323−i).

The computation of the trace of a multiplication requires:

-360 × 2 input AND gates;

- 1 × 359 input XOR gate.

This unit is efficient when there are few dependencies of the trace operator on the input coef-

ficients. It would not be the case, thus this unit should be replaced by a multiplier followed by the

computation of the trace directly from the product.

4.1.5 Field Division

As introduced in Section 3.1.3, the number of multiplications required by the Itoh-Tsujii method

to invert a polynomial depends only on the size of the field, and is given by ⌊log2(k − 1)⌋ + h(k −
1)+1 [25]. For the presented implementation the number of multiplications would be ⌊log2(162)⌋+
h(162) + 1 = 11. Particularizing for the presented implementation, the adopted Brunner inversion

method, requires 2k = 326 iterations to perform an inversion (or division) of a polynomial. Using

the multiplier suggested in Section 4.1.2, an Itoh-Tsujii inverter would take 11×41 = 451 iterations,

which is more than 326. Thus, the time performance of the Brunner inverter, for this particular

implementation, is another advantage to add to those introduced in Section 3.1.3.

For the inverter (and divider) the architecture presented in Figure 4.4 is used, which result

from the direct application of the Algorithm 3.3, without parallelization.

R S U V

0 1 2 3 0 1 2

0 1 2

0 1 2 0 1

x x x

x 1/x

delta

(S – R) (V – U)

output

R S
(S – R)

input B
R

U V
(V – U)

U
input A

(V – U)
U

iteration
counter

Figure 4.4: Proposed Field Inverter/Divider
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Note that the multiplications by the polynomial x, which involve the R and S registers, are not

performed mod P (x), with P (x) the irreducible polynomial. This operation corresponds to one

bit hardwire left shift operation. The iteration counter controls the number of iterations needed

to perform an inversion. When the unit starts functioning, an initialization step is performed,

where the register U is accordingly loaded or reset, depending on if there will be a division or

an inversion, respectively. The control for each iteration is described in Table 4.1, where the bits

r163 and s163 are the most significant bits of the registers R and S, respectively, and the delta

counter quantify the difference between the degrees of the polynomials in registers R and S as in

Algorithm 3.3.

Table 4.1: Inverter Control
Signals Registers Counter

r163 s163 delta = 0 R S U V delta
0 × × xR S xU V delta + +
1 0 0 xS R xV U delta + +
1 0 1 R xS U/x V delta −−
1 1 0 x(S − R) R x(V − U) U delta + +
1 1 1 R x(S − R) U/x (V − U) delta −−

The proposed division algorithm has the property that the control behavior does not depend

on U and V registers, which means that the control does not depend on the dividend. This allows

to perform various divisions by the same divisor using the same circuit, replicating only the U and

V associated logic and using the same control for all the replicas.

4.1.6 Root Calculation Unit

In order to perform point addition efficiently starting from the collapsed representation of an

EC point, an unit to compute y/x from g(x) = x + a + bx−2 and T (y/x) is proposed. To obtain

the y coordinate one may multiply this unit result by x. This unit computes (3.23), for which needs

⌊k/4 + 1⌋ or ⌊k/4⌋ iterations, depending on k mod 4 = 3 or k mod 4 = 1, respectively. These

conditions define if there is an odd or even number of terms in (2.23), respectively. The proposed

unit is depicted in Figure 4.5.

The units wi compute the i − th power of its input. Initially, the g(x) and T (y/x) registers are

loaded with the respective values, and the register Temp is reset. With this level of parallelization,

in each iteration the eighth power of the previous result g(x) is computed, which means that

in each iteration the previous iteration result is added with two new values. The control signal

implements a conditional addition operation with the associated term. This is useful if the design

is to be implemented for fields GF (2k) such that k ≡ 3 mod 4, which means that, excluding the

term T (y/x), there is an odd number of terms in (2.23). The presented counter controls the

number of iterations needed. In the last iteration the output is valid and contains the 1 bit XOR

operation with T (y/x). After this unit operation to take place, the multiplication of its result (y/x)
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Figure 4.5: Root Calculation Unit

with x computes the y coordinate.

4.1.7 Control Considerations

The Finite State Machine (FSM) used to control the field units, namely multiplication and in-

version, are Mealy FSM. This means that the control depends on the unit inputs. This property

permits to load the input operands in the same clock cycle when an input start command rises,

reducing the unit latency.

In particular for the field multiplication unit discussed in Section 4.1.2, there is an extra clock

cycle for the output become available, related to the combination of the four parallel results, which

is referenced with a FSM state. This means that if the start command is always active, the number

of clock cycles needed to perform multiplication are the 41 discussed in Section 4.1.2, 1 related

with the combination of the parallel results, and another one related to the transition from this last

FSM state to an idle state. With the FSM in the idle state, a new multiplication procedure may

immediately begin. Summarizing, the multiplication takes 43 clock cycles to perform.

The inversion control of the unit discussed in Section 4.1.5 has different characteristics. In this

unit, the output is available at the time of the last iteration and return immediately to an idle state.

This means that there will exist one extra latency cycle resulting from the transition for the idle

state. For this reason the number of clock cycles needed to perform inversion/division are 327,

instead of the 326 discussed in Section 4.1.5.

The root calculation unit suggested in Figure 4.5 has the same characteristics of the field

inversion. Thus, regarding that 163 mod 4 = 3, the number of clock cycles needed to perform is

42, instead of the ⌊163/4 + 1⌋ = 41 clock cycles introduced in Section 3.4.2.
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4.1.8 Complete Elliptic Curve Processor

In this section the complete EC processor is described. Its construction is supported by the

units presented in the previous sections. The two operations over the EC to be implemented are

the point multiplication and point addition. The first one is the operation used to obtain public keys

from private keys, and distributed secrets from one party public key and the other party private

key. The last one is the operation used to support the encrypting and decrypting of messages

explained in Section 3.2.5.

The point multiplication is the most complex operation, thus the optimization priority is focused

in this operation. The Algorithm 3.4 was adopted to compute point multiplication, upgraded with

the point collapsing considerations discussed in Section 3.4.1, which resulted into a new routine

Mxy. Two basic operations are needed to perform this algorithm, which are the projective addition

(3.13) and the projective doubling (3.12). The obtained structure is presented in Figure 4.6, using

the following units:

• w2: unit that computes the squaring of a polynomial, as explained in Section 4.1.3;

• mult i : unit that computes the field multiplication of two polynomial, as introduced in Section

4.1.2;

• div : unit that computes field inversion and division, as explained in Section 4.1.5;

• Trace of multiplication: unit that computes the trace of multiplication without calculate the

product, as explained in Section 4.1.4;

• Root Calculation: unit that calculates y/x from x and T (y/x) using (3.23).

The parameters a, b are the EC parameters used in the analytical description in (2.17). The

parameter d is a pre-computed polynomial such that d4 = b. This last parameter can be computed

using the Fermat Little Theorem, which states that for any field element β, it holds that β =

β2m

[17]. Thus, d = b2m−4, with 2m − 4 = 22 + 23 + . . . + 2m−1. To perform point multiplication the

scalar is assumed to have the same size than the order of the generator point used. The register

that loads this scalar, is a left shift register, enabled in each iteration of the point multiplication

algorithm. The most significant bit from this register will be denoted as s. The scheduling of

the operations for the proposed architecture to follow in order to perform point multiplication is

presented in Table 4.2.

Observing the scheduling in Table 4.2 and regarding the algorithm used for point multiplication,

the point multiplication initialization step takes one clock cycle.

