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Design and Application of Thrust Manoeuvres in a
Constrained Spacecraft Rendezvous Context Using
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Abstract—The design of a model predictive control (MPC)
algorithm for performing orbital rendezvous manoeuvres in
elliptical orbits is addressed. The MPC algorithm computes a
trajectory between an initial and desired states, minimizing fuel
and taking into account limited thrust authority and passive
collision safety. The MPC prediction model is based on the
Yamanaka-Ankersen equations with Ankersen’s zero-order hold
particular solution.

Finite-Horizon MPC is the standard formulation for this
application, allowing for generating fuel-optimal trajectories via
linear programming given a pre-defined manoeuvre duration.
We extend it by presenting two new approaches for formulating
passive collision avoidance constraints, which are naturally non-
convex, as linear constraints. We also contribute with two new
robustness techniques which improve the controller performance
in the presence of disturbances while maintaining the computa-
tional complexity.

I. INTRODUCTION

ORBITAL rendezvous is a highly useful procedure in
which two separate spacecraft meet at the same orbit,

therefore approximately matching their orbital velocity and
position [1]. Rendezvous missions have been performed suc-
cessfully hundreds of times for multiple purposes and using
different control strategies. In this context, we consider in
this work the use of Model Predictive Control (MPC) [2]
for performing rendezvous manoeuvres, which is a widely
successful optimal control strategy that naturally considers the
system dynamics and can handle various different operational
constraints, such as fuel consumption minimization, limited
thrust authority, and passive collision safety. The use of MPC
for this purpose can grant more autonomy to the spacecraft
and increase the optimality of the approach trajectories, when
compared to the traditional techniques.

The literature for MPC applied to rendezvous is now quite
considerable, and this remains an active area of research.
Despite this, MPC has been tested in real spaceflight only
once, to the best of the author’s knowledge, by the PRISMA
mission [3]. The main difficulty with the use of MPC for a
real rendezvous mission is that it requires a considerable online
computational effort, which can prove challenging given the
typically limited computing power available onboard. Further-
more, there is not yet a standard approach for robustness in
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face of all disturbances present in a rendezvous mission which
is both feasible to implement in real-time and maintains good
operational performance, and thus more research into this topic
is required.

An onboard automatic control system for a rendezvous
mission contains three sub-systems tasked with the execution
of thrust manoeuvres: guidance, navigation and control (GNC)
[1]. Model Predictive Control can simultaneously handle both
guidance and control functions, while navigation is not con-
sidered in this work. Furthermore, because the translational
and attitude control are typically decoupled in rendezvous
operations, only translational control is dealt with.

The motivation for this work is the PROBA-3 mission by
ESA, scheduled for launch in 2021, in which two satellites
will be launched together into a highly elliptical Earth orbit to
test new formation flying technologies. A secondary objective
of this mission is to perform a rendezvous experiment (RVX),
which is led by DEIMOS [4]. Thus, this work was motivated
as a feasibility study for DEIMOS in the use of MPC for the
guidance and control systems in the PROBA-3 RVX.

We present a new method for formulating passive safety
constraints with online linear programming, relying on offline
non-linear optimization. A variation of this technique which
relies purely on iterative linear optimization is also presented.
Finally, we contribute with new robustness techniques, with
the use of a terminal quadratic controller for a more accu-
rate and robust final braking manoeuvre, and the dynamic
relaxation of the terminal constraint in order to avoid the
overcorrection of disturbances and waste of fuel.

In Section II, we first cover general MPC theory with linear
system models. The relative orbital dynamics between two
satellites, which are crucial to understand for the design of
a rendezvous mission, are covered in Section III, present-
ing the linearised model which is later used as the MPC
prediction model. Section IV applies the MPC framework
to the rendezvous problem and our main contributions are
presented. Finally, Section V presents rendezvous simulations
using MPC.

II. MODEL PREDICTIVE CONTROL

Model Predictive Control is a Control design method based
on iterative online optimization [2]. The strategy is to obtain
a control decision by solving an optimization problem which
factors in future states of the system in a finite horizon,
predicted using a discrete system model. This approach is
illustrate in Fig. 1.
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Fig. 1. Illustration of the Model Predictive Control strategy.

At each time step, the problem is solved with the most
recent state measurement or estimate as the initial condition
for the prediction, and a control strategy for future steps within
the prediction horizon is obtained. The first control value in
the obtained sequence is executed, and the problem is solved
again in the next time step, with an updated state and with
the prediction horizon shifted forward. For this reason, this
method is also known as Moving/Receding Horizon Control.

Since MPC is formulated as an optimization problem, it
allows for the inclusion of control and state constraints. This
is a powerful tool and one of the major advantages of MPC in
respect to other control methods, since it allows to limit the
control action and to model complex state restrictions, such as
safety constraints. Also, MPC naturally considers the system
dynamics and can easily handle multivariate systems. On the
other hand, because the optimization problem must be solved
online, it requires a great computational effort which limits
the use of MPC for systems with very fast dynamics or with
reduced computation power.

A. General Formulation

A discrete-time system, with state variables x and input u,
is described by the difference equation

x+ = f(x, u), (1)

where x+ is the system state at the next time step and f(x, u)
is the system model.

