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Resumo

É desenvolvido um algoritmo de Controlo Preditivo baseado em Modelo (MPC) para a execução de

manobras de rendezvous em órbitas elı́ticas. O algoritmo de MPC calcula uma trajetória entre um es-

tado inicial e desejado, minimizando o combustı́vel e tendo em conta restrições de impulso máximo e de

segurança de colisão passiva, mantendo uma implementação computacionalmente viável de implemen-

tar em tempo-real. O modelo de predição do MPC é baseado nas equações de Yamanaka-Ankersen e

na solução particular de Ankersen do tipo “zero-order hold”.

O MPC de Horizonte-Finito é a formulação padrão para este problema, permitindo gerar trajetórias

de rendezvous com combustı́vel mı́nimo através de programação linear, dada a duração da manobra. A

formulação de Horizonte Variável permite também optimizar a duração da manobra, e os dois métodos

são comparados relativamente ao desempenho e carga computational. Demonstra-se também que

estas abordagens são superiores às manobras de dois-impulsos tipicamente utilizadas em algoritmos

de navegação para rendezvous.

A formulação padrão é expandida com o desenvolvimento de duas abordagens para a definição de

restrições de segurança de colisão passiva, que são tipicamante não-convexas, através de restrições

lineares. Contribui-se também com duas novas técnicas de robustez que melhoram o desempenho

do controlador na presença de perturbações, mantendo a complexidade computacional. Por último, o

algoritmo de MPC é aplicado no cenário da experiência de rendezvous da missão PROBA-3, na qual

os satélites se encontram numa órbita altamente elı́tica.

Palavras-chave: Controlo Preditivo, Dinâmica Orbital Relativa, Rendezvous de Combustı́vel-

Óptimo, Segurança Passiva, Rendezvous Robusto
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Abstract

The design of a Model Predictive Control (MPC) algorithm for performing orbital rendezvous manoeuvres

in elliptical orbits is addressed. The MPC algorithm computes a trajectory between an initial and desired

states, minimizing fuel and taking into account limited thrust authority and passive collision safety con-

straints, while ensuring a computationally feasible real-time implementation. The MPC prediction model

is based on the Yamanaka-Ankersen equations and Ankersen’s zero-order hold particular solution.

Finite-Horizon MPC is the standard formulation for this application, allowing for generating fuel-

optimal rendezvous trajectories via linear programming given a pre-defined manoeuvre duration. The

Variable-Horizon MPC framework also allows for optimizing the manoeuvre duration, and the two meth-

ods are compared regarding performance and computational complexity. We also demonstrate that

these methods are superior to the two-impulse transfers typically used in rendezvous guidance algo-

rithms.

We extend the standard framework by presenting two new approaches for formulating passive col-

lision avoidance constraints, which are naturally non-convex, as linear constraints. We also contribute

with two new robustness techniques which improve the controller performance in the presence of dis-

turbances while maintaining the computational complexity. Finally, the MPC algorithm is applied to the

scenario of the PROBA-3 rendezvous experiment, in which the spacecraft lie in a highly elliptical orbit.

Keywords: Model Predictive Control, Relative Orbital Dynamics, Fuel-Optimal Rendezvous,

Passive Safety, Robust Rendezvous
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Chapter 1

Introduction

Orbital rendezvous is a highly useful procedure in which two separate spacecraft meet at the same orbit,

as illustrated in figure 1.1, therefore approximately matching their orbital velocity and position [1]. Such

manoeuvres allowed for the feasibility of the Apollo moon landing missions, with the rendezvous of the

Lunar Excursion Module with the Command Module in lunar orbit, and for the construction and resupply

of modular space stations, such as Mir and the International Space Station. Other applications include,

for example, the exploration of smaller celestial bodies, such as asteroids, comets and small moons, the

in-orbit servicing of satellites, for instance the multiple repair missions to the Hubble Space Telescope,

or the active removal of space debris. Often the rendezvous process is followed by a docking or berthing

procedure, which results in the physical connection of the two spacecraft, although this is not addressed

in this work.

Figure 1.1: Illustration of the orbital rendezvous manoeuvre.

The first attempt at a rendezvous was performed in the Gemini 4 manned mission in 1965, which

was unsuccessful due to the method of approach being simply ”point-and-shoot”, resulting in a further

separation of the spacecraft. This revealed the challenge in performing a space rendezvous, and proved

that the relative orbital dynamics involving the two spacecraft must be taken into consideration. Since

then, rendezvous missions have been performed successfully hundreds of times, both by manned and

unmanned spacecraft, and using various different control approaches. In this context, we consider in this

work the use of Model Predictive Control (MPC) [2] for performing rendezvous manoeuvres, which is a
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widely successful optimal control strategy that naturally considers the system dynamics and can handle

various different operational constraints. The use of MPC for this purpose can grant more autonomy to

the spacecraft and increase the optimality of the approach trajectories, when compared to the traditional

techniques.

The literature for MPC applied to rendezvous is now quite considerable, and this remains an active

area of research. Despite these facts, MPC has been tested in real spaceflight only once, to the best of

the author’s knowledge, by the PRISMA mission [3]. Although it was in a formation flying context, not

rendezvous, the underlying principles are identical. The main difficulty with the use of MPC for a real

rendezvous mission is that it requires a considerable online computational effort, which can prove to be

a challenge given the typically limited computing power available onboard. Furthermore, there is not

yet a standard approach for robustness in face of all disturbances possibly interfering with a rendezvous

mission which is both feasible to implement in real-time and maintains good operational performance,

and thus more research into this topic is required.

1.1 Motivation

The motivation for this work is the PROBA-3 mission by the European Space Agency, scheduled for

launch in 2021, in which two satellites will be launched together into a highly elliptical Earth orbit to test

new formation flying technologies. To this end, one of the spacecraft, designated Occulter Spacecraft,

will eclipse the Sun for the other, the Chronograph Spacecraft, which flies at a distance and carries a

solar telescope for observation of the Sun’s corona, as illustrated in figure 1.2. Uninterrupted observa-

tions are designed to last up to six hours, which requires remarkable precision in the relative position

and velocity of the two spacecraft.

Figure 1.2: Illustration of the PROBA-3 mission. Taken from the ESA website.