The point multiplication main cycle takes the time of two field multiplications which is 2×43 = 86

clock cycles. The point multiplication main cycle requires 86 × ⌊log(OG)⌋ clock cycles, for a point

generator with order OG. This cycle contributes with the greater amount of spent time. Since
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w2 w2

Scalar x T(y/x)

X0 Z0 X1 Z1 Ax1 Ax2 Ax3

mult1 mult2 mult3 div

Root 
calculation

Trace of 
multiplication

xR T(yR/xR)

xinput

xR+xinput

xinput xR

w2

S

XOR2

XOR3

XOR1

Legend: Units Registers

TinputScalarinput

a

b

d

Figure 4.6: Complete Elliptic Curve Processor Schematic

Table 4.2: Architecture point multiplication scheduling
Point multiplication initialization
X0 = x; Z0 = 1; X1 = x4 + b; Z1 = x2;

Point multiplication main cycle
Zs̄ = ((Xs̄ = XsZs̄) + (Ax1 = Xs̄Zs))

2; Ax2 = (dZs̄)
4;

Xs̄ = xZs̄ + Xs̄Ax1; Zs = (XsZs)
2; Xs = Ax2 + X4

s ;

Obtaining point multiplication result collapsed coordinate
Ax2 = xZ0; Ax3 = X1Z0 + (Ax1 = X0Z1)

Ax1 = A−1
x1 ; Ax3 = X1Ax3; Ax2 = xZ1;

Ax1 = A−1
x1 (cont.); X0 = Ax2X

2
0 ;

Ax1 = A−1
x1 (cont.);

xR = X0Ax1; T
(

yR

xR

)

= T (Ax3Ax1) + T
(

y
x

)
;

it is possible to parallelize this cycle into two steps using three multiplications, the use of three

multipliers in the proposed architecture was decided.

Obtaining the collapsed representation of the result takes the time of two multiplications and

one inversion, which results in 2 × 43 + 327 = 413 clock cycles.
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4.2 FPGA Implementation

When a point multiplication is completed, its result is stored into the registers xR and T (yR/xR).

If a point addition operation is to follow, the input point will be added with this stored point. This

stored point may be the secret obtained by multiplying the other party public key with the proces-

sor host’s private key. Hence, the addition is a decryption or encryption procedure, depending on

the origin of the new input: the remote connection or the host, respectively.

The scheduling used to perform addition is presented in Table 4.3. In this Table, the opera-

Table 4.3: Architecture point addition scheduling
Point addition initialization
XOR2 = xR + a + b

x2
R

S =Root Calc (XOR2, T
(

yR

xR

)

+ decrypt)

Z0 = xRS (Z0 become the y coordinate of the last point multiplication result)

Point addition main procedure
XOR2 = x + a + b

x2

Ax1 = 1
x+xR

; S =Root Calc (XOR2, T
(

y
x

)
)

Ax1 = 1
x+xR

(cont.); Z1 = xS (Z1 becomes the y input coordinate)

Ax1 = 1
x+xR

(cont.);
Ax2 = (Ax1 = Ax1Z0)

2
+ (Ax1 = Ax1Z0) + xR + x + a (Ax2 becomes the result’s x coordinate)

inv = A−1
x2 ; Ax1 = Ax1(Ax2 + xR) + Ax2 + Z1

inv = A−1
x2 (cont.);

(Output trace)= T (inv Ax1)

tion Root Calc corresponds to (3.23). In the point addition initialization step, the y coordinate of

the stored point is computed. If the stored point is to be added with a set of input points, this

step can be performed only once. There is a bit decrypt which controls the complementation of

the Root Calc operation input trace. This allows to control the two possible resulting values of

y/x: (yR/xR) or its inverse. Hence, this bit controls if an addition or subtraction is going to be

performed. Moreover, this distinguishes an encryption from a decryption operation.

The main procedure point addition step computes the remaining addition calculation proce-

dure, namely the calculus of the uncollapsed representation of the input point, the computation in

(2.25) and the calculus of the resulting point’s trace.

The point addition first step requires the same computation time as a division, a root calculation

and a multiplication, which results in 327 + 42 + 43 = 412 clock cycles. The second step requires

the time of 3 inversions and 1 multiplication, resulting in 3 × 327 + 43 = 1024 clock cycles.

4.2 FPGA Implementation

Given that each technology has different characteristics and resources, the computational

structure should be adapted to a specific target. In this case, the proposed processor was targeted

for a FPGA, a Xilinx Virtex 4 (model XC4VSX35). Thus, the direction of the implementation

effort was to optimize for this specific target, in terms of an area and time performance balanced
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solution.

FPGAs, in particular the Xilinx Virtex 4, are supported by basic elements such as Configurable

Logic Block (CLB). This element contains 4 slices which are composed, besides other peripheral

elements, by 2 Look-Up Table (LUT) and 2 Flip-Flops [29]. There are also carry chains and

shift chains to efficiently implement ripple carry adders and shift registers, respectively. The LUT

elements are responsible for the combinatorial functions construction while the Flip-Flops are

responsible for the memory cells (registers). These considerations allow to conclude that the

area cost of a multiplexer is superior than for one register. For this reason, the minimization of

the number of registers in the proposed structure was not pursued, rather the reduction of the

multiplexers inputs. These considerations are comprehensively different for an ASIC technology.

Each LUT has 4 inputs and 1 output. This means that, independently of the complexity of

the logic function, the complexity in terms of LUTs depends only on the number of independent

variables which intervene in the combinatorial function. For a n input combinatorial function the

propagation time will be ⌈log4(n)⌉ times one LUT propagation time. These characteristics may

bring some disadvantages. For example, a n bit field addition is supported by n two input XOR

gates. This means that for each result bit, the logic which could be used in 4 input logic functions

is being used with a two input logic function. In an ASIC solution this operation may be performed

more efficiently by a 2 input XOR standard cell. Nonetheless, for the FPGA technology, this

operation, supported over GF (2k), remains more efficient than an addition using the carry chain,

which may be used for GF (p) supported solutions.

As discussed in Section 4.1.3, each output bit of a squaring operation over GF (2163) can be

obtained as a 5 input logic function for two output bits and 4 or less input logic functions for the

other bits. Regarding the LUTs properties, one may conclude that the complexity of the squaring

operation is the same as the field addition operation except for two bits regarding that 2 or 4 input

functions have the same complexity in FPGA implementations.

The trace of the multiplication operation discussed in Section 4.1.4 can be computed recurring

to a large amount basic logic cells. Once again, the FPGA characteristics allow the complexity

to depend only on the number of input bits, in this case 2 × 163 = 326. This function can be

constructed with a tree of LUTs with an appropriate configuration. Another issue that is important

to highlight is the reconfigurable advantage of a FPGA. In the case of EC systems several fields

and irreducible polynomials, several EC parameters and subgroup generators can be used. The

hypothesis of adapting the procedures directly on the hardware accordingly to these situations or

protocols used, allows for high performance solutions to be accomplished. This high performance

adaptation is more difficult in ASIC solutions. For these solutions, it is possible to implement

a structure for a large field prepared to operate with lower fields. The challenge is to obtain a

comparable performance of these generic structures with the dedicated solutions for particular

smaller field sizes.
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The proposed ECC core was successfully implemented and thoroughly tested on a Xilinx

Virtex 4 (XC4VSX35) prototyping platform. The implemented design computes the required

point multiplication and addition for GF(2k), supporting the ECC protocols based on this field.

Table 4.4 describes the area occupation and performance for the implementation results, after

Place&Route, considering a field size of k = 163. The area values for the individual units of the

proposed ECC design include input and output registers for all data and control signals. These

results were obtained from a VHDL description of the design, using Synplify Premier (version

8.6.2) as the synthesis tool and Xilinx ISE (version 9.2.04i) as the Place&Route tool.

Table 4.4: Implementation Results for the Xilinx Virtex 4

Unit Slices
Freq. Clock Total
[MHz] cycles time [ns]

squaring w2 295 (1%) 467 1 2
squaring w4 352 (2%) 317 1 3

multi 1475 (9%) 248 43 173
div 1169 (7%) 147 327 2,221

root calc. 1066 (6%) 210 42 200
trace of mult. 458 (2%) 216 1 4

Complete 10488 (68%) 99 - -ECC unit
(mult.) 14,303 144,374

(1st add.) 1,434 14,474
(add.) 1,024 10,336

From Table 4.4 it can be observed that the unit imposing the critical path is the division unit.