At a time-instant t, MPC solves the following open-loop
optimal control problem

min
ū0,...,ūN−1
x̄0,...,x̄N

N−1∑
i=0

l(x̄i, ūi) + Vf (x̄N ) (2a)

s.t. x̄0 = xt, (2b)

x̄+ = f(x̄, ū), (2c)
x̄k ∈ Xk, k = 0, . . . , N, (2d)
ūk ∈ Uk, k = 0, . . . , N − 1, (2e)

where x̄ and ū are the predictions of x and u, N is the
length of the prediction horizon, and l(· , ·) and Vf (·) are cost
functions. The minimization is subject to (”s.t.”) constraints
(2b-e). The constraint in (2b) sets the initial condition for the
prediction, and the state and control predictions are subject
to the system model in constraint (2c). The sets X and U in

(2d) and (2e) represent constraints on the state and control
variables, respectively. Solving this open-loop problem yields
an optimal control sequence ū∗, of which only the first is
applied, meaning that ut = ū∗t . The problem is then solved
again at the next time-step, at t + 1, with the updated state
measurement/estimate xt+1 that is the response to the applied
control, thus closing the control loop.

B. Linear-Quadratic MPC

If the MPC prediction model in (2c) is linear, it can instead
be described by the state-space model

x+ = Ax+Bu. (3)

The use of a linear prediction model instead of a nonlinear one
grants a computational advantage, since the latter results in a
non-linear optimization constraint that makes the optimization
process harder. On the other hand, nonlinear models can
more realistically describe the system, allowing for better state
predictions and operating the system closer to the boundary
of the admissible operating region [7].

A common and effective cost for the MPC optimization
problem is the quadratic function, where the cost functions
become

l(x, u) = x>Qx+ u>Ru,

Vf (x) = x>Qfx,
(4)

where Q and Qf are the state and terminal state cost matrices,
which are positive semi-definite, and R is the positive definite
input cost matrix. These cost matrices are used to tune the
controller: increasing the elements in R relative to Q and Qf

increases the penalization of the control variable in the cost
function, and so the optimal solution will have limited actuator
action.

Although the quadratic function is most commonly used,
other cost functions are available. In particular, the use of the
`1-norm is advantageous since it results in a sparser control
profile, which is desirable in applications with limited fuel
such as orbital rendezvous. On the other hand, the quadratic
cost presents better robustness.

C. Reference Tracking

To control the system to a reference set point xref instead
of to the origin, the tracking error must penalized. With the
quadratic function, the cost functions become

l(x, u) = (x− xref )>Q(x− xref ) + u>Ru

Vf (x) = (x− xref )>Qf (x− xref ).
(5)

Another method for reference tracking is through the use of a
terminal state hard-constraint, as will be shown in Section IV.

D. Optimization Methods

Since the computational complexity is the greatest limitation
for MPC, the method for optimization is greatly important. For
optimal control problems which are convex and lack inequality
constraints, analytical optimization is possible via solving the
Karush-Kuhn-Tucker (KKT) [8] conditions, which becomes a
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very fast approach. In the presence of inequality constraints,
analytical optimization easily becomes infeasible since the
search for the solution grows exponentially with the number
of constraints.

Typically, numerical optimization algorithms [9] are uti-
lized instead. In a real-time MPC context, a fast and robust
algorithm is desirable, while accuracy may be less valued.
Furthermore, it is also advantageous that the algorithm has
good early termination properties, in case the optimization has
to be interrupted due to real-time constraints, and that it can
be warmstarted with the solution of previous optimizations,
which can be exploited given the iterative nature of MPC. The
computational complexity depends on the type of optimization
problem, i.e. linear, quadratic, nonlinear, which in turn depends
on the prediction model and constraints used. It also depends
on the length of the prediction horizon, which defines the
number of control decisions. For linear system models, the
complexity can be reduced by eliminating the state as an
optimization variable, by writing it as a function of the initial
condition and the control decisions via the prediction model.
Alternatively, some algorithms specific for MPC optimization,
for example [10], exploit the structure between the control and
state variables, allowing for even faster optimization.

A different optimization approach is Dynamic Programming
(DP), where the optimization problem is solved recursively and
explicitly as a function of the initial condition. This is desirable
because it allows for performing most of the computation
offline, while the online work simply becomes applying the
solution to the current state. However, the (DP) approach does
not handle inequality constraints well, and these render the
solution intractable.

An equivalent explicit solution approach which yields a
simpler result is Explicit MPC [11], where the optimal control
problem is solved with multi-parametric programming. This
yields a piecewise solution which is a look-up table of control
laws, each valid in a different set of the state-space known as
critical region. In the specific case of linear-quadratic MPC,
the control laws become affine and the critical regions are
convex polytopes. In general, however, the number of critical
regions grows exponentially with the number of inequality
constraints, which makes the use of Explicit MPC infeasible
for anything but small problems, although several complexity
reduction techniques exist.

III. RELATIVE ORBITAL DYNAMICS

Relative orbital dynamics refers to the relative motion of
two satellites orbiting the same body, and it is imperative to
consider them in order to successfully accomplish rendezvous
missions. Typically in these missions, one of the satellites is
in free motion, designated target spacecraft, while the other,
chaser, performs the thrust manoeuvres to close their relative
positions. In this context, it is convenient to consider relative
positions and velocities, centred at one of the spacecraft, rather
than absolute coordinates centred in the massive body.