A secondary objective of this mission is to perform a rendezvous experiment (RVX), which is led by

DEIMOS [4]. The spacecraft will be separated by just over one kilometre, and a series of manoeuvres

will be executed which will be the first of its kind in such a highly elliptical orbit, until the spacecraft are

brought together again. Thus, this work was motivated as a feasibility study for DEIMOS in the use of

MPC for the guidance and control systems in the PROBA-3 RVX.
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1.2 Problem Formulation

A rendezvous mission generally adheres to the following sequence of events: launch, phasing, far-range

rendezvous, close-range rendezvous and mating [1]. The launch phase ends with orbital insertion,

nearly coplanar with the target orbit and typically at a lower altitude and behind the target, and is com-

pletely out of the scope of this work. Phasing consists of small corrections to the orbit parameters, and

of passive waiting that takes advantage of the different orbital periods, allowing for the launched space-

craft to catch up with the target. This phase can last a few days and does not require great precision,

such that correction manoeuvres are performed in open-loop without the need for the use of MPC. The

rendezvous process itself then starts with the far-range phase, when relative navigation is possible, typi-

cally at a few tens of kilometres. This phase ends and close-range rendezvous begins when the relative

distance requires safety-critical manoeuvres, typically at a few kilometres. Thus, it is these two phases

that can benefit from the use of MPC to perform the approach manoeuvres, with the latter phase being

the focus of this work given the specifications of the PROBA-3 RVX. As mentioned before, the mating

phase (docking or berthing) is also out of the scope of this work.

An onboard automatic control system for a rendezvous mission contains three sub-systems tasked

with the execution of thrust manoeuvres: guidance, navigation and control (GNC) [1]. The guidance

system generates the reference trajectory and spacecraft attitude; navigation provides state measure-

ments and estimates; control commands the force and torque necessary to drive the spacecraft to the

desired state. MPC can simultaneously handle both guidance and control functions, while navigation

is not considered in this work. Furthermore, because the translational and attitude control are typically

decoupled in the far and close-range rendezvous phases [1], only translational control is dealt with, with

attitude control not being addressed here. Finally, note that while all real rendezvous missions have

been performed in a circular or near-circular target orbit, the PROBA-3 spacecraft will be in a highly

elliptical orbit, which implies an increased difficulty since the dynamics become time-varying and more

complex.

1.3 State-of-the-Art

This work covers several different research areas, and thus we will address the state-of-the-art for these

separately. MPC was first introduced in the 1970’s and is now a very mature framework, with an ex-

tensive theoretical basis [2] and a vast history of successful applications, mostly in the process industry

[5]. It remains an active area of research, with recent work being dedicated to the application of MPC to

specific problems, for example the rendezvous scenario [6]. Research is also devoted into improving the

real-time feasibility of MPC, with the design of new optimization algorithms that exploit the MPC problem

structure, for example [7–9], and with the further development of the popular Explicit MPC framework

[10]. New sub-fields of MPC have also emerged in recent years, such as Distributed MPC, Stochastic

MPC, or Neural Network MPC, among many others.

Concerning relative orbital mechanics, although the nonlinear dynamics can be easily derived from
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Newton’s laws, these equations do not have a closed-form solution, which limits their usefulness. Thus,

research related to this topic, which is still active today, is dedicated to determining approximated dy-

namics with a closed-form solution. A set of linearised equations for the relative motion represented in

a local non-inertial frame of reference and for a circular orbit was first derived by Hill in 1878 [11], in his

study of the perturbations in the motions of the Moon. They were first applied and solved in the context

of orbital rendezvous in 1959, most famously by Clohessy and Wiltshire [12], although this solution is

only accurate for circular or near-circular orbits. The equations were extended to an elliptic orbit by De

Vries in 1963 [13], and simplified via a change of the independent variable to the true anomaly. They

were then solved and applied to spacecraft rendezvous in elliptic orbits by Tschauner and Hempel in

1965 [14], after whom the simplified equations became known. In 1998, Carter presented a simpler

solution to the Tschauner-Hempel equations in the form of a state transition matrix [15], which is valid

for any orbit eccentricity. Later, in 2002, Yamanaka and Ankersen introduced a simpler state transition

matrix [16], although it is only valid for circular or elliptical orbits. Ankersen later complemented this

solution by including a forced regime [17].

Although research to determine different solutions to the Tschauner-Hempel equations and other

approximated models continues, the Yamanaka-Ankersen state transition matrix is considered to be the

state-of-the-art solution for use in the design of rendezvous missions in elliptic orbits. Another common

approach is to use a linearized model based on Gauss’s Variational Equations [18], where the state

vector is the Keplerian orbital elements instead of Cartesian coordinates. The resulting linear equations

easily allow for the inclusion of the effect of the geopotential anomaly, as well as remaining accurate for

larger relative distances than the other approach.

One of the first applications of MPC to the rendezvous problem was by Richards and How [19], where

the basic formulations employed by most of the literature that followed were presented, namely Fixed-

Horizon MPC and Variable-Horizon MPC, although the optimization formulations had been introduced

earlier but not in an MPC context. These formulations explicitly minimize the fuel for the rendezvous

manoeuvres and, in the case of the former, express the optimization problem as a linear program,

which allows for feasible online computation. Thus, current research is mostly dedicated to extending

these formulations, for example to grant robustness in face of the many disturbances interfering in a

rendezvous mission, while ensuring convergence, constraint satisfaction and performance. The topic of

robust MPC techniques for rendezvous is approached in Chapter 4 of this work .

1.4 Contributions

This work features a basic and easy-to-follow introduction to general MPC theory, which can serve as a

practical tutorial for those uninitiated on this topic. It also contains a simple introduction to relative orbital

mechanics, required to fully understand the rendezvous dynamics and manoeuvres.

Our contributions to MPC applied to rendezvous include the application of the Ankersen zero-order-

hold particular solution [17], which provides a more realistic thrust profile than the commonly used im-

pulsive discretization, but seems to have gone unnoticed in the literature. In this work we also consider
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rendezvous manoeuvres in elliptical orbits, which is common in the literature, but usually an eccentricity

as high as that of the PROBA-3 mission is not considered. With this in mind, a new approach for sam-

pling the dynamics for the prediction horizon is proposed here, based on constant eccentric anomaly

sampling intervals, which better deals with the fact that the dynamics are highly time-varying for an

such a highly elliptical orbit. We compare the Finite-Horizon and Variable-Horizon MPC formulations, re-

garding performance and computational complexity, and compare them with the traditional two-impulse

transfer approach used in traditional rendezvous guidance algorithms.

A new method for formulating a passive safety constraint with online linear programming is also

developed, which relies on offline nonlinear optimization and can be slightly suboptimal in face of dis-

turbances, although it can allow for the feasible inclusion of this constraint in a real-time application.

A variation of this technique which relies on iterative linear optimization is also presented, which in

some cases can converge to the solution of the nonlinear optimization, and with much less computa-

tional effort. Finally, we contribute with new robustness techniques, with the use of a terminal quadratic

controller for a more accurate and robust final braking manoeuvre, and the dynamic relaxation of the

terminal constraint, in order keep the control sparse and avoid the overcorrection of disturbances and

waste of fuel.