Since the complete ECC unit is constructed with these units in parallel, it would be expected the

complete ECC core to have an identical critical path as the division unit. However, a difference

of 67% is observed from the full core and the division unit. This suggests that the interconnection

logic, routing and multiplexing logic, has a significant impact in the overall performance of the ECC

core. From the obtained figures, for the squaring unit, it can be concluded that this is an area and

time efficient unit, occupying only about 2% of the available area. The trace of the multiplication

unit is an efficient alternative to direct calculation of the trace of a multiplication instead of calcu-

lating the product first. In comparison with the proposed field multiplier performance, with about a

third of the area it is possible to speedup the performance by 43 times. Considering the compu-

tation time of the field division, field multiplication, and the root calculation units, 412 clock cycles

are required to perform a y coordinate calculation. This computation is described in Table 4.3 as

the point addition initialization and is only computed once, when a secret is mapped in more than

one EC point. It may be noticed that the difference between the first addition and the other ones

is of 410 clock cycles instead of 412. This is due to the latency reduction resulting from the usage

of a Mealy FSM.

Using the designed unit it is possible to achieve a throughput of 163 bit/144 ns ≈ 1.13 Mbit/s

for the point multiplication and 163 bit/10, 336 ns ≈ 15.77 Mbit/s throughput for point addition. As

explained in Section 3.2.5, this last value traduces how fast a message can be encrypted or de-
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crypted, considering that one can use all the collapsed representation bits to transmit information

(ideal mapping). This issue is discussed with more detail in Chapter 5. Regarding the related

state of the art, the comparison between designs is not straightforward, since different field sizes,

different reconfigurable devices, and different design objectives are considered. It is not obvious

what will be the influence of expanding or reducing a field size in each implementation. For the

proposed structure, this field expansion is expected to degrade the overall performance due to

an increased routing complexity. Nevertheless, in order to compare the related state of the art

with the work herein proposed, time and area are considered inversely proportional towards the

field size, with a correction factor of 163/k, with k the compared field size. In Table 4.5 the point

multiplication characteristics of the related work are presented and, in Table 4.6, the comparison

metrics of the results obtained for the proposed structure are stated. Even though the proposed

structure has been optimized for the Virtex 4 technology, Virtex-E and Spartan 3 implementations

were also realized, in order to properly compare with the related work.

Table 4.5: ECC point multiplication state of the art
Ref. Device Field Slices Max. Total

GF (2k) Freq time
[MHz] [µs]

[25] XC4085XLA GF (2191) 2,634 32 1,610

[26] XCV1000 GF (2191) 29,7661 36 270
[22] XCV800 GF (2160) 1,5962 47 3,801
[23] XCV3200E GF (2191) 18,314 9.99 56

Proposed XCV3200E GF (2163) 9,432 49 292

[6] XC3S1000 GF (2233) n.a 80 2280
Proposed XC3S2000 GF (2163) 10,379 44 325

Proposed XC4VSX35 GF (2163) 10,488 99 144

Table 4.6: ECC point multiplication state of the art comparison metrics
Ref. Device Field required speedup (Slices×time)−1 (Slices×time)−1

GF (2k) area ×( 163

k
) ×( 163

k
) improvement

×( 163

k
) [Hz]

[25] XC4085XLA GF (2191) 28% 0.21 0.32 0.89

[26] XCV1000 GF (2191) 316% 1.27 0.17 0.47
[22] XCV800 GF (2160) 17% 0.08 0.16 0.44
[23] XCV3200E GF (2191) 194% 6.11 1.34 3.69

Proposed XCV3200E GF (2163) 100% 1 0.36 1

[6] XC3S1000 GF (2233) - 0.20 - -
Proposed XC3S2000 GF (2163) 100% 1 0.30 1

Proposed XC4VSX35 GF (2163) 100% 1 0.66 1

Many of the proposed ECC structures use Lopez-Dahab coordinates [6, 22, 25, 26], and

require 10 and 4 multiplications to compute point addition and point doubling, respectively. To

perform simultaneously point addition and doubling our design requires 6 multiplications.

1The presented Virtex-E implementation ratio 0.616 Slice/LUT was used to convert LUTs to slices.
2The Xilinx Virtex datasheet information was used to convert logic gates to slices.
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The use of NAF scalar recoding is proposed in [6], in order to reduce the required point addi-

tions in the traditional double and add algorithms. Because the proposed design has a speedup

of 5 it is expected that only if this design would avoid 4 additions in every 5 additions, it would

achieve the same time performance as the design herein proposed, considering identical field

multiplication performance. Furthermore, this design does not implement affine point addition or

projective to affine point conversion.

To improve the performance of projective to affine conversion, a mixed coordinate representa-

tion is proposed in [26]. However, this conversion procedure has far less weight in the complete

ECC multiplication procedure. Jacobian coordinates applied on the Montgomery ECC multiplica-

tion are also used in [26], resulting in a better performance using the Massey-Omura field multiplier

supported over an optimal normal base. Nevertheless, performance comes at the higher expense

of circuit area. Moreover, no parallelization of the ECC multiplication algorithm can be exploited.

The proposed design suggests a better performance, since parallelization techniques can be used

in order to obtain a more area efficient solution, resulting in an improvement of the (slices×time)−1

by 0.47. In the presented implementation 3 parallel point multipliers are employed.

In [25] an Itoh-Tsujii inverter is implemented using recurrent multiplications. In the proposed

design, an inversion takes approximately the same time as 8 multiplications. Since, in [25] more

than 8 multiplications are needed to perform the inversion, the proposed design can achieve

higher performance. Furthermore, with a dedicated divider architecture it is possible to parallelize

the division and multiplication procedures, which is not possible in the approach used in [25].

This design requires 3.2ms to perform the generic operation kP + rQ (with k, r integers and

Q,P EC points). In the proposed design, the same operation can be computed with two scalar

multiplications and one point addition which, for the presented Virtex-E implementation, requires

613µs, thus a speedup of about 5 is achieved when compared with [25]. The inversion procedure

used in [22] is based on the Fermat Little Theorem, allowing for a more compact design. However,

the costs in performance are very high, resulting in (slices × time)−1 efficiency metric 84% lower.

The design proposed in [23], using two field Karatsuba-Offman multipliers, is able to achieve

the computation of point multiplication about 6 times faster than the structure herein proposed.

Part of this improvement is obtained from a more aggressive parallelization, which results in an

area 94% higher. It is important to highlight that this design does not support the computation of

point addition or projective to affine coordinates conversion. Moreover, in [23] embedded memo-

ries (BRAM) are used to perform part of the data routing. The 24 BRAMs used are not considered

in the area metric. The use of the BRAMs improves the critical path, but only the very first posi-

tions of each BRAM are used, thus this solution is not area efficient.

As a concluding remark, it should be noted that none of these designs implements coordinate

y collapsing, as is the case of the proposed structure. This coordinate collapse allows for a

reduction by half of the required bandwidth.
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4.3 ASIC Implementation

An implementation for an ASIC technology is also realized. The goal of this implementation is

to evaluate the characteristics of the proposed processor for this type of technology and compare

it with the FPGA implementation. To perform this implementation the same VHDL description

code was employed, using synthesis and Place&Route tools for ASIC technology. The used syn-

thesis tool was the Design Compiler (version Z-2007.03-SP5) and the First Encounter (version

05.20-s197 1) was the Place&Route tool. The target ASIC technology is supported by the pro-

cess UMC L180 1P6M MM/RFCMOS (0.18 µm) using Faraday FSA0C A 0.18 µm Standard Cell

Library (version 1.0). The Figure 4.7 shows the layout of the placed and routed processor for

this ASIC technology. This layout has a dimension of 1.4 × 1.4 mm2 and operates at a maximum
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Figure 4.7: ASIC technology elliptic curve processor layout

frequency of 60.7 MHz, which represents a throughput of 693 Kbit/s for point multiplication and

9.67 Mbit/s for point addition (encrypting and decrypting). It is not possible to perform a thorough

comparison of these values with the ones obtained for the FPGA implementation. This is due to

the fact that the two technologies have completely distinct characteristics, as is the 95 nm technol-

ogy of the Xilinx Virtex 4 versus the 0.18 µm technology of the proposed ASIC implementation or

the logic cells of a standard library for the ASIC and the LUTs of the FPGA. For this reason, only
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some of the characteristics of the ASIC layout are evaluated. One of these characteristics is the

routing effort. From Figure 4.7 it can be observed that all the metal layers of the possible 6 that the

utilized technology allows are extensively used. This fact suggests that the routing demand of the

proposed design is significantly high. To properly evaluate this characteristic two individual imple-

mentations of the processor field arithmetic units, namely the field multiplier and divider/inverter,

were realized. These individual implementations are presented in Figure 4.8. These implementa-
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Field Multiplier Field Inverter/Divider