Denoting a position vector as r with magnitude r, the
relative position of the satellites is given by s = rc−rt, where
the subscripts c and t are associated to the chaser and target

Fig. 2. The target local orbital frame (Flo).

spacecraft, respectively. Assuming an uniform gravitational
field and that the the satellite masses are negligible, the relative
motion between the satellites is easily derived from Newton’s
law of gravitation and second law of motion, yielding

s̈ = µ

(
rt
r3
t

− rc
r3
c

)
+

F

mc
, (6)

where µ is the standard gravitational parameter, F is the force
applied by the chaser thrusters, and mc is the chaser mass.
Unlike in the case of only one unperturbed satellite, this
problem has no closed-form solution and must be solved
numerically or approximated with a linearisation.

A. Target Local Orbital Frame

When the distance between the two spacecraft is small, it
is convenient to consider the non-inertial target local orbital
frame, illustrated in Fig. 2, where θ is the true anomaly
of the target spacecraft. This frame is also known as local-
vertical/local-horizontal frame (LVLH), given that it is centred
in the position of the target spacecraft.

Axis xlo is in the general direction of the velocity vector,
although it is not always aligned with it, and is commonly
known as V-bar. Axis ylo is orthogonal to the orbital plane,
in the opposite direction of the angular momentum, and is
also known as H-bar. The axis zlo, known as R-bar, is always
directed at the center of mass of the central body. For this
reason, the frame rotates with the orbital angular velocity ω,
and thus is non-inertial.

B. Approximate Equations of Relative Motion

To make use of the nonlinear relative dynamics in (6), a
linearisation is performed around the target position rt [1].
Furthermore, the relative position is converted to the LVLH
frame, yielding the linearised equations of relative motion
(LERM)

ẍ− ω2x− 2ωż − ω̇z + kω
3
2x =

Fx

mc
, (7a)

ÿ + kω
3
2 y =

Fy

mc
, (7b)

z̈ − ω2z + 2ωẋ+ ω̇x− 2kω
3
2 z =

Fz

mc
, (7c)

where (x, y, z) is chaser position relative to the target in the
LVLH frame, F = [Fx, Fy, Fz]>, and k is the constant k =
µ/h

3
2 , with h as the magnitude of the target orbit specific

angular momentum.
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The LERM equations are linear with respect to relative
position, velocity and acceleration, although they are not so
with respect to the orbital angular velocity ω. Because this
parameter is time-varying for elliptical orbits, in general the
equations are linear and time-varying, and thus a solution
is not trivial. A special case emerges for a circular target
orbit, where the orbital angular velocity becomes constant
with time and thus the dynamics become time-invariant. In
this case, the LERM equations become the well-known Hill
equations, and their solution, known as the Clohessy-Wiltshire
equations, is trivial. Finally, notice that the motion in H-bar,
which is referred to as out-of-plane motion, is decoupled
from that in V-bar and R-bar, designated in-plane motion.
This simplifies the problem, since the two can be solved and
analysed independently. However, note that this is directly due
to the linearisation, and that in the nonlinear dynamics the two
are in fact coupled.

C. Simplification of the General Equations

To solve the LERM equations in the general elliptic orbit
case, a change of the independent variable from time t to
the true anomaly θ is employed. Furthermore, a coordinate
transformation is also applied

s̃ = ρ(θ)s, (8)

where s̃ is the relative position vector in the new coordinate
system and ρ(θ) is a time-variant auxiliary function defined
as

ρ(θ) = 1 + e cos(θ), (9)

where e is the orbit eccentricity. Denoting the derivative of s
with respect to the true anomaly θ as s′, the transformation
for velocity is

s̃′ = −e sin(θ)s +
1

k2ρ(θ)
ṡ. (10)

Applying these transformations, the LERM equations sim-
plify to

x̃′′ − 2z̃′ =
Fx

mck4ρ3
, (11a)

ỹ′′ + ỹ =
Fy

mck4ρ3
, (11b)

z̃′′ − 3

ρ
z̃ + 2x̃′ =

Fx

mck4ρ3
, (11c)

which are known as the Tschauner–Hempel equations and can
be more easily solved.

D. Homogeneous Solution

For the homogeneous solution of the Tschauner–Hempel
equations (F = 0), we consider the Yamanaka-Ankersen equa-
tions [5]. Given initial conditions x̃0 = [x̃0, ỹ0, z̃0, x̃

′
0, ỹ
′
0, z̃
′
0]>

for an initial true anomaly θ0, the homogeneous solution
becomes

x̃h(θ) = φ(θ)φ−1(θ0)x̃0, (12)

where φ(θ) is a transition matrix not presented here for brevity.

E. Particular Solution

We will consider Ankersen’s particular solution [6], which
assumes a constant force during the sampling period and
thus results in a zero-order hold (ZOH) discretization. The
particular solution thus becomes

x̃p(θ) = Γ(θ0, θ)F, (13)

where input matrix Γ(θ0, θ) is also not presented here.

F. State-Space Model

Representing the coordinate transformations in (8) and (10)
with the transformation matrix Λ(θ) and the inverse trans-
formation with Λ−1(θ), we get the state-space model in the
original coordinates

xk+1 = Ak+1
k xk +Bk+1

k uk, (14)

with the input vector u = F, and such that the system at a
discrete time k has true anomaly θ0 and at time k+ 1 the true
anomaly θ. Matrix Ak+1

k is the state transition matrix from
time k to k + 1

Ak+1
k = Λ−1(θ)φ(θ)φ−1(θ0)Λ(θ0), (15)

while Bk+1
k is the input matrix, which becomes

Bk+1
k = Λ−1(θ)Γ(θ0, θ). (16)

Given two arbitrary positions and a transfer duration, the
Yamanaka-Ankersen state transition matrix Ak+1

k can be used
to generate two-impulse manoeuvres, by solving for the initial
and final changes in velocity required, designated ∆V ’s.
These manoeuvres are often used to generate trajectories in
traditional rendezvous guidance techniques.