1.5 Thesis Outline

In Chapter 2, we first cover general MPC theory, with a focus on MPC for linear system models, given the

context of this work. The basic general formulation is discussed, and some specific techniques are also

presented, such as reference tracking and the use of different cost functions. This chapter also features

several simulations that show the effect of different cost functions and of the controller parameters, with

some consideration also given to the computational performance.

The relative orbital dynamics between two satellites, which is crucial to understand for the design

of a rendezvous mission, are presented in Chapter 3. We introduce and derive linearized models of

the relative dynamics, which will then be used for MPC in the next chapter. Several simulations of the

relative motion between two satellites are also presented, both in the circular and elliptic orbit cases,

and the non-intuitive free-drift motions and thrust manoeuvres are explained.

Finally, in Chapter 4 the MPC framework is applied to the rendezvous problem. We start by consid-

ering the most naive approach, and develop stepwise towards the ideal formulation. We then consider

the presence of disturbances, and provide a short literature review on robust techniques in MPC for ren-

dezvous, before presenting our own contributions. Several rendezvous simulations with the presented

methods are featured, some of them being in the conditions of the PROBA-3 mission.
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Chapter 2

Model Predictive Control

Model Predictive Control (MPC) is a Control design method based on iterative online optimization [2].

The strategy is to obtain a control decision by solving an optimization problem which factors in future

states of the system in a finite horizon, predicted using a (generally discrete) system model. Figure 2.1

illustrates this approach.

Figure 2.1: Illustration of the Model Predictive Control strategy.

At each time step, the problem is solved with the most recent state measurement or estimate as the

initial condition for the prediction, and a control strategy for future steps within the prediction horizon is

obtained. The first control value in the obtained sequence is executed, and the problem is solved again

in the next time step, with an updated state and with the prediction horizon shifted forward. For this

reason, this method is also known as Moving/Receding Horizon Control.

Since MPC is formulated as an optimization problem, it allows for the inclusion of control and state

constraints. This is a powerful tool and one of the major advantages of MPC in respect to other control

methods, since it allows to limit the control action and to model complex state restrictions, such as safety

constraints. Also, MPC naturally considers the system dynamics and can easily handle multivariate sys-

tems. Another feature is that it allows for the use of nonlinear system models (NMPC), which generate

better state predictions.
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By definition, the MPC strategy requires that an optimization problem be solved online, at each

time step. The computation time of the MPC problem depends on many factors, such as the order

of the system model, if it is linear or nonlinear, the complexity of the control and state constraints,

and the length of the prediction horizon. The optimal control action must be computed and executed

before the next sample, and thus the problem is required to be solved faster than the system sampling

time, which makes its implementation infeasible in fast systems. The computational requirement is the

greatest limitation for MPC, although modern technology and methods allow for MPC to be implemented

in increasingly more complex systems, such as those in the aerospace industry.

In this chapter, we first introduce the basic concepts of MPC theory in Section 2.1, and then discuss

different methods, including MPC for linear system in Section 2.2 and for nonlinear systems in Section

2.3. Section 2.4 presents a commonly used suboptimal complexity reduction technique. In Section

2.5 we show several MPC experiments with two different systems: a linear two-dimension pure inertial

system, and a nonlinear unicycle model.

2.1 Model Predictive Control Formulation

MPC theory is traditionally formulated in discrete-time, and so it is here. A discrete-time system, with

state variables x, inputs u and outputs y, is generally described by the difference equation

x+ = f(x, u), (2.1)

where x+ is the system state at the next time step and f(x, u) is the system model, and by the output

equation

y = g(x, u), (2.2)

where g(x, u) is the sensor model. If models f and g are linear, the system can instead be described by

the state-space model

x+ = Ax+Bu (2.3)

y = Cx+Du, (2.4)

where usually D = 0, except for systems with an instantaneous response. For literature on discrete-time

systems and digital control see [20].

Model Predictive Control solves an open-loop optimal control problem every time-step. At a time-

instant t the following optimization problem is solved

min
ūt,...,ūt+N−1
x̄t,...,x̄t+N

N−1∑
i=0

l(x̄t+i, ūt+i) + Vf (x̄k+N ) (2.5a)

s.t. x̄t = xt, (2.5b)

x̄+ = f(x̄, ū), (2.5c)
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x̄k ∈ Xk, k = t, . . . , t+N, (2.5d)

ūk ∈ Uk, k = t, . . . , t+N − 1 (2.5e)

where x̄ and ū are the predictions of x and u, N is the length of the prediction horizon, and l(· , ·) and

Vf (·) are cost functions. The minimization is subject to (”s.t.”) constraints (2.5b-e). The constraint in

(2.5b) sets the initial condition for the prediction, and the state and control predictions are subject to

the system model in constraint (2.5c). The sets X and U in (2.5d) and (2.5e) represent constraints on

the state and control variables, respectively. Solving this open-loop problem yields an optimal control

sequence ū∗, of which only the first is applied, meaning that ut = ū∗t . The problem is then solved again

at the next time-step, at t+ 1, with the updated state measurement/estimate xt+1 that is the response to

the applied control, thus closing the control loop.

If the system is time-invariant, we have that f(xi, ui) = f(xj , uj) for xi = xj and ui = uj , where the

dependence of f(· , ·) on time was previously implicit. The formulation then simplifies to

min
ū0,...,ūN−1
x̄0,...,x̄N

N−1∑
i=0

l(x̄i, ūi) + Vf (x̄N ) (2.6a)

s.t. x̄0 = xt, (2.6b)

x̄+ = f(x̄, ū), (2.6c)

x̄k ∈ Xk, k = 0, . . . , N, (2.6d)

ūk ∈ Uk, k = 0, . . . , N − 1 (2.6e)

For literature on more MPC theory, such as stability of the closed-loop system, see, for example, the

book by Rawlings et al. [2].

2.2 Linear MPC

Linear MPC refers to the control of linear systems. For a linear system the MPC formulation is

min
ū0,...,ūN−1
x̄0,...,x̄N

N−1∑
i=0

l(x̄i, ūi) + Vf (x̄N ) (2.7a)

s.t. x̄0 = xt, (2.7b)

x̄k+1 = Ax̄k +Būk, k = 0, . . . , N − 1, (2.7c)

x̄k ∈ Xk, k = 0, . . . , N, (2.7d)

ūk ∈ Uk, k = 0, . . . , N − 1. (2.7e)

where the constraint (2.7c) is now the linear state-space model of the system. Since this constraint is

linear, the problem is easier and faster to solve, in comparison to one with a nonlinear system.

A common and effective cost for the MPC optimization problem is the quadratic cost, where the cost
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functions become
l(x, u) = x>Qx+ u>Ru

Vf (x) = x>Qfx,
(2.8)

where Q and Qf are positive semi-definite matrices, and R is a positive definite matrix. These cost

matrices are used to tune the controller: increasing the elements in R relative to Q and Qf increases

the penalization of the control variable in the cost function, and so the optimal solution will have limited

actuator action. This formulation, called ’regulator’, controls the system to the origin. A common choice

for the terminal state matrix Qf is the solution to the algebraic Riccati equation, since in some cases it

guarantees closed-loop stability [21].