Figure 4.8: ASIC technology field multiplier and inverter/divider layout

tions have the dimension of 0.6×0.5 mm2 and run at the frequency of 205.5 MHz for the multiplier

and 211.1 MHz for the inverter/divider. The complete processor was obtained through the inter-

connection of these units. One method to evaluate the routing effect over the complete processor

is to compare the critical path of the basic units (multiplier and inverter) with the critical path of the

complete processor constructed over these units. Looking at the operating frequency a decrease

in performance for the complete processor of about 70% can be observed. This performance de-

crease is significant and is caused by the complex routing, increased metal nets, and increased

fanout. Analyzing the data path of the basic units it is observable that 10% and 6% of the total

delay is caused by the routing nets, for the multiplier and inverter, respectively. Performing the

same analysis for the complete processor it can be observed that 31% of the delay is attributed to

the routing demands. This result allows to conclude that the routing has a significant impact in the

performance of the proposed processor. Reducing the routing requirements of the proposed ECC

processor might be an important step in improving the overall performance of the ASIC imple-

mentation. The routing costs on the FPGA are mitigated by the optimized routing matrix existent

in these devices. For this reason, the compromise between logic and routing delays optimization

has to be different for these two technologies. The advantages of the hardware implementation

over GF (2k) arises from the possibility to perform much of the arithmetic, for example the squar-

ing, using hardwired and irregular bits manipulation, demanding an extra effort from the routing

tools to obtain high performance designs.
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4.4 Summary

This chapter discusses the architectural options in the design of the proposed EC processor.

The interconnections between the several field operation units are also analyzed in order to ef-

ficiently perform the EC arithmetic operations. The complete architecture of the EC processor

and the scheduling of the operations executed to perform the cryptographic routines are also

presented. The motivations that lead to the adopted options are presented, namely the point

multiplication unit supported by the used Montgomery method. In this chapter, the original contri-

butions related with point collapsed representation, are also introduced and discussed. The units

supported by the original point addition method, upgraded with the pre-computed calculation of

the y coordinate from the collapsed representation, are also presented.

The implementation results of the proposed EC processor on a Xilinx Virtex 4 FPGA technol-

ogy are also presented and discussed in this Chapter. These results suggest that it is possible to

achieve a throughput of about 1 Mbit/s for point multiplication and 15 Mbit/s for point addition.

Implementations on different FPGA technologies were also performed, in order to properly com-

pare the proposed design with the related state of the art. The main advantage of the proposed

design, regarding the related state of the art, arises from the careful scheduling of the Montgomery

point multiplication algorithm, updated with the collapsed representation considerations, herein in-

troduced. A point addition unit which efficiently manages the collapsed representation was also

presented. An ASIC solution is also presented, suggesting a throughput of about 700 Kbit/s for

point multiplication and about 9.7 Mbit/s for point addition (message encryption and decryption).

The results highlight some characteristics of the proposed structure, namely the significant rout-

ing complexity. This suggests that the routing complexity is an important factor to be taken into

account in the design of these structures.

In the next chapter the results for a software implementation of the used algorithms and a real

system prototype of the proposed EC processor are presented and discussed.
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In order to evaluate the advantage of the proposed EC processor a software implementation

using the same algorithms is also presented. Additionally, a prototype has also been designed

and used in a real application to validate this EC processor. The main goal of this prototype is

not to achieve a very high throughput, rather to demonstrate that the proposed processor can be

used in real systems for public key cryptography. This processor provides a complete support for

public keys generation and messages encrypting/decrypting. This functionality is very important

for servers which need to distribute a significant number of public keys. Another application where

such EC processor can have significant importance is point to point secure communication. This

processor can be employed in any platform where FPGA technology is available, preventing the

host system from EC arithmetic computation. The host only sends and receives the decrypted

messages, and provides the necessary random numbers (keys) for this EC processor.

In order to properly analyze the benefits of having this EC dedicated hardware implementation,

the performance and hardware resources required by both hardware and software implementa-

tion are compared in this chapter. This chapter also describes the processor interface and the

application schematic.

5.1 Elliptic Curve Software Implementation

In order to discuss the advantages of the proposed hardware processor, the performance of a

software solution is also evaluated. This software implementation is designed based on the same

algorithms as the ones used in the proposed processor. Additionally, this software implementation

provided the complete library used to facilitate the test of the correctness of the processor.

The direct comparison between software and hardware may not be fair in the sense that all

the algorithms, and particularly the chosen field GF (2k), are optimized for a hardware solution. It

would not be possible to exploit the general propose processors arithmetic for this kind of fields,

as it would be the case of a GF (p) supported system. For this reason, the comparison is intended

to be as a indicative of gain.

Two distinct general purpose processor architectures were used to perform this test: the Mi-

croBlaze soft processor and an Intel R© Centrino Duo Central Processing Unit (CPU). The MicroB-

laze is a 32 bits processor with reconfigurable components, developed by Xilinx R© to be efficiently

implemented into FPGAs [30]. For this test, the MicroBlaze was configured with a 16 Kbytes

memory size without cache for both instructions and data. This processor was synthesized for

the same FPGA used to implement the proposed EC processor. Using Xilinx Platform Studio

tools (version 9.1.02i) a frequency of 100 MHz was obtained for the MicroBlaze processor. This

frequency differs only in 1 MHz from the frequency obtained for the dedicated hardware solution.

The Wildcard 4TM prototyping board was used as the testing platform. This board allows to inter-

act with the FPGA through a PCI bus. The EC implementation using the MicroBlaze processor
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5.1 Elliptic Curve Software Implementation

is depicted in Figure 5.1. More details about MicroBlaze, Wildcard 4 and its components are

presented in Appendix A.

FPGA

Wildcard 4

cardbus 
controller 

MicroBlaze
LAD 

interface

GPIO 
interface

Measurement
Unit

Counter

testing...

Host

Figure 5.1: MicroBlaze software implementation test layout

The FPGA configuration file (bitstream) was obtained by synthesizing the top level structure

with Synplify Premier (version 8.6.2) with the MicroBlaze component as a blackbox. These compo-

nents were merged and placed in the device using the Xilinx Place&Route tools (version 9.2.04i).

The resulting area occupation was of 3218 out of 15360 slices (20%) and the maximum obtained

frequency was 103 MHz (above the required 100 MHz).

From Figure 5.1, the existence of two blocks Cardbus Controler and Local Address Data (LAD)

interface can be observed. The first one is in the board and the second one is described as VHDL

code. In practice, these blocks create the communication interface that allows to easily communi-

cate with the Host by writing/reading to/from registers. The General Purpose Input/Output (GPIO)

peripheral is a MicroBlaze port, which provides an easy register read/write communication inter-

face with the software. From the software point of view, these registers are read and written by

accessing a memory address.

In order to evaluate the system, a measurement unit was added. This unit, counts the time

performance of the operations processed by the MicroBlaze and the communication overheads

between the Host and the MicroBlaze. For this count, a counter is used. In order to reduce the

counting errors, several measurements were performed to calculate the average.

To estimate the communication time between the Host and the MicroBlaze, 6 positions of 32

bits were transferred from the host to the MicroBlaze and returned in the opposite way without

performing any computation. This means that the communication was accounted joining the

transmission of an output and the reception of an input set of data. The used data set of 6 positions

of 32 bits was chosen since it is the minimum required to transmit 163 bits, the dimension required

to code the collapsed representation of one EC point.
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The software was written in C language, and compiled for the MicroBlaze using the mb-gcc tool

(version 3.4.1) with medium optimization effort. In Table 5.1 the time performance for the various

operations is presented. For each operation, these results were obtained by sending a set of data

to trigger the computation of a large number of iterations of the same operation, and wait for the

response of MicroBlaze at the iteration finish. Then, the estimated communication overhead was

subtracted from the measured time, in order to obtain the time for a given operation. Finally, the

total time was divided by the number of iterations. In Table 5.1 is presented the ratio between the

software results and the Hardware (HW) results, considering the 99 MHz working frequency of

the full EC processor.