IV. RENDEZVOUS WITH MPC

In traditional rendezvous mission design, guidance trajec-
tories are designed offline, and so manoeuvres are performed
in open-loop, often times with punctual mid-course correction
boosts determined online from the trajectory deviation. In this
context, an increasing amount of research has been dedicated
to applying Model Predictive Control (MPC) to the rendezvous
problem [12], in order to perform these thrust manoeuvres
online and in full closed-loop.

A. Relative Dynamics Sampling

The relative dynamics are time-varying for elliptical orbits,
which presents a difficulty for the sampling of the MPC
prediction horizon. For example, in the conditions of the
PROBA-3 mission, the orbital velocity is nearly ten times
greater at perigee than at apogee, which also translates to the
velocity of the relative motion. Because in MPC there is a
limited amount of samples, associated with the length of the
prediction horizon, these must be allocated appropriately along
the orbit in order to get the best performance, since the point
at which the thrust is applied is important for the optimality
of the trajectory.

If the dynamics are sampled with constant time intervals,
the samples will concentrate on apogee because the orbital
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velocity is greater there, which is opposite to what is desired
since the dynamics are faster on perigee. Thus, in this work
we sample the dynamics with constant eccentric anomaly in-
tervals, which results in longer time intervals between samples
at apogee than at perigee, in way that samples are uniformly
distributed in space.

B. Fixed-Horizon MPC

The receding-horizon strategy which is standard for MPC
is not appropriate for the rendezvous scenario. The fact that
the prediction horizon slides forward every sample means the
system can never commit to one specific trajectory, which
prohibits achieving a fuel-optimal closed-loop trajectory. Thus,
the standard approach is to decrement the prediction horizon
every sample, such that its edge is always at the same time-
instant, and thus known as Fixed-Horizon MPC (FH-MPC)
[13].

To achieve a fuel-optimal formulation, the cost function
must also be chosen appropriately. First, no intermediate
cost l(· , ·) is used for the state variables, thus allowing the
controller to better plan ahead since it is not penalized for
not being on the reference state while halfway through the
manoeuvre. Also, for the input variable cost, the `1-norm is
used. Because the absolute value of the thrust is proportional
to the fuel consumption, this cost function allows for the
direct minimization of the fuel required for the manoeuvre.
On the other hand, the use of the `1-norm does not allow for
a computationally efficient optimization.

To simplify the cost function, the input matrix in the
prediction model can be extended, such that input forces are
split into its positive and negative components F = F+−F−.
This increases the number of optimization variables, which
is disadvantageous, but now each input variable can only
take positive values, which makes its absolute value equal to
itself, thus turning the `1-norm into a linear cost function. To
simplify the problem further, the terminal state cost Vf (·) is
removed and replaced with a terminal state constraint, which
allows for the cost function to become completely linear. Thus,
the standard FH-MPC formulation, as first presented in [13],
becomes

min
ū0,...,ūN−1
x̄0,...,x̄N

N−1∑
i=0

∆ti1
>ūi (17a)

s.t. x̄0 = xt, (17b)

x̄k+1 = Ak+1
k x̄k +Bk+1

k ūk, (17c)
0 ≤ ūk ≤ umax, k = 0, . . . , N − 1, (17d)
x̄N = xref , (17e)

which is a linear program (LP) and can be solved very
efficiently. Notice that in (17a) the input variables are weighted
with the time intervals between samples ∆t, which is im-
portant to maintain the cost function proportional to the fuel
required, since a ZOH discretization is used and the system
is not sampled with constant time intervals. Furthermore, the
constraint in (17d) limits the control to the maximum thrust
umax, and also lower-bounds it with zero in order to maintain
the integrity of the input variable split. Finally, constraint (17e)

is the terminal state constraint, where xref is the reference
state. This constraint sets the manoeuvre duration, which is
defined by the prediction horizon N at the first iteration, and
thus must be defined prior to the optimization.

C. Variable-Horizon MPC

It is also desirable to optimize the manoeuvre duration
as well as fuel consumption, which is performed by adding
the prediction horizon N as an integer optimization variable,
in what is known as Variable-Horizon MPC (VH-MPC).
However, this makes the terminal constraint (17e) nonlinear,
turning the problem intro a mixed-integer nonlinear program,
which is computationally expensive to solve.

A method for transforming the problem into a mixed-integer
linear program (MILP) presented in [13] requires two binary
optimization variables per time-instant. Variable vk is 1 if the
manoeuvre is completed exactly at instant k, while pk is 1
while the manoeuvre is not completed and 0 afterwards. The
VH-MPC MILP formulation then becomes

min
ū0,...,ūNmax−1
x̄0,...,x̄Nmax

p0,...,pNmax∈{0,1}
v1,...,vNmax∈{0,1}

γ

Nmax∑
i=0

pi +

Nmax−1∑
i=0

∆ti1
>ūi (18a)

s.t. x̄0 = xt, (18b)

x̄k+1 = Ak+1
k x̄k +Bk+1

k ūk, (18c)
0 ≤ ūk ≤ umax, (18d)
− (1− vk)h ≤ xk − xref ≤ (1− vk)h,

(18e)
pk+1 = pk − vk+1, (18f)
pNmax = 0, (18g)
Nmax∑
k=1

vk = 1. (18h)

where the new term in the cost function is proportional to
N , and thus γ is a parameter used to tune the trade-off
between fuel consumption and manoeuvre duration, while
Nmax defines the maximum manoeuvre duration possible.
Constraint (18e) is the new terminal state constraint, where
h is a large enough number; at the instant the manoeuvre
is completed, vk is 1 and thus the terminal state constraint is
active, otherwise vk is 0 and the constraint is loose. Constraints
(18f) and (18h) maintain the integrity of the binary variables,
while (18g) forces the manoeuvre to be completed at least by
the end of the maximum prediction horizon.