For an easy and efficient implementation of linear quadratic MPC, it is convenient to adopt a matrix

representation. Concatenating the predicted state and control variables into X and U , we have the

following matrix equation that satisfies the system model


x̄0

x̄1

...

x̄N


︸ ︷︷ ︸
X

=


0 . . . . . . 0

A . . . 0
...

...
. . .

...
...

0 . . . A 0


︸ ︷︷ ︸

Ã


x̄0

x̄1

...

x̄N


︸ ︷︷ ︸
X

+


0 . . . 0

B . . . 0
...

. . .
...

0 . . . B


︸ ︷︷ ︸

B̃


ū0

ū1

...

ūN−1


︸ ︷︷ ︸

U

+


I

0
...

0


︸︷︷︸
E

xt. (2.9)

Matrices Ã and B̃ are augmented system model matrices, and matrix E ensures the initial condition of

the prediction. We also define the augmented cost matrices

Q̃ =


Q . . . 0
...

. . .
...

0 . . . Qf

 R̃ =


R . . . 0
...

. . .
...

0 . . . R

 . (2.10)

These augmented matrices can be easily generated by performing the Kronecker tensor product with

the identity matrix; in MATLAB this can be achieved with function kron.

With this matrix representation, the problem in (2.7) with the quadratic cost in (2.8) simplifies to

min
X,U

X>Q̃X + U>R̃U (2.11a)

s.t. X = ÃX + B̃U + Ex(t), (2.11b)

X ∈ X̃ , (2.11c)

U ∈ Ũ , (2.11d)

where X̃ and Ũ represent the state and control constraints over the whole prediction horizon.

It is sometimes useful to formulate the MPC problem with the system output, instead of the state.
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The MPC output form with quadratic cost is then

min
ū0,...,ūN−1
ȳ0,...,ȳN

N−1∑
i=0

ȳ>i Qȳi + ū>i Rūi + ȳ>NQf ȳN (2.12a)

s.t. x̄0 = xt, (2.12b)

x̄k+1 = Ax̄k +Būk, k = 0, . . . , N − 1, (2.12c)

ȳk = Cx̄k +Dūk, (2.12d)

ȳk ∈ Yk, k = 0, . . . , N, (2.12e)

x̄k ∈ Xk, k = 0, . . . , N, (2.12f)

ūk ∈ Uk, k = 0, . . . , N − 1 (2.12g)

where ȳ is the predicted output and Y represents output constraints. This formulation now includes the

system output equation in constraint (2.12d), as well as output constraints in (2.12e).

2.2.1 Reference Tracking

To control the system to a reference set point xref instead of to the origin, the tracking error must

penalized, and so the cost functions become

l(x, u) = (x− xref )>Q(x− xref ) + u>Ru

Vf (x) = (x− xref )>Qf (x− xref ).
(2.13)

For systems without integral action, however, the optimal solution will not be at x = xref for xref

different than zero. For these systems, maintaining the state at a value different than the origin requires

a constant non-zero control, which will weigh on the cost function and distance x from xref . Therefore,

this formulation presents a static error for systems without integral action. To achieve an error-free

reference tracking for these systems, a control reference uref must be added

l(x, u) = (x− xref )>Q(x− xref ) + (u− uref )>R(u− uref ) (2.14)

The control reference uref must be the control value that in steady-state makes the state be equal to the

reference, and so from the system model we have

uref = B−1(I −A)xref . (2.15)

Note, however, that the state reference xref cannot be arbitrarily chosen, since some states cannot be

maintained in steady-state. For example, a vehicle cannot maintain the same position while simultane-

ously having non-zero velocity. To check if the reference xref can be tracked in steady-state, the result

in (2.15) can be inserted back into the system model; if the state at the next time step is not equal to

the reference, then it is not admissible. For systems with integral action, uref will be zero for admissible
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state references.

The reference tracking formulation in matrix form is

min
X,U

(X −Xref )>Q̃(X −Xref ) + (U − Uref )>R̃(U − Uref ) (2.16a)

s.t. X = ÃX + B̃U + Ex(t), (2.16b)

U ∈ Ũ , (2.16c)

X ∈ X̃ (2.16d)

where Xref = [x>ref . . . x
>
ref ]> and Uref = [u>ref . . . u

>
ref ]>. Because in (2.15) the control reference

is determined from the system model, this technique only completely eliminates the static error if the

model is perfect.

An alternative way to achieve reference tracking without static error is by adding integral action to the

controller. This can be performed by penalizing the control increment ∆u between samples, instead of

the full control action u. Thus, in steady-state the control action will remain constant and the increment

∆u will be zero, eliminating the static error. The optimization problem then becomes

min
ū0,...,ūN−1

∆ū0,...,∆ūN−1
x̄0,...,x̄N

N−1∑
i=0

(x̄i − xref )>Q(x̄i − xref ) + ∆ū>i R∆ūi + (x̄N − xref )>Qf (x̄N − xref ) (2.17a)

s.t. x̄0 = xt, (2.17b)

x̄k+1 = Ax̄k +Būk, k = 0, . . . , N − 1, (2.17c)

ū0 = ut−1 + ∆ū0, (2.17d)

ūk = ūk−1 + ∆ūk, k = 1, . . . N − 1, (2.17e)

x̄k ∈ Xk, k = 0, . . . , N, (2.17f)

ūk ∈ Uk, k = 0, . . . , N − 1, (2.17g)

∆ūk ∈ ∆Uk, k = 0, . . . , N − 1. (2.17h)

The model in (2.17c) still uses the full control ū, which has to be determined from ∆ū and the

previous ū in (2.17e). In constraint (2.17d) the initial condition for ū is set from the last control action

applied ut−1. Note that, in the presence of disturbances such that the previous control action ut−1 is not

perfectly known, some static error can be introduced. Also, this formulation is not necessarily optimal

since it does not penalize constant control actions, which is not desirable in systems with constrained

energy/fuel. Reference [22] presents other strategies for introducing integral action.

Another method of tracking a state reference is with the use of a terminal constraint, as an optimiza-

tion hard-constraint

x̄N = xref . (2.18)

Because of the receding horizon strategy, this constraint does not ensure that the system will reach the

reference at sample N , or at all, since only the first optimal control action is applied and then the horizon
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slides forward. Thus, as the horizon N increases, the further away from the reference the steady-state

system will be. To counteract this, the state cost matrices Q and Qf can be set to zero, which allows for

the system to converge to the state reference if the system has integral action, although not necessarily

in N samples. For systems without integral action, the strategies in (2.16) and (2.17) can be used with

the terminal constraint, in which case the advantage in using this constraint is to ensure system stability.