Table 5.1: Software results
Description MicroBlaze (MB) PC Ratio Ratio Ratio

[ns] [ns] MB/HW PC/HW MB/PC
Host communication 25,610 - - - -

MicroBlaze communication 25,980 - - - -
Field multiplication 208,170 43,810 479 101 4.75

Field division 786,760 110,360 238 33 7.12
Squaring 274,140 20,990 27,414 2,078 13.06

Proj. coord. doubling 1,307,680 151,170 8.65
Proj. coord. addition 1,214,170 178,040 6.81
Point multiplication 412,946,820 55,874,210 2,858 387 7.39

Proj. to collapsed rep. conversion 3,295,760 546,150 6.03
Obtain y from collapsed rep. 44,988,560 3,575,310 12.58

Point addition 2,067,130 298,570 143 21 6.92

The same operations were tested for a Personal Computer (PC). This machine is supported by

an Intel R© Centrino Duo CPU model T2400 at 1.83 GHz, with 2 × 512 Mbytes of Random Access

Memory (RAM), running a Microsoft Windows XP SP2 (2000 version) Operative System (OS).

The same C code was used, compiled using Microsoft Visual C++ .NET with Microsoft Develop-

ment Environment 2003 (version 7.1.3088) and Microsoft .NET Framework (version 1.1.4322 SP2).

No compiler optimization was used. Time accountings were performed recurring to a counter

available from the OS for multimedia applications. Once more, a large amount of iterations was

used for each operation in order to mitigate fluctuations. The results are also presented in Table

5.1.

Comparing the implementations, it is observed that a point multiplication is 2,858 times faster

in the hardware solution when compared with the MicroBlaze implementation, using only 3.26

times more area. Comparing with the PC solution, the hardware multiplication is 387 times faster.

For point addition the differences are lower, with the hardware solution being 143 and 21 times

faster than the Microblaze and the PC solutions, respectively. Observing the results for the squar-

ing operation, the reason for such a difference in point multiplication and point addition can be

outlined. The efficiency of the squaring unit in the hardware solution comes from a non regular

table lookup bit selection as explained in Section 4.1.3. This bit selection can not be performed

efficiently in software resulting in a very significant difference in terms of performance between
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the dedicated hardware implementation and the MicroBlaze and PC solutions: 27, 414 and 2, 078,

respectively.

5.2 Elliptic Curve Processor Application

This section presents the developed prototype, supported by the proposed EC processor. This

prototype provides the complete EC arithmetic to a host system and creates a secure channel with

a remote system. It is able not only to encrypt/decrypt messages and send/receive them to/from

the remote system, but also to generate a stream of public keys, useful in server applications

which need to establish several sessions in short time requirements. In Figure 5.2 is presented the

schematic of the complete system. The Elliptic Curve Processor Control (ECPC) block interacts

sending data... receiving data...

Elliptic Curve
 

Cryptographic
 

Processor

FPGA

Wildcard 4

cardbus 
controller 

I/O 
connectors

MicroBlaze
LAD 

interface

ECC 
Processor 

Control

PCI interface RS-232 interface

UART Lite 
interface

GPIO 
interface

Host System Remote System

Figure 5.2: Complete System Schematic

with the LAD interface and MicroBlaze GPIO peripheral as registers. The communication between

these entities is performed by reading/writing from/to these registers. The details of the blocks

used in this application are described in Appendix A.

The cardbus controller together with the LAD interface act as a pair of addressable registers

of 32 bits, one to write and the other one to read. The number of register pairs must be a power

of 2. To transmit a word of 163 bits (collapsed EC point) 6 registers are needed. Thus, 8 registers
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must be allocated, which is the smallest power of two that contains 6. Since there are two more

registers available, apart from the 6 registers used to transmit data, one is reserved for control

commands.

In order to receive new commands from the Wildcard 4, the Host software pulls the register

reserved for commands and scans the strobe bit reserved to indicate that the register was up-

dated, indicating the existence of a new command. This scanning consists in determining if this

strobe bit changed its state since the last valid command. If there is a new command, it may

transmit any specific information or inform that there are new data available. In this last case, the

6 registers reserved for data can be read and the Wildcard notified that the read was successfully

accomplished, writing this information to the commands register.

For the ECPC, when a new command is received the command register is updated and a

strobe signal activated. When receiving data, the data registers are updated and the respective

strobe signal is generated. After that, a command is received in the input control register informing

that new data was received. When another set of data is received, the output command register is

written with the request to the Host and the strobe bit complemented. In Figure 5.3 are presented

the LAD registers and the signals behavior while the reception of data from the Host by the ECPC,

and the sending of the reception notification by the ECPC to the Host.

command reg. strobe

command reg.

data reg. [1] strobe

data reg. [2] strobe

data reg. [3] strobe

data reg. [4] strobe

data reg. [5] strobe

data reg. [6] strobe

data reg. [1]

data reg. [2]

data reg. [3]

data reg. [4]

data reg. [5]
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command reg.
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...

ECPC clock

input
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Figure 5.3: LAD registers and signals behavior for ECPC data receiving from Host

The number of clock cycles between the update of the different LAD registers while trans-

mitting the same data set may not be only one clock cycle as depicted in Figure 5.3. It is only

granted the order of the updates, but not the time spent between them. Thus, the time information

in Figure 5.3 is only indicative.

The communication between the ECPC and the MicroBlaze has the same characteristics as

the communication between the LAD and the ECPC, in the sense that it corresponds to read and
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5.2 Elliptic Curve Processor Application

write the registers content. Nevertheless, there are some differences, namely the inexistence of

a strobe signal available from the GPIO and the fact that it is only possible to write/read 32 bits at

once to/from the GPIO data register. To solve the inexistence of strobe, strobe bit in the command

register is used for both read and write procedures. In order to communicate more than one

32 bits word (collapsed EC points), for each word, a notification of sent/reception is performed

through the commands register for every data word.

To send data from the ECPC to the MicroBlaze, a 32 bits word is written to the data GPIO.

The command register is updated with the information that there are new data to be sent, and the

strobe bit is complemented. The Microblaze scans the strobe bit for valid commands, evaluates

the information in the command register, reads the data value from the data register, and writes

to the output command register that another word can be sent, complementing the output strobe

bit. After scanning the strobe bit for a valid command, the ECPC writes another word to the data

register and the procedure is repeated until the 6 words are sent. The diagram for the sending

procedure is depicted in Figure 5.4.

command reg.

data reg.

...

...
ECPC clock

GPIO Input ...
command reg.

data reg.
GPIO Output

...

...

New data received New data received New data received

New data available New data available New data availableNew

D1 D2 D3 D6

Figure 5.4: GPIO registers behavior for the ECPC to the MicroBlaze data communication.

In order for the ECPC to receive data from the MicroBlaze, it is assumed that, when the

MicroBlaze sends data, the ECPC is always waiting these data and that it can be immediately

read it. This way, only the input GPIO register is used in this communication, because there is

no need for reception acknowledgment commands. The MicroBlaze writes a word to the data

registers, updates the commands register, and complements the strobe bit. This procedure is

performed six times in order to send all the needed words. When the ECPC receives a valid

command, it reads the data and stores it into a register until all the data is transferred. The GPIO

registers behavior is presented in Figure 5.5.

command reg.

data reg.

...

...
ECPC clock

GPIO Input ...D1 D2 D6

new data new data new data

Figure 5.5: GPIO registers behavior for the MicroBlaze to the ECPC data communication.

In order to optimize the used resources, the GPIO commands register was limited to a width of

12 bits. Similarly with the LAD interface, not all 32 bits are needed for the control. The difference
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is that for the LAD register the 32 bits must be allocated, because it corresponds to one LAD

address, while for the GPIO the width corresponding to the GPIO address can be configured and

the unnecessary bits removed. The MicroBlaze software registers access is identical to the Host

LAD registers access, with the difference that for the MicroBlaze there are two distinct channels

to write and read.