The computational load for this formulation is greater than
for the FH-MPC, since MILP problems are harder to solve.
Thus, in a real-time scenario, it is preferable to predetermine
offline the manoeuvre duration and use the FH-MPC formu-
lation instead. However determining the manoeuvre duration
offline can be performed in an optimal way by using the
VH-MPC formulation. The optimal transfer time may change
slightly along the way due to disturbances, but the time de-
termined offline can still be expected to remain approximately
optimal.
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Fig. 3. Illustration of obstacle avoidance with linear constraints.

D. Passive Safety Constraint

It is a requirement in rendezvous missions that, besides
ensuring that the nominal trajectory does not cause a collision
between the spacecraft, the free-drift motion from any point
in the trajectory also remain collision-free within a specified
time-horizon. Designing trajectories in this way ensures that,
in case a thruster fails to fire, the two spacecraft will not collide
due to the natural drift, and thus this is known as passive safety.

To formulate the passive safety constraint, the failure trajec-
tories must be propagated with the prediction model, as first
proposed by Breger and How [14], and hard-constrained to
avoid the obstacle. If a total thruster failure occurs at time k,
the resulting free-drift failure trajectory xFk

is described by

xFk,t
= At

kxk, t > k, (19)

where At
k is the dynamic matrix that transitions the state from

instant k to t. The passive safety constraint then becomes

xFk,t
6∈ Obstacle, k ∈ {1, . . . , N}

t ∈ {k + 1, . . . , k + S}, (20)

where failures at all discrete instants in the trajectory are
considered and tracked for S samples, where S is the safety
horizon.

This requires the addition of N×S optimization constraints,
which have a significant computational burden, requiring an
efficient implementation for feasible online use. However, col-
lision avoidance constraints are naturally non-convex, which
greatly increases the complexity of the optimization. It is
possible to achieve obstacle avoidance with linear constraints,
by subjecting each state in the trajectory to a different linear
constraint tangent to the original obstacle, as illustrated in
Fig. 3, and where the linear constraints have to be determined
before the optimization. However, the methods found in the
literature for determining the linear constraints are limiting
and not appropriate for use in a passive safety constraint (e.g.
[14], [15]). Thus, we propose two new methods for achieving
obstacle avoidance with linear constraints.

1) Obstacle Avoidance with Offline Nonlinear Program-
ming: One way to determine the linear obstacle constraints for
online optimization is to perform a single offline optimization
with the original nonlinar optimization constraints. Then, the
planes tangent to the obstacle and facing each of the states are
determined, and used to define the linear obstacle constraints
of the online LP. This method will be referred to as obstacle
avoidance with offline nonlinear programming (OAONP).

(a) (b) (c)

Fig. 4. Determining the linear obstacle avoidance constraints with iterative
optimization with linear constraints.

2) Obstacle Avoidance with Iterative Linear Programming:
Alternatively, the tangent planes can be determined with the
result from the unconstrained LP optimization, which natu-
rally may violate the constraint, as illustrated in Fig. 4a).
Optimizing again with the linear constraints determined from
the unconstrained problem yields a trajectory that necessarily
satisfies the real constraint, although it may be conservative, as
illustrated in Fig. 4b). However, the process can be repeated,
determining again the linear obstacle constraints and optimiz-
ing successively until the trajectory converges, as illustrated
in Fig. 4c).

Thus, this technique will hereby be referred to as obstacle
avoidance with iterative linear programming (OAILP). It can
be feasible to use it online, since it relies purely on linear
optimization. Alternatively, this algorithm may also be applied
only once offline to determine the linear constraints, which
are then used for online optimization, much like the OAONP
strategy.

E. Robustness Techniques

There are many sources of disturbances in a real rendezvous
mission scenario to which the controller must be robust. This
not only means that it remains stable, but also that it can
still accurately converge to the reference, in approximately the
specified manoeuvre duration and without a very significant
increase in fuel consumption, in what we address here as
robust performance. Furthermore, it is necessary that state
constraints, such as passive safety, are not violated due to
disturbances, which is known as robust constraint satisfaction.
Finally, the disturbances can often push the system to a state
that renders the optimal control problem infeasible, and thus
the controller must have robust feasibility.

There is some inherent stability robustness for MPC [2],
resulting from the fact that it is a closed-loop control strategy.
Sometimes this is enough, though often robust strategies must
be employed to increase performance and also to ensure state
constraints are not violated due to a disturbance. In order to
maintain a feasible real-time implementation, these strategies
should not significantly increase the computational complex-
ity of the problem. We consider a technique for ensuring
robust feasibility of the terminal state constraint previously
found in the literature, and suggest two new techniques for
improving robust performance. Robust satisfaction techniques
are not considered, although the chance-constrained technique
presented in [16] is promising, since it uses real-time distur-
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bance estimation for constraint-tightening and maintains the
optimization problem as an LP.