The terminal constraint can be also be used to ensure the system reaches the reference in N sam-

ples, by decrementing the prediction horizon at each time sample, which is no longer the receding

horizon strategy. However, if the prediction horizon becomes short enough, the optimization problem

can become infeasible, since it may be impossible to reach the reference from the initial condition in N

samples, given the system dynamics, disturbances, and the control and state constraints. This strategy

is employed in Chapter 4 for the MPC controller for rendezvous.

2.2.2 State Substitution

Notice that, in an MPC problem, the state at any time can be predicted solely from the initial condition

and the sequence of control actions up to that time. This structure can be exploited to eliminate the

state as an optimization variable, also eliminating the optimization constraints related to the prediction

model, thus greatly simplifying the problem and allowing it to be solved faster, either with analytical

or numerical optimization. Note that, however, numerical optimization algorithms specific for MPC can

exploit its structure and often this technique is not applied.

Given the prediction model in matrix form as defined in Section 2.2

X = ÃX + B̃U + Ex(t), (2.19)

where X and U are the state and control variables in vector form, and matrices Ã, B̃ and E are the

augmented state matrices, as defined in (2.9). This can be rewritten as

X = (I − Ã)−1B̃︸ ︷︷ ︸
F

U + (I − Ã)−1E︸ ︷︷ ︸
K

x(t). (2.20)

Note that, since matrix Ã is lower triangular, the determinant of matrix (I − Ã) is 1 and thus it is always

invertible.

Quadratic Cost

For example, substituting X in the formulation with quadratic cost in (2.16) yields

min
U

(FU +Kx(t)−Xref )>Q̃(FU +Kx(t)−Xref ) + (U − Uref )>R̃(U − Uref ) (2.21a)

s.t. FU +Kx(t) ∈ X̃ , (2.21b)

U ∈ Ũ (2.21c)

12



Simplifying and removing terms independent of U , the cost function becomes

V (U) =
1

2
U>HU +

(
Jx(t)− LXref − R̃>Uref

)
︸ ︷︷ ︸

f

>
U (2.22)

with
H = F>Q̃F + R̃

J = F>Q̃>K

L = F>Q̃>

(2.23)

Notice that, by applying this substitution, the state has been eliminated as an optimization variable, as

well as the constraints associated with the prediction model. Note, however, that the state is no longer

directly accessible and for state constraints it must be calculated from the control variables and initial

condition, as can be seen in (2.21b).

2.2.3 `1-Norm Cost

Although less common than the quadratic cost, the `1-norm is also used for the MPC cost function

instead of the quadratic cost (note that, the quadratic cost is the squared `2-norm). Denoting the `1-

norm of a vector w by ‖w‖1, the cost functions become

l(x, u) = ‖Q(x− xref )‖1 + ‖Ru‖1

Vf (x) = ‖Qf (x− xref )‖1.
(2.24)

This cost function generates sparse solutions, and so the control becomes approximately bang-bang,

meaning that the actuators are either fully turned on or off. In matrix form, this formulation takes the

shape of

min
X,U

‖Q̃(X −Xref )‖1 + ‖R̃U‖1 (2.25a)

s.t. X = ÃX + B̃U + Ẽx(t), (2.25b)

X ∈ X̃ , (2.25c)

U ∈ Ũ . (2.25d)

2.2.4 LASSO Cost

Another possibility is to add an `1-norm control cost to the quadratic cost function, which is known as the

LASSO cost function and is commonly used in regression analysis. The aim is to retain the desirable

properties of the quadratic cost, such as robustness, while adding some sparsity due to the `1-norm. In

matrix form, the cost function becomes

V (X,U) = (X −Xref )>Q̃(X −Xref ) + U>R̃U + ‖R̃λU‖1, (2.26)
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where Rλ is the control cost matrix associated with the `1-norm term.

A subclass of this formulation is to set R = 0, becoming similar to the formulation in Section 2.2.3

but with a quadratic cost on the state variables, therefore reducing sparsity regarding the tracking of the

reference.

2.3 Non-Linear MPC

Nonlinear MPC (NMPC) implies the control of systems with nonlinear models. Most real systems are

nonlinear and sometimes these cannot be accurately approximated by a linearised model in the whole

operating region. Thus, NMPC allows for the use of a nonlinear prediction model, which produces

better state predictions, allowing for better control and to operate systems closer to the boundary of the

admissible operating region [23]. On the other hand, they incur a higher computational cost, due to the

necessity of solving an optimization problem with nonlinear constraints.

The NMPC with quadratic cost is formulated as

min
ū0,...,ūN−1
x̄0,...,x̄N

N−1∑
i=0

x̄>i Qx̄i + ū>i Rūi + x̄>NQf x̄N (2.27a)

s.t. x̄0 = xt, (2.27b)

x̄k+1 = f(x̄k, ūk), k = 0, . . . , N − 1, (2.27c)

x̄k ∈ Xk, k = 0, . . . , N, (2.27d)

ūk ∈ Uk, k = 0, . . . , N − 1. (2.27e)

where the constraint (2.27c) is now nonlinear.

For references on theory and implementation of NMPC see the introduction by Findeisen and Allgöwer

[23] and the tutorial by Rawlings [24].

2.4 Move Blocking

A strategy to reduce the complexity of the optimization problem, known as move blocking, is to shorten

the number of control decisions. However, because decreasing the prediction horizon worsens the

controller performance, a control horizon Nu is introduced, such that control actions beyond this horizon

are all equal to the last control decision at time k = Nu − 1, as illustrated in figure 2.1, thus reducing the

number of optimization variables. The control horizon is necessarily equal to or less than the prediction

horizon N . The move-blocking formulation becomes

min
ū0,...,ūNu−1
x̄0,...,x̄N

Nu−1∑
i=0

l1(x̄i, ūi) +

N−1∑
j=Nu

l2(x̄j , uNu−1) + Vf (x̄N ) (2.28a)

s.t. x̄0 = xt, (2.28b)

x̄k+1 = f(x̄k, ūk), k = 0, . . . , Nu − 1, (2.28c)
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x̄k+1 = f(x̄k, ūNu−1), k = Nu, . . . , N − 1, (2.28d)

x̄k ∈ Xk, k = 0, . . . , N, (2.28e)

ūk ∈ Uk, k = 0, . . . , N − 1 (2.28f)

Because the number of control decisions is reduced, this complexity reduction strategy is suboptimal.

2.5 Experiments and Results

This section features several simulations with Model Predictive Control, and the effect of using different

cost functions is shown, as well as the effect of tuning its parameters, such as the prediction horizon

and weight matrices. Both linear and nonlinear systems are considered, as well as linear and nonlin-

ear constraints. The aim of these experiments is not to obtain optimal model predictive controllers for

these specific systems and problems, with feasible real-time implementations, but rather to show the

capabilities and limitations of MPC. Furthermore, no disturbances are present in these simulations.