The communication between the Microblaze and the Remote System is performed using a se-

rial Universal Asynchronous Receiver/Transmiter (UART) stream over an RS-232 standard con-

nection. The UART is configured with a throughput of 115200 bits per second, one parity bit with

odd parity definition, and a frame size of 8 bits.

Using a frame size of 8 bits, it is possible to correspond each frame to one software character.

Thus, an EC collapsed representation may be divided into 8 bit consecutive frames. The number

of frames is given by ⌈163/8⌉ = 21. A string termination character and characters to code the

necessary commands were also defined.

The logic levels used in the FPGA and in the communication ports of the Remote System PC

may differ. In this prototype the FPGA output tension level is at 3.3 V while the communication

port in the Remote system is at 5 V . For this reason the use of a transceiver is required to adapt

the two levels. In this test layout a transceiver that can assure this function for a throughput up

to 1 Mbit/s is used, supported by the MAX3222E integrated circuit by Maxim Integrated Prod-

ucts [31]. Furthermore, an adapter from Universal Serial Bus (USB) to RS-232 was used, in

order to provide the 5 V supply to the transceiver. The electrical schematic used to connect the

transceiver is presented in Appendix B. A photograph of the complete system layout is described

in Figure 5.6.

Host system

Wildcard 4

Wildcard 4 I/O interface

RS-232 Communication 
Channel

Remote System 
Connection (USB)

USB to RS-232 adapter

RS-232 Transceiver

Figure 5.6: Application test layout photograph
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5.2.1 Protocols

The proposed application structure supports three protocols: i) a public key stream from the

Host System to the Remote System (Figure 5.7), ii) a secure message stream from the Host to

the Remote System (Figure 5.8) and iii) a secure message stream from the Remote to the Host

System (Figure 5.9). The field parameters, the EC parameters and the subgroup generator are

defined statically, which means that they are defined during the systems’ setup, and not during

the sessions setup. In other words, these parameters are defined in the software code and in

the FPGA bitstream, thus there is no need to be communicated. In the case of the FPGA, it

means that all the parameters are defined in hardware constants when the FPGA configuration

is loaded. The first protocol may fit some server applications which may require regular public
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Figure 5.7: Host to Remote public keys stream protocol
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keys distribution. The other protocols suit applications that transmit confidential data between two

terminals. The ECPC is capable of storing new input data for the EC processor while this last

one is processing. Whit this, when the EC computation finishes another one can be immediately

started, reducing the overhead created by the Host or Remote System communication. This

is the reason why the ECPC requests for new data while the EC processor is performing the

computation. The data transfers between the MicroBlaze and the Remote System requires an
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acknowledge of the reception. This may increase the communication overhead but prevents the

UART buffers to overrun, avoiding any data loss.

5.2.2 System Implementation and Results

This section describes practical implementation issues of each system component and the

experimental test results. This is used to test the concept of the ECC procedures. The RS-232

interface can be easily managed but offers a low throughput. Nevertheless, it is sufficient for the

processor functionality test. The Xilinx XC4VSX35 FPGA was chosen as the target reconfigurable

technology. The FPGA configuration was obtained by the same method used in the software
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test presented in Section 5.1. The MicroBlaze characteristics are also the same, except for the

working frequency, which in this case is 50 MHz. The resulting FPGA occupation is of 13, 461

slices (87% of the available 15,360 slices), with a maximum clock frequency of 53.717 MHz. A

clock frequency of 50 MHz is used in this prototype.

For this test, the Host and Remote System were the same machine. This machine is sup-

ported over an Intel R© Centrino Duo CPU model T2400 at 1.83 GHz, with 2 × 512 Mbytes of

RAM, running a Microsoft Windows XP SP2 (2000 version) OS. The program code was written

in C language, using the Wildard 4 Application Programming Interface (API) for the Host program

and the Windows API for the Remote program, in order to configure and access the serial com-

munication port. The programs were developed and compiled using Microsoft Visual C++ .NET

with Microsoft Development Environment 2003 (version 7.1.3088) and Microsoft .NET Framework

(version 1.1.4322 SP2).

The design was tested with the transmission of 300,000 public keys using the protocol in

Figure 5.7 and the transmission of a message mapped into 300,000 EC points. There is not a

direct mapping between data and EC points. It is usual to perform a trial search for EC points [8].

In this case, the transmitted message was generated from 300,000 163 bit coordinates. Each

coordinate was manipulated conditioning one bit in order for the trace of the coordinate to be

equal to the trace of the parameter a of the EC, and for the point collapsed representation to work

as described in Section 3.3. A trial for the 5 most significant bits was performed till the coordinate

to belong to an EC point, which is equivalent to T (x+a+b/x2) = 0, as explained in Section 2.3.2.

A successful test for the global system was achieved with the correctness of the received

data, for both protocols. In the Remote program a precision counter provided by the Windows

OS was added, in order to account for the total transfer time. The obtained time results for

the key transfer are 1200.11 seconds for 300, 000 keys, and 1201.91 for 300,000 EC coordinates

for the message transfer. These results suggest that the system performance is conditioned by

the communication overhead, because as obtained in Table 4.4, the point addition is about 14

times faster than point multiplication and the throughput for both message and keys transfer is

approximately the same in this application. This result is expected in the sense that the maximum

throughput of the EC processor is 163 × 50 MHz/14303 ≈ 570 Kbit/s for point multiplication and

163 × 50 MHz/1024 ≈ 8 Mbit/s point addition, while the maximum throughput in the RS-232

serial communication is 115, 200 bit/s. Furthermore, in the serial communication are used control

characters which contribute for the communication overhead.

From Table 5.1, it can be estimated that one coordinate is transferred through the LAD interface

in about 2, 561/2 ≈ 1280 clock cycles. This corresponds to a throughput of 163× 50 MHz/1280 ≈
6.4 Mbit/s, thus the bottleneck may not reside in this interface. One coordinate transfer through

the GPIO interface can be performed in about 2, 598/2 = 1299 clock cycles, which corresponds

to 1299 × 20 ns = 25980 ns. The 163 bits belonging to a coordinate can be transmitted over
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21 characters. One more character is added to delimit the string. The acknowledgement of

the data reception is performed by communicating two characters. This means that to transfer

an EC point over the RS-232 connection, 24 characters are transmitted. Moreover, to transmit

one frame (character), 8 bits are needed to code the data and two more bits, one for parity and

the other one as a stop bit. Considering the bit rate of the RS-232 connection, one coordinate

takes 24 × (10 bit)/115, 200 bit/s ≈ 2.08 ms to be transmitted. From the experimental results,

the transmission of one coordinate requires 1201.91/300, 000 ≈ 4.01 ms. This means that there

is a communication overhead of about 4.01 − 2.08 = 1.93 ms for the MicroBlaze and/or Remote

system to access the communication buffers. Nevertheless, from the proposed implementation

it is possible to conclude that, when associated with efficient communication interfaces, the EC

processor can achieve a good performance and can be efficiently implemented in real systems.

5.3 Summary

Two software implementations providing the EC processor functionality were developed and

tested. One of these solutions ran on the MicroBlaze softprocessor implemented on the same

FPGA as the proposed design. The other one ran on an Intel general purpose processor. These

solutions confirm that the chosen field properties are better adapted for dedicated hardware solu-

tions, since the hardware solution was shown to be up to 2,858 times faster for point multiplication,

and 143 times faster for point addition.

A prototype using the proposed EC processor was also presented. This application was used

to demonstrate that the proposed EC processor can be efficiently integrated into communication

protocols achieving good performances.

The resources of the prototyping Wildcard 4 card, its characteristics, and how they can be

interconnected in order to implement public key protocols are presented. The Xilinx MicroBlaze

soft processor configuration was also presented.

The proposed application design test does not need high throughput. The utilized communi-

cation options were selected for a simple management and not for a very high performance. The

main goal of this prototype is to test the applicability of the EC processor in real systems, and the

usability of the proposed processor, which was successfully accomplished.
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6.1 Summary and Overall Conclusions

The main objectives of this thesis were successfully accomplished with the designing of a

complete ECC processor optimized for a FPGA target, namely the Xilinx Virtex4 FPGA. The

proposed ECC processor was thoroughly tested in this target.