1) Feasible Terminal Box: When the prediction horizon
becomes short, as it does with the FH strategy, disturbances
can push the system to a state from which the reference
is not reachable in the remaining steps, given the system
dynamics and other control and state constraints. This renders
the terminal state constraint and the optimization problem
infeasible, which should be avoided at all costs in a real-time
application.

This can be minimized by relaxing the terminal state
constraint into an inequality, thus introducing the concept of
terminal box. The terminal constraint (17e) then becomes

−δ ≤ x̄N − xref ≤ δ, (21)

where δ ∈ R6 defines the bounds for the box. However,
improving the guarantee of feasibility requires increasing the
size of the terminal box, which in turn this worsens the
accuracy of the controller. Furthermore, there is no guarantee
that the chosen dimensions for the terminal box will always
ensure the existence of a solution for all possible scenarios.

To improve this approach, the box bounds δ can be in-
cluded as optimization variables, as first suggested in [17],
which maintains the constraint linear. Furthermore, the new
optimization variables are included in the cost function

V (·) =

N−1∑
i=0

∆ti1
>ūi +

6∑
j=1

hjδj , (22)

where hj is large enough as to ensure the controller only
relaxes the terminal constraint to ensure feasibility and not
to save fuel. Thus, this feasible terminal box will always have
the minimum size that guarantees feasibility.

2) Dynamic Terminal Box: The terminal state constraint
forces the controller to set the fate state exactly on the
reference at every iteration. In the presence of stochastic
disturbances, however, this may cause an overcorrection of
the trajectory and results in the waste of propellant. This may
be minimized by loosening the terminal box, allowing the
controller to perform fewer corrections, although at the cost
of decreased manoeuvre accuracy.

Thus, we propose the inclusion of a time-varying bound εt
to the terminal box constraint

−δ − εt ≤ x̄N − xref ≤ δ + εt, (23)

where t is the time instant at which the optimization problem
is being solved. The bound εt is decreased with time, such
that it reduces the controller overcorrection but still maintains
accuracy as it approaches the reference. This technique is not
mutually exclusive with the feasible terminal box method.

3) Terminal Quadratic Controller: The sparse thrust profile
of the FH-MPC formulation is not appropriate for executing
accurate manoeuvres in the presence of disturbances, since
crucial ∆V ’s are performed in one sample only, while plan-
ning under imperfect state information and with imperfect
execution of the ∆V . Thus the final braking thrust at the end
of manoeuvres for cancelling the remaining relative velocity

tends to not be very precise, resulting in a poor manoeuvre
accuracy.

Therefore, we propose the use of a linear-quadratic MPC
controller, such as that in (5), to substitute the final sample
of the FH-MPC and perform the final breaking thrust. The
terminal controller has a prediction horizon NT that has the
same timespan as the last sample of the nominal controller and
is decremented in the same FH strategy, in order to maintain
the manoeuvre duration initially specified. Furthermore, a
terminal state cost is used instead of the terminal constraint,
and the intermediate state cost is zero. The non-sparse thrust
profile resulting from the use of the quadratic cost and the
increased control decisions result in a more accurate braking
manoeuvre.

V. EXPERIMENTS AND RESULTS

This section features several rendezvous simulations with
the techniques presented. Simulations are performed for Earth
satellites, with the perigee height and chaser mass for the
PROBA-3 RVX of 600 km and 211 kg, respectively. The orbit
eccentricity e simulated is either 0, for experiments in circular
orbits, or with the PROBA-3 eccentricity of 0.8111. The initial
true anomaly θ0 is indicated for elliptical orbit experiments,
and is irrelevant for circular orbits. The orbital orientation
parameters are disregarded, since a uniform gravitational is as-
sumed. For circular orbits, the sampling period Ts is presented,
while for elliptical orbits the sampling eccentric anomaly Es

is shown. Finally, the fuel expenditure is analysed via the total
∆V applied by the chaser thrusters, which have a max thrust
of 1 N in each direction.

The MPC optimization problem is solved with the
MATLAB Optimization Toolbox, where function linprog is
used for linear programming for the FH-MPC formulation,
function intlinprog is used to solve the MILP in the VH-MPC
formulation, and fmincon is used for solving the nonlinear
program that arises in the OAONP technique. Because these al-
gorithms do not take advantage of the MPC problem structure,
the state-substitution technique briefly mentioned in Section
II-D is utilized. The worst-case computation times tmax for
solving the optimization problem is presented, solving with a
4th Generation 2.4GHz Intel-i7 Processor.

A. FH-MPC

Applying the FH-MPC controller to a V-bar transfer sce-
nario with an initial prediction horizon of just over one orbital
period yields the result from Fig. 5, where the manoeuvre is
performed with only two V-bar thrust actions. This resembles
the ideal V-bar transfer with two horizontal impulses [1], for
which the required ∆V exactly matches that obtained in this
experiment. Thus, this validates the fuel-optimality of the FH-
MPC formulation. The computation time was 7.97 ms in the
worst case, which is very small comparing to the sampling
time.

Considering an elliptical orbit and including the H-bar
dimension, we simulate a manoeuvre from the PROBA-3
RVX, which starts approximately at apogee and ends near
perigee. The ∆V required to perform this manoeuvre with the
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(a) (b)

Fig. 5. V-bar transfer manoeuvre in one orbital period with FH-MPC. (a)
Trajectory (b) State and control variables. Simulation parameters: N = 21,
Ts = 290 s. Results: ∆V = 3.45 mm/s, tmax = 7.97 ms.