The following experiments were performed in MATLAB. In the absence of inequality-constraints, the

problem can easily be solved analytically, except with the `1-norm cost. Otherwise, the MATLAB Op-

timization Toolbox is used to solve the optimal control problem numerically. For a controller with a

quadratic cost, linear model and linear constraints, the optimal control problem is a quadratic program

(QP) and can be solved with the function quadprog. For problems with nonlinear models or nonlinear

constraints, the function fmincon is required to solve the resulting optimal control problem. Note that

MATLAB also features a Model Predictive Control toolbox, although it is not used here.

To solve the optimization problem faster with numerical algorithms, the solution of one MPC iteration

can be used as the initial point for the next, a technique known as warm start. Also, for linear systems,

the state-substitution method presented in Section 2.2.2 is applied in order to reduce the number of

optimization variables, further decreasing the computation time. Note, however, that some optimization

algorithms specialized for MPC take advantage of the problem structure and do not apply this substitu-

tion, i.e. [25], although that is not he case here. In the following experiments, the average computation

times of solving the optimal control problem are presented, using a 4th Generation 2.4GHz Intel-i7 Pro-

cessor.

2.5.1 Two-Dimension Pure Inertial System

To experiment with linear MPC, a pure inertial system in two dimensions is considered. The system is

described by two double integrators, and its discrete space-state model, if sampled with a zero-order
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hold (ZOH), is

xk+1 =


1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1


︸ ︷︷ ︸

A

xk +


T 2
s 0

Ts 0

0 T 2
s

0 Ts


︸ ︷︷ ︸

B

uk, (2.29)

where Ts is the sampling period. In these experiments, the output model is not considered, as full state

measurement is assumed. State variables x1 and x3 are the system position in the x-axis and y-axis,

respectively, and states x2 and x4 are the velocity. The system has two inputs that allow it to move in

any direction with no restrictions (holonomic movement). A sampling period of 0.1 s was used in the

following experiments.

Unconstrained

To begin with, no state or control constraints are considered, and a quadratic cost function is used. Table

2.1 contains the controller parameters used in each experiment, and the average time for solving the

optimization problem (analytically).

Figure N R Q Qf tavg
2.2 10 I I I 50 µs
2.3 10 5I I I 48 µs
2.4 20 5I I I 71 µs

Table 2.1: Controller parameters and computation times for unconstrained MPC experiments.

In a first experiment, the system starts from the origin with no velocity, and the reference state is at

coordinates (1,2) with zero velocity. The prediction horizon is N = 10 samples, which together with the

sampling period of 0.1 s grants a prediction of 1 s ahead, and all quadratic cost matrices are equal to

the identity matrix. The results in figure 2.2 were obtained, where figure 2.2a) contains the trajectory

in the 2D space, and figure 2.2b) present the state (top) and control variables (bottom) as a function of

time. Note that the position and velocity vectors for each direction are plotted with different scales. The

system goes in a straight line toward the reference, requiring more control action from the second input

to do so, since the reference in the y-axis is further away. Furthermore, while the control action may

appear to be continuous and smooth, the control values are constant in each time sample, due to the

ZOH discretization.

In the next experiment, the weight of the control action in the cost function is increased. It can be

observed in figure 2.3 that the control action is now less energetic, and as a result the system overshoots

the reference and takes longer to converge. This is due to the fact that the control action now weighs

more in the cost function, and so the minimum is such that there is less control action and a greater

tracking error. On the other hand, increasing cost matrices Q and Qf relative to R results in a more

aggressive control action in order to track the reference more closely. The cost matrices can then

be used to tune the trade-off between energy spent controlling the system and the speed at which it

converges to the reference.
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(a) Trajectory (b) State and control variables

Figure 2.2: Control of pure inertial system with no constraints.

(a) Trajectory (b) State and control variables

Figure 2.3: Control of pure inertial system with no constraints and increased control cost.

Lastly, the prediction horizon is doubled, and the results in figure 2.4 are obtained. The control action

is again more aggressive, and the reference tracking is better and without overshoot, an effect which is

the same as that of decreasing the control cost. In fact, in the absence of any constraints, changing the

prediction horizon has a similar effect as tuning the cost matrices. However, the prediction horizon also

has an effect on system stability [21], and if the prediction horizon is too short, the closed-loop system

can become unstable. With the increase of the prediction horizonN , the state is predicted and optimized

for longer into the future, which increases stability. In the limit, an infinite prediction horizon guarantees

a asymptotically stable closed-loop system, if the open-loop system is stabilizable [2]. Furthermore, it

can be seen from table 2.1 that the computation time increases with the prediction horizon, as expected.

Another important consideration is that increasing N increases the number of optimization variables,

and thus increases the computation time for solving the optimization problem. As can be seen from

table 2.1, these optimal control problems can be solved very efficiently, which is due to the fact that

the problem is unconstrained and can be solved analytically. In the presence of inequality constraints,

however, numerical optimization algorithms are required.
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(a) Trajectory (b) State and control variables

Figure 2.4: Control of pure inertial system with no constraints and increased prediction horizon.

Control and State Constraints

Applying lower and upper bounds of ±1 N on the control variables with optimization constraints, the

result in figure 2.5 is obtained. The controller parameters used are contained in table 2.2, as well as the

average computation times. The system now converges asymmetrically toward the reference, since a

straight-line trajectory would require more control action from u2, and both control variables are saturated

at the beginning.

Figure N R Q Qf Constraints tavg
2.5 10 I 10I 10I control bounds 1.53 ms
2.6 10 I 10I 10I control bounds, circular obstacle 18 ms
2.7 20 I 10I 10I control bounds, circular obstacle 41 ms
2.8 10 I 10I 10I control bounds, 4 circular obstacles 26 ms
2.9 10 I 10I 10I control bounds, square obstacle 21 ms

Table 2.2: Controller parameters and computation times for constrained MPC experiments.

(a) Trajectory (b) State and control variables

Figure 2.5: Control of pure inertial system with control limits.

An obstacle avoidance constraint is added, which constrains the position state variables. As seen

in figure 2.6, the system goes around the obstacle, but because it is modelled as a single point object,
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it travels very close and along the obstacle border, since it is the most efficient trajectory that satisfies

the constraints. It can also be observed that, initially, the system travels toward the object, in a similar

trajectory as in figure 2.5, and, as the prediction horizon reaches it, the system starts to swerve.

(a) Trajectory (b) State and control variables

Figure 2.6: Control of pure inertial system with circular obstacle.

Increasing the prediction horizon, it can be observed in figure 2.7 that the system now diverts its

trajectory earlier to avoid the obstacle, since it is detected earlier. Moreover, the control sequence

is now cleaner, with fewer corrections along the way, because the controller has a better plan of the

trajectory.