Even though a direct comparison with the related work can not be easily made, since different

FPGA technologies and field parameters are adopted, implementation results obtained in this

thesis suggest that significant performance gains can be achieved with the design proposed in

this thesis. In comparison with most of the related state of the art, performance gains in the order

of 5 times for point multiplication and addition can be achieved. When compared with the related

work with better time results, it is possible to find a hardware structure that performs the point

multiplication 6 times faster, but at the expense of 94% more area and several additional BRAMs.

Moreover, this related work is only capable of computing point multiplication, while the structure

proposed in this thesis is capable of computing the full ECC operations.

The design herein proposed performs coordinate collapsing, allowing for a better usage of

the available bandwidth. The proposed coordinate collapsing is supported by a compact repre-

sentation of EC points which is possible when operating over prime cyclic subgroups. This is an

original contribution of this thesis, which adapts this method into an algorithm to compute the ex-

ponentiation of a point without computing the y coordinate. Furthermore, it was achieved without

compromising the exponentiation algorithm performance regarding to the state of the art. The

compact representation, called collapsed representation, represents a point by its x coordinate

and the trace of y/x. The point exponentiation is the most expensive operation over EC points,

thus its optimization was prioritized and the proposed method introduces a significant improve-

ment in the communication latency. For point addition, an algorithm that avoids the y coordinate

computing was not implemented, since it does not result in performance improving. For this

reason, an improving was proposed to perform the calculation of the y coordinate using the x

coordinate and the trace of y/x.

In order to achieve the necessary algorithms to perform the arithmetic in the proposed pro-

cessor, the EC properties, including the mathematical entities which support it, were carefully

analyzed. From this analysis it was concluded that it is possible to define an EC system over a

generic field but the only fields with practical interest are the finite fields (or Galois fields), namely

prime fields GF (p) and binary extension fields GF (2k), since in real implementations the capa-

bility of representing field elements is limited to a finite number of elements. From these finite

fields, the fields GF (2k) revealed to be more suitable for hardware implementation. One of the

reasons is that the field elements can be represented using all the possible representations the

binary vector allows and, more important, the operations over this field can be accomplished us-

ing less hardware resources. For example the addition operation is computed by independent
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bitwise XOR operations, which can be very efficiently implemented in hardware, while an addition

over GF (p) would require a carry propagation chain. It was also concluded that, although the

EC is supported over a field, the points belonging to this entity constitute a group, which means

that only one operation can be defined for an EC. The defined operation is the addition and can

be computed with several field operations. This means that the point exponentiation (or point

multiplication) is obtained through successive additions. This operation holds the security of the

EC cryptosystem, since it is not computationally invertible. This operation is different from other

asymmetric key cryptosystems currently being used, such as the RSA cryptosystem, which is

supported over field operations, namely prime numbers multiplication. Another analysis issue

arises from the field elements is the basis used to represent them. This basis can be canonical,

normal or polynomial. Canonical and normal basis are normally used together. The polynomial

basis is the one which better suits the objective of this work and its original contributions, namely

the calculus of the trace of a field element that facilitates the use of the collapsed representation

for an EC point. The trace in this basis has few dependencies, 2 in the case of this thesis imple-

mentation example, while in normal basis has k dependencies, with k the field size. This basis

also improves the generality of the field size. The trace of an element in polynomial basis can

be computed with the minimum of 2 input XOR while for a normal basis this could be calculated

with a minimum of k input XOR gates for a field GF (2k). Another reason to adopt the polynomial

basis is that there is always a basis for each k, while optimal normal basis don’t have this property.

Thus, the polynomial representation is more generic. All the representations require the existence

of an irreducible polynomial of degree k.

Several methods to perform field operations, namely field multiplication and inversion/division

were researched in order to integrate the processor architecture. For the field multiplication a very

efficient multiplier based in multiplications by powers of the polynomial x was selected. Since the

used irreducible polynomial is a pentanomial, only three 2 input XOR gates are required to perform

a multiplication by a polynomial x. Another advantage of the used multiplication structure is that

it can be easily parallelized for any k. An algorithm based on the Extended Euclidean Algorithm

was used for field inversion. The use of this algorithm suggests a 1.38 times improvement when

compared with the algorithm based on the recursive computation of multiplications. The analysis

of this operation allows to conclude that the field inversion is the more time consuming operation

to be performed over a field. For this reason, methods to mitigate the use of inversion operations

while computing the EC exponentiation were studied. These methods are supported by projective

representations of the EC points. This kind of representation introduces a third coordinate used

to represent an EC point which stores all the information referred to the inversion procedure. It

allows a final inversion at the end of the algorithm using this information to be equivalent to the

inversion in each point addition. Several projective representations were introduced, but one of

them, the standard projective representation, allows to compute point exponentiation x coordinate
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using only the x coordinate of the input point being more appropriate to the proposed processor.

In order to perform a comparative evaluation of the proposed FPGA processor characteris-

tics, a software and an ASIC technology implementations were performed. The designed FPGA

processor supports operations over a generic field GF (2k), but was implemented for a field with

k = 163. The proposed arithmetic units do not compromise the generality of the field, because

each unit can be easily scalable to any k. The resulting processor requires 10, 488 slices in a total

of 15, 360 and computes a point multiplication in 144.3 µs and a point addition in 1.024 µs. Point

multiplication allows a maximum throughput of 1 Mbit/s while point addition allows 15 Mbit/s.

The ASIC implementation shares the same structure as the FPGA implementation, since it was

supported by the same VHDL description. In this case, the comparison is rather difficult, since

technologies with different characteristics are used. Nevertheless, it is possible to distinguish that

the proposed design has very demanding routing requirements, imposing 31% of the critical path.

In comparison with the software solution, the proposed FPGA design has a speed up is of 2, 858

for point multiplication, in comparison with the MicroBlaze Xilinx soft-processor, and a speedup

of 387 when compared with the general purpose Intel processor. For point addition the speedup

is 143 comparing with MicroBlaze, and 21 comparing with the Intel general purpose processor.

These results were expected since all the options, namely the choice of the field to support the

system, were made regarding hardware implementations and parallelization. The differences be-

tween the hardware and software solutions are also explained by the fact that some operations,

namely the squaring operation, can be efficiently performed in hardware, with the manipulation

of individual bits in a non-regular manner. This manipulation can not be efficiently performed in

software.

The design was shown to successfully support a host system granting all the EC operations.

An application was implemented using a prototyping board and real protocols were used to test

the proposed processor. This prototype allowed us to conclude that, when conjugated with fast

communication interfaces, the EC processor can provide very interesting throughputs.

6.2 Future Work

EC cryptosystems is a current and very important research field, not only on efficient imple-

mentations but also, for example, in security attacks. This last subject can be used to inspire some

of the future work, where the attack possibilities could be analyzed in order to identify weaknesses

and adapt the design with more secure structures.

From this thesis other issues related with the architecture suggest possible improvements.

The ASIC implementation suggests that the design has complex routing requirements. Thus,

other structures can be researched, not only to reduce the number of gates needed to implement

the design but also to reduce the routing complexity, improving the global performance. New
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functionalities can also be researched. One of these functionalities, which is not in this thesis

scope, is the mapping between messages and EC points. This thesis introduces a method based

on a trial search of the mapping, which assumes that some of the EC coordinate bits are not used

to transfer data, but are only used to assure that the representation of the data can lead to an

EC point. The probability for this method failing decreases if more redundancy (bits with no data)

are used. Since, this method reduces the throughput performance of the system, a more efficient

method that guarantees the mapping with minimal redundancy can be researched. It can be also

of interest to research a method to avoid the computation of the y coordinates when performing

point addition, as it was accomplished for point multiplication. This would permit to reduce the

number of divisions used in the system, increasing the performance of the ECC processor.

The utilization of a different basis to represent field elements may also be an interesting re-

search topic. The implementation of these solutions may also be performed and optimized in

order to clearly distinguish which advantages exist and how these advantages are translated into

an objective performance metric. Hybrid basis methods can be researched in order to exploit the

advantages of each representation.