(a) (b)

Fig. 6. Manoeuvre from the PROBA-3 RVX with FH-MPC. (a) Trajectory
(b) State and control variables. Simulation parameters: N = 100, Es =
1.70 deg, θ0 = 179 deg. Results: ∆V = 407.4 mm/s, tmax = 9.52 ms.

traditional two-impulse transfer is 481 mm/s, while FH-MPC
yields a manoeuvre with 407 mm/s, thus requiring only 85%
of the fuel that would typically be expended. This is possible
due to the fact that the traditional two-impulse manoeuvres
are constrained to one thrust action at beginning and another
at end of the manoeuvre, while MPC may take intermediate
control decisions. Thus, via the intermediate thrust action
seen in H-bar toward the end, a more efficient manoeuvre is
possible, which further shows the fuel-optimality of the FH-
MPC formulation. Finally, notice that despite the fact that the
the prediction horizon was increased by almost five times,
the worst-case computation time only increased by 19.4%,
thus demonstrating the benefit of formulating the optimization
problem as a linear program.

B. VH-MPC

Applying now the VH-MPC formulation to the previous
PROBA-3 manoeuvre with a maximum transfer time of one
orbital period yields the result from Fig. 7. Parameter γ is
set to zero in order to only minimize the required fuel. The
optimal transfer time obtained is 41% of an orbital period,
yielding a ∆V of 48.16 mm/s, which is only 11.8% as that
required for the half-orbit transfer in Fig. 6, thus validating the
VH-MPC formulation. However, a transfer time of one orbital
period would actually have been even more efficient, and is
within the maximum duration specified. The reason VH-MPC
did not yield that solution is that the ∆V is not a convex
function of the transfer time, and the algorithm used to solve
the MILP does not optimize globally, and thus it converges to
this local minimum.

(a) (b)

Fig. 7. Manoeuvre from the PROBA-3 RVX with VH-MPC. (a) Trajectory
(b) State and control variables. Simulation parameters: Nmax = 100, γ = 0,
Es = 3.6 deg, θ0 = 179 deg. Results: N = 41, ∆V = 48.16 mm/s,
tmax = 710 ms.

(a) (b)

Fig. 8. V-bar transfer manoeuvre in one orbital period with FH-MPC and
passive safety constraint with OAONP. (a) Trajectory (b) State and control
variables. Controller parameters: N = 30, Ts = 193 s, S = 30. Simulation
results: ∆V = 1.62 mm/s, tmax = 21.7 ms, toffline = 1.31 s.

Finally, notice that the worst-case computation time required
to solve the MILP is significantly greater than that of the LP
in the FH-MPC formulation. Therefore, it may be infeasible to
use the VH-MPC formulation online, especially with the in-
clusion of the computationally heavy passive safety constraint.

C. Passive Safety

Considering passive safety, Fig. 8 presents the same type
of V-bar transfer manoeuvre presented previously in Fig. 5
with the inclusion of this constraint with a one-orbit safety
horizon, formulated with the OAONP technique. Without it, a
thruster failure in the final burn would result in a violation of
the target safety region, defined here as a 2 metre circle, after
less than an orbit. With the passive safety constraint, some
extra actuation at the end of the manoeuvre ensures that the
failure trajectories stop at the edge of the safety region exactly
after one orbital period.

This comes at the cost of a 17% increase in fuel with respect
to the non-passively safe trajectory. Furthermore, the computa-
tion time for optimizing with the nonlinear constraints is 1.31
s. However, the OAONP technique allows for this optimization
to be performed just once offline, and the online computation
time, although having increased due to the addition of 900
linear optimization constraints, remains 2 orders of magnitude
smaller than this.

Using the OAILP technique instead for the same manoeuvre
yields the result from Fig. 9. Although one iteration ensure the
trajectory is passively safe, it is extremely inefficient, with a
∆V over ten times higher than that obtained in Fig. 8. After
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(a) (b) (c)

Fig. 9. V-bar transfer manoeuvre in one orbital period with FH-MPC and pas-
sive safety constraint with OAILP. (a) One iteration, ∆V = 20.76 mm/s (b)
Two iterations, ∆V = 2.039 mm/s (c) Three iterations, ∆V = 1.62 mm/s.
Controller parameters: N = 30, Ts = 193 s, S = 30. Simulation results:
tmax = 17.8 ms, toffline = 212.4 ms.

two iterations the result improves drastically, although the ∆V
is still above the optimal trajectory. With three iterations the
result almost exactly matches that with the previous method,
and the ∆V is also approximately the same. Similarly to the
OAONP strategy, the OAILP algorithm was run only once
offline, and the computation time is significantly less than the
former.

The satisfaction of non-convex obstacle avoidance constraint
via purely linear constraints is promising and desirable, al-
though there currently is no guarantee that the trajectory con-
verges to a local minimum of the original nonlinear problem,
which warrants further research.

D. Robustness Experiments

So far simulations have been performed with the same
linearised model used for the MPC prediction model, and
thus there are no modelling errors. Simulating the PROBA-3
manoeuvre with the real nonlinear dynamics yields the result
from Fig. 10. The trajectory is slightly different from that
obtained in Fig. 6, with some extra actuation at the end of
the manoeuvre in an attempt to correct the disturbance that
results in an increase of the ∆V of 22%. Furthermore, the
feasible terminal box technique from Section IV-E1 is applied,
having no significant increase in computational time, otherwise
the last iteration would become infeasible and the manoeuvre
incomplete. There is also a residual deviation of the final state
from the reference in position epos and velocity evel, due
to the loosening of the terminal constraint and the imperfect
precision model. While increasing the number of samples in
the prediction horizon decreases this error and the ∆V , such
an approach is not effective in the presence of stochastic
disturbances.