(a) Trajectory (b) State and control variables

Figure 2.7: Control of pure inertial system with circular obstacle and increased prediction horizon.

Adding multiple circular obstacles, the results in figure 2.8 are obtained. Note that obstacle avoidance

constraints are non-convex, meaning that the optimization problem may have several local minima to

which the algorithm can converge, depending on the initial point. For example, any solution for which

the trajectory goes around a different side of an obstacle is a local minimum. While the trajectory

in figure 2.8 appears to be a global minimizer, it might not be, depending on the cost function. This

particular solution requires several direction corrections to avoid the obstacles, and so for some cost

matrices the global minimum might be to go around all the obstacles. Globally optimizing non-convex

problems is usually performed by solving the problem several times with different initial points, which can
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be infeasible to do in real-time. The MATLAB Global Optimization Toolbox allows for solving this type of

problem, although it is not used here.

(a) Trajectory (b) State and control variables

Figure 2.8: Control of pure inertial system with multiple circular obstacles.

Figure 2.9 shows an experiment with two square obstacles, where it can be observed that the trajec-

tory passes through the corners of the obstacle. This is a limitation of the way the obstacle constraint

is formulated, since only the discrete points are constrained, and not the whole continuous trajectory.

Upon inspecting the discrete positions along the trajectories, it is observed that the constraints are in fact

satisfied. It is possible to formulate an obstacle constraint that restricts the line between discrete points,

at the cost of extra computing power. Another way to minimize this effect is to decrease the sampling

period, or to use intermediate samples for the constraints only. It is also possible to constraint the state

in continuous time via semidefinite programming [26].

(a) Trajectory (b) State and control variables

Figure 2.9: Control of pure inertial system with two square obstacles.

`1-Norm Cost

Using the `1-norm for the cost function in the absence of constraints yields the result in figure 2.10, with

the controller parameters presented in Table 2.3. The cost on the velocity states has to be reduced,

otherwise these would weigh too much on the cost function and the controller would generate no action,
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due to the sparsity of the `1-norm. It can be seen that the actuators are turned on for one sample only,

resting afterwards, resulting in a constant velocity trajectory. As the system approaches the reference,

its velocity is cancelled in one sample again, and thus the control is bang-bang.

Figure N R Q Qf Constraints tavg
2.10 10 I 10 diag(1, 0, 1, 0) 100 diag(1, 0, 1, 0) none 179 ms
2.11 10 I 10 diag(1, 0, 1, 0) 100 diag(1, 0, 1, 0) control bounds 281 ms

Table 2.3: Controller parameters and computation times for `1-norm MPC experiments.

(a) Trajectory (b) State and control variables

Figure 2.10: Control of pure inertial system with `1-norm cost and no constraints

Adding control limits in figure 2.11, the acceleration and deceleration are no longer performed in one

sample, due to control saturation, and the system converges asymmetrically to the reference.

(a) Trajectory (b) State and control variables

Figure 2.11: Control of pure inertial system with `1-norm cost and control limits.

LASSO Cost

Using the LASSO cost yields the results in figure 2.12, using the parameters in Table 2.4. At the start,

the control is sparse, resembling that obtained with the `1-norm cost, and afterwards it is more active,

like the control obtained with the quadratic cost.
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Figure N R Rλ Q Qf Constraints tavg
2.12 10 I I 50I 100I control bounds 4.17 ms
2.13 10 0 I 50I 100I control bounds 3.98 ms

Table 2.4: Controller parameters and computation times for LASSO cost MPC experiments.

(a) Trajectory (b) State and control variables

Figure 2.12: Control of pure inertial system with LASSO cost.

In figure 2.13, the quadratic cost on the control variables is removed entirely, by setting R = 0. The

control action is now less smooth at the beginning of the simulation.

(a) Trajectory (b) State and control variables

Figure 2.13: Control of pure inertial system with LASSO cost and zero quadratic cost for control vari-
ables.

Two Objects Experiment

The following experiment in figure 2.14 features two systems like the one used before, with a fixed-

distance constraint and two obstacle constraints. Because the two objects do not fit side-by-side in the

space between the objects, they rotate along their midpoint in order to pass through.
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Figure 2.14: Control of two pure inertial objects with a fixed distance and obstacle constraints.

2.5.2 Unicycle

The unicycle is a vehicle with one steerable wheel and thus has restrictions on its movement, since it

cannot move in any direction (non-holonomic movement). Figure 2.15 illustrates the unicycle system.

Figure 2.15: Illustration of the unicycle system.

The kinematics of this vehicle are described by a non-linear model, with the differential equations

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = w.

(2.30)

States x and y describe the vehicle position and θ its orientation. The system inputs are the linear

velocity v and angular velocity w, and so the vehicle can only move in the direction it faces, but can steer

to change its orientation. Performing an Euler discretization, the discrete unicycle model becomes

x(k + 1) = x(k) + Tsvk cos(θk)

y(k + 1) = y(k) + Tsvk sin(θk)

θ(k + 1) = θk + Tswk,

(2.31)
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where Ts is the sampling period. Note that the system model is a non-convex function and so the

optimal control problem is also non-convex, meaning that found solutions may not be global minima,

and different algorithms may find very different solutions.

In the following experiments a quadratic cost function is used and the controller parameters are

presented in table 2.5, with Q = diag(Qx, Qy, Qθ). A sampling period of 0.1 s is used. In figure 2.16,

the cost of θ is disregarded and so there is no reference for the orientation. The vehicle does not travel

in a straight line towards the reference due to its initial condition on θ, and so it slowly steers to face the

reference point as it moves forward.

Figure N R Qx,y Qθ Qfx,y Qfθ Constraints tavg
2.16 10 I 50 0 100 0 control bounds 66 ms
2.17 10 I 50 50 100 100 control bounds 70 ms
2.18 10 I 50 50 100 100 control bounds 81 ms
2.19 10 I 0 0 500 50 control bounds 51 ms
2.20 10 I 0 0 500 50 control bounds, obstacle 144 ms
2.21 15 I 0 0 500 50 control bounds, obstacle 180 ms

Table 2.5: Controller parameters and computation times for unicycle MPC experiments.

(a) Trajectory (b) State and control variables

Figure 2.16: Control of unicycle system with control constraints. Red and blue arrows represents initial
and final orientations, respectively.

Including a cost and reference for θ, the result in figure 2.17 was obtained. In order to stop at the

referenced orientation, the vehicle overshoots the set point to the left and then drives in reverse to it. A

more intuitive manoeuvre for most drivers would have been to widen the curve and perform the whole

manoeuvre going forwards, and although such a manoeuvre could be less costly, the algorithm may

converge to local minima since the problem is non-convex. Furthermore, there is a static error regarding

the y position, despite the fact that the system has integral action, which again is due to the non-linearity

of the model; since the movement is non-holonomic, it cannot simply close the gap without a somewhat

complex manoeuvre. Finally, notice that the vehicle is continuously turning in the same direction, which

is due to the fact that the direction in which the vehicle must turn to reach the reference position is the

same as that to reach the reference orientation.