Finally, solutions over GF (p) can be researched because, since it is important to adapt gen-

eral purpose processors to operate over GF (2k), it would also be important to adapt dedicated

hardware structures to GF (p) allowing all the protocols to be implemented in the different solu-

tions. The field GF (p) is better suited for software solutions, since it is able to use the integer

arithmetic units provided by these processors. Although, some devices, such as FPGAs, provide

structures to improve the carry propagation which could be exploited. The utilization of GF (p)

also introduces the possibility to use different numbering systems, such as the Residue Number

System (RNS) or the Logarithmic Number System (LNS).
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A. Hardware Resources Description

To perform the software test and construct the EC prototype, several components belonging

to a Wildcard 4TM Board, MicroBlazeTM Soft Core as well as PC utilities were used. These com-

ponents and the developed processor interface are described in detail in the following sections.

A.1 Elliptic Curve Processor Interface

The EC processor and its associated signals are depicted in Figure A.1.

Elliptic Curve
 

Cryptographic
 

Processor

clk global reset

key in [162:0]

coordinate in [162:0]

start key

start msg

decrypt

reset

coordinate key [162:0]

coordinate msg [162:0]

done key

done msg

busy

received

illegal key

Figure A.1: Elliptic Curve Processor and Associated Signals

The signals presented in Figure A.1 have the following purpose:

• Inputs:

– clk : the processor is a synchronous systems towards this clock signal.

– global reset : it is the initialization reset signal which collocates the system on an idle

state.

– key in [162:0] : input scalar involved in point multiplication.

– coordinate in [162:0] : input collapsed coordinate which may represent the point in-

volved in point multiplication or in point addition.

– start key : signal which communicates that the key in and coordinate in signals are

updated and it is possible to begin a new point multiplication.

– start msg: signal which communicates that the coordinate in signal is updated and it is

possible to begin a new point addition with the processor inside stored point.

– decrypt : if this signal is activated, when starting a point addition procedure it will be

performed A−B, with A the input coordinate and B the stored coordinate. Otherwise,

it will be performed A+B. Considering A a message and B a secret, it will correspond

to message decrypting and encrypting, respectively.

– reset : when performing point addition, the processor can efficiently add several input

points Ai to the stored point B, performing the point B initialization operations only
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once. When the set of points to be added ends, this reset signal may be activated in

order to the processor returns to an idle state.

• Outputs:

– coordinate key [162:0] : resulting collapsed coordinate from point multiplication. It may

represent a public key or a secret, accordingly with the input operands.

– coordinate msg [162:0] : resulting collapsed coordinate from point addition. It may

represent encrypted or decrypted messages, accordingly with the input operands and

the decrypt signal.

– done key : when active informs that there is a new point multiplication result available

in the output coordinate key.

– done msg: when active informs that there is a new point addition result available in the

output coordinate msg.

– busy : when active informs that the processor is processing.

– received : when active informs that the input coordinate in signal was read and a new

point addition began, thus the coordinate in signal can be updated with another input

coordinate. This signal is useful to decrease the latency in the communication of new

points since it can be asked other input while a point addition is being performed.

– illegal key : this signal is active when point multiplication result is illegal to represent

keys, namely it is null.

A.2 Wildcard 4 TM Board

The Wildcard 4 is a processing Personal Computer Memory Card International Association

(PCMCIA) card which contains a Xilinx Virtex 4 FPGA, model XC4VSX35, that can be used as a

PC extension. The schematic layout of this card is presented in Figure A.2 [32].

This prototyping card comes with drivers for Windows 2000, complete VHDL models to easily

interact with the FPGA surrounding components, and an API to use the card functionality in a

software application.

Not all card components are necessary. Only the following is used:

• Cardbus and Cardbus Controller : it is through these components that the communication

to the host system is performed. The FPGA programming is also performed through these

components. The Cardbus Controller also provides a LAD bus which allows to easily inter-

change data between the host and the FPGA.

• Clock Generator : This component is a programmable frequency clock provider. This com-

ponent allows to feed the FPGA with a clock signal at the frequency defined by the user.
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Figure A.2: Wildcard 4 Organization

This component programming is performed directly by the host system through the Cardbus

Controller.

• I/O connector : This corresponds to the general Input/Output (I/0) pins available in the card.

It will be useful to perform the communication with a remote terminal.

A.3 MicroBlaze TM Soft Core

The MicroBlaze is a Reduced Instruction Set Computer (RISC) reconfigurable processor op-

timized to be implemented in Xilinx FPGA [30]. This processor allows the configuration of the

memory size, the existence or not of memory cache, the existence or not of floating point unit,

and the extension with several peripherals.

The possibility of extending the processor with several available peripherals is one of the ad-

vantages of using this processor, reducing the design effort. These peripherals can be easily

configured and accessed in software. The address space contains two buses: the Local Memory

Bus (LMB) and the On-Chip Peripheral Bus (OPB). The first one connects both instruction and

data memory and the second one connects to the extension peripherals. Peripheral access is

easily done with memory read and write instructions.

For the proposed application, three peripherals are used: i) two GPIO peripherals and ii) a

UART Lite to support the RS-232 communication standard.
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GPIO Peripheral

Outside the processor, this peripheral provides an output as a register, clock synchronous,

and it is possible to write to this peripheral as a register too. From the software point of view, a

simple write/read routine is sufficient to update the output register or to use the value in the input

register. Although, an address can only be configured to write or to read. It is possible to configure

the peripheral on-the-fly by software, but it brings an extra overhead if several writes and reads

are performed. It is possible to mitigate these problems using other functionality of this peripheral,

namely the possibility of activating two channels. With this, one channel can be configured to read

and the other one to write, using the same peripheral.

The bit size of the registers used in this peripheral can be an integer up to 32. This peripheral

provides other interfaces outside the processor, namely I/O buses and tri-state buses. These

interfaces were not required.

UART Lite Peripheral

This peripheral provides a simple exterior communication using a serial stream that can sup-

port standards, such as RS-232. It has a First-In, First-Out (FIFO) queue, were the data to be

sent through the serial stream is written and the received data is stored until a software read.

Outside the processor, this peripheral provides one TX (Transmit) bit and one RX (Receive)

bit. The transmission can be configured through the following parameters:

• Number of bits per frame from 5 up to 8;

• Utilization or not of a parity bit;

• The parity type: odd or even;

• Bit stream throughput from 110 up to 921600 bits per second.

A.4 Host System

The host system is composed by a PC extended with a Wildcard 4, and connected through a

PCI bus. The system is designed so that all EC arithmetic operations are performed by the EC

processor implemented in the FPGA.

This system only provides the necessary data for the EC processor, namely private keys and

plain messages.

A.5 Remote System

The remote system is composed by a PC connected to the MicroBlaze through a RS-232

connection. This system is able to compute all the functionality of the conjunction of the host
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system, Wildcard 4 and the MicroBlaze inside it, thus it can interact with them with the necessary

data. For this task, the libraries developed in Section 5.1 are used. This system provides public

keys and encrypted data, in order to establish a secure channel between the MicroBlaze and

itself.
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B. Transceiver Electrical Schematic

The proposed prototype contains a transceiver used to convert the FPGA tension level (3.3 V )

to the RS-232 communication port level (5 V ). This transceiver is supported by the integrated

circuit MAX3222E from Maxim Integrated Circuits, Inc. The used electrical schematic follows a

typical operating circuit suggested in the MAX3222E data sheet, and is represented in Figure B.1.

This circuit is supplied with 5 V by an USB to RS-232 adapter.

0.47uF
C3

0.1uF
C1

0.47uF
C2

0.47uF
C4

1

2

3

4

5

6

7

8

9

11

10

J1

D Connector 9

10k

R1
Res3

DIN113

RIN2 9

RIN1 16

C2-6 C2+5

N
C

14
14

DOUT2 8

DOUT1 17

V-
7

N
C

11
11

V+ 3

GND
18

PWRDOWN_L 20EN_L 1C1-4 C1+2

ROUT210

ROUT115

VCC 19

DIN212

U2

MAX3222E

VCC

1
2
3
4
5
6

J3

MHDR1X6

VCC

0.1uF
C5

RX
TX
CTS
RTS

Figure B.1: Electrical Schematic of the Transceiver
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