We now consider an additive Gaussian error to the state
received by the controller with a standard deviation of 10
cm for position and 1 mm/s for velocity, thus modelling
navigation errors. Also, an error in thrust magnitude with a
standard deviation of 10% and in orientation of 0.5 deg in
each direction is applied, modelling thruster errors. Finally,
control commands under 1 mN are ignored in order to model
the minimum thrust possible via pulse-width modulation of the
on/off thrusters. Because the conditions are now stochastic, 20
simulations are performed and the results averaged. In these
conditions yields the result from Fig. 11.

(a) (b)

Fig. 10. Manoeuvre from the PROBA-3 RVX with FH-MPC with feasible
terminal box and simulated with the nonlinear dynamics. (a) Trajectory
(b) State and control variables. Simulation parameters: N = 100, Es =
1.70 deg, θ0 = 179 deg. Results: ∆V = 497.5 mm/s, tmax = 10.1 ms,
epos = 25.44 cm, evel = 4.746mm/s.

Fig. 11. Manoeuvre from the PROBA-3 RVX with FH-MPC with feasible
terminal box, simulated 20 times with the nonlinear dynamics, navigation and
execution errors. Simulation parameters: N = 100, Es = 1.70 deg, θ0 =
179 deg. Results: ∆Vavg = 577 mm/s, tmaxavg = 9.72 ms, eposavg =
1.08 m, evelavg = 28.1mm/s.

The effect of the disturbances can be verified by the dis-
persion in the different trajectories. Despite this, the controller
can still robustly converge to the reference, although with a
significant increase in ∆V and terminal error. Increasing the
number of samples in the prediction horizon would decrease
the terminal error, although the ∆V increases due to increased
overcorrection of the trajectory.

Thus, we apply the dynamic terminal box method presented
in Section IV-E2 in order to make the controller less sensitive
to stochastic errors. With an initial terminal box of 5 m for
position and 5 mm/s for velocity, and a linear decreased
with time such that the box dimensions are zero the last
iteration, yields the result from Fig. 12. The trajectories are
slightly more dispersed due to less correction and the ∆V has
slightly decreased. Despite loosening the terminal constraint,
the terminal error has not increased, due to the dynamic
tightening of the terminal box bounds. Although the fuel
gain with the use of this technique is not very significant in
this simulation, it validates the approach, warranting further
research for improvement.

The terminal error for the previous simulations remains
significant, especially for the velocity with 18.4 mm/s, which
is considerably higher than the navigation uncertainty. To
improve the manoeuvre accuracy, the terminal quadratic con-
troller described in Section IV-E3 is applied with a prediction
horizon NT of 10 samples, yielding the result from Fig. 13.
The terminal errors have been reduced both for position and
velocity, and are now comparable to the navigation uncertainty.
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Fig. 12. Manoeuvre from the PROBA-3 RVX with FH-MPC with feasible
terminal box and dynamic terminal box, simulated 20 times with the nonlinear
dynamics, navigation and execution errors. Simulation parameters: N = 100,
Es = 1.70 deg, θ0 = 179 deg. Results: ∆Vavg = 545 mm/s, tmaxavg =
9.98 ms, eposavg = 79.7 m, evelavg = 18.4mm/s.

Fig. 13. Manoeuvre from the PROBA-3 RVX with FH-MPC with feasi-
ble terminal box, dynamic terminal box, and terminal quadratic controller,
simulated 20 times with the nonlinear dynamics, navigation and execution
errors. Simulation parameters: N = 100, Es = 1.70 deg, θ0 = 179 deg.
Results: ∆Vavg = 557 mm/s, tmaxavg = 9.54 ms, eposavg = 28.6 m,
evelavg = 3.57mm/s.

The ∆V has also slightly increased, although less than the
decrease in residual velocity. A Better performance might be
achieved with further tuning of the terminal horizon NT or
the terminal cost matrices, although this result validates this
approach for achieving better accuracy.

VI. CONCLUSION

The FH-MPC formulation presents advantages in fuel-
consumption over traditional guidance techniques, which usu-
ally rely on two-impulse manoeuvres, and is implemented
efficiently via linear programming. The use of MPC allows for
the explicit modelling of operational constraints, such as max-
imum thrust and passive safety collision. The latter is naturally
formulated with non-convex constraints, and thus the OAONP
and OAILP techniques presented here allow for satisfying this
constraint while maintaining the LP formulation.

The controller must be robust to disturbances, such as lin-
earisation errors, navigation uncertainty, and execution errors.
The dynamic terminal box technique presented allows for re-
ducing trajectory overcorrection due to stochastic disturbances,
while the terminal quadratic controller allows for a more
precise breaking burn, improving the manoeuvre accuracy.
Other important disturbances not addressed here include the
effect of the geopotential anomaly, solar radiation pressure and
atmospheric drag.

The feasibility of implementing MPC in a real rendezvous
mission depends on the specific hardware for that mission,
since computational complexity is its greatest downside. Also,
there is a need to analyse weather MPC indeed offers fuel
benefits over the traditional approach, taking into account all
disturbances present in a rendezvous mission. This ties into
the need for a standard approach for achieving robustness that
remains feasible to implement in real-time, which does not yet
exist and thus calls for further research.
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