In figure 2.18, the reference orientation is now in the opposite direction, requiring a more complex
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(a) Trajectory (b) State and control variables

Figure 2.17: Control of unicycle system with orientation reference and control constraints.

manoeuvre. It can be seen that the controller struggles to reach the reference, continuously going

forwards and backwards while getting closer to the reference and eventually stopping with a significant

static error.

(a) Trajectory (b) State and control variables

Figure 2.18: Control of unicycle system with different orientation reference and control constraints.

To obtain a better performance, the cost of intermediate states can be ignored by setting Q = 0, and

the terminal cost matrix Qf increased for position states and decreased for the orientation, yielding the

result in figure 2.19. This allows for the controller to better plan ahead, since it only values the tracking

error at the end of the prediction horizon; for example, now it is not as penalized for not having the

reference orientation while only being halfway through the manoeuvre.

Adding an obstacle avoidance constraint, the controller presents difficulty in dodging the obstacle,

and is stuck behind it due to the restrictions in its movement, as shown in figure 2.20. Increasing the

prediction horizon to N = 15 in figure 2.21, the system can now avoid the obstacle and converge to the

reference. Note that this issue may also be due to the solver used.

Notice that the average computation time is comparable to the system sampling period, and some-

times greater. This means that, with this implementation, it is not feasible to apply the controller in

real-time, although that was not the objective of these experiments. Reference [27] is a survey on the
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(a) Trajectory (b) State and control variables

Figure 2.19: Control of unicycle system with different orientation reference, control constraints, and
tuned cost matrices.

(a) Trajectory (b) State and control variables

Figure 2.20: Control of unicycle system with control limits and obstacle constraints.

(a) Trajectory (b) State and control variables

Figure 2.21: Control of unicycle system with control limits, obstacle constraints and increased prediction
horizon.

use of MPC for the control of wheeled vehicles. Typically, the controller reference is not a fixed state, but

rather a time-varying trajectory, that can be generated offline or by a guidance system separate from the

controller, relieving the latter from some of the computational load.
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Chapter 3

Relative Orbital Mechanics

Relative orbital mechanics refers to the relative motion of two satellites orbiting the same body. In an

orbital rendezvous context, when the two spacecraft are in close range it is convenient to consider rela-

tive positions and velocities, centred at one of the spacecraft, rather than absolute coordinates centred

in the central body.

The equations that describe the motion of an orbiting satellite and the relative motion of two satellites

are derived from Newton’s law of gravitation and from his second law of motion. These result in nonlin-

ear differential equations, which can be infeasible to solve and work with in real time applications, such

as the control of a rendezvous trajectory. Hence, it is possible to approximate the nonlinear equations

for the relative motion and maintain accuracy if the spacecraft are sufficiently close. For the special

case of a circular orbit, these approximations result in the well known Hill equations [11], which describe

a dynamical system that is linear and time-invariant. For the general case of an elliptic orbit, the ap-

proximation yields the Yamanaka-Ankersen state transition matrix [16], which describes a discrete linear

time-variant (LTV) system.

In this chapter, we first introduce the nonlinear dynamics on the inertial frame in Section 3.1. In

Section 3.2, a non-inertial frame of reference centred on one of the satellites is presented, and in Section

3.3 the approximated dynamics in this frame of reference are derived. Sections 3.4 and 3.5 present

several simulations of free drift motions and thrust manoeuvres for circular and elliptic target orbits,

respectively.

3.1 Nonlinear Inertial Dynamics

Consider two satellites, treated as point masses, in motion around a central body, such that their gravi-

tational pull on each other is negligible. In a rendezvous context, one of the satellites is in free motion,

designated target spacecraft, while the other, the chaser, performs manoeuvres to close their relative

positions. We define the auxiliary function

fg(r) = − µ
r3

r, (3.1)
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Figure 3.1: Relative position of target and chaser spacecraft.

where r is a position vector, r its magnitude and µ is the standard gravitational parameter. The motion

of the target and chaser spacecraft, with positions rt and rc relative to the inertial frame of reference, is

then given by

r̈t = fg(rt), (3.2)

r̈c = fg(rc) +
F

mc
, (3.3)

where F is the force vector applied by the chaser actuators, and mc is the mass of the chaser.

The relative position between the two satellites, illustrated in figure 3.1, is defined as s = rc− rt, and

so the relative motion is

s̈ = fg(rc)− fg(rt) +
F

mc
. (3.4)

Unlike in the case of only one unperturbed satellite, this problem has no closed-form solution and must

be solved numerically or approximated with a linearisation.

3.2 Target Local Orbital Frame

When the distance between the two spacecraft is short, it is convenient to consider the non-inertial

target local orbital frame, illustrated in figure 3.2, also known as local-vertical/local-horizontal frame

(LVLH), centred in the target spacecraft. The axis xlo is in the general direction of the velocity vector,

although it is not always aligned with it, and is commonly known as V-bar. Axis ylo is orthogonal to the

orbital plane, in the opposite direction of the angular momentum, and is also known as H-bar. The axis

zlo, known as R-bar, is always directed at the center of mass of the central body. For this reason, the

frame rotates with the orbital angular velocity ω, and thus is non-inertial.

To determine coordinates in this frame (Flo) from ones in the inertial orbital plane frame [1], the

target position rt is first subtracted, and then a counter-clockwise rotation around zop by the argument

of perigee w and the true anomaly θ is performed. Then, another counter-clockwise rotation around the

z-axis by 90 deg is applied, followed by a clockwise rotation around the x-axis by 90 deg. The coordinate
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Figure 3.2: The target local orbital frame (Flo).

transformation is then
xlo

ylo

zlo

 =


1 0 0

0 0 −1

0 1 0




0 1 0

−1 0 0

0 0 1




cosα sinα 0

− sinα cosα 0

0 0 1



xop − xt
yop − yt
zop − zt

 , (3.5)

with α = θ + w. The velocity vectors in an inertial frame and a rotating (∗) frame with angular velocity

vector ω are related by
d∗s∗

dt
= −ω × s∗ +

ds

dt
, (3.6)

This reference frame is generally used in a rendezvous context in order to represent the chaser

spacecraft position and velocity relative to the target.

3.3 Approximate Equations of Relative Motion

As shown in the book by Fehse [1], applying a first order Taylor expansion to fg(rc) around the target

position rt yields

fg(rc) ≈ fg(rt) +
dfg(r)

dr

∣∣∣
r=rt

(rc − rt) . (3.7)

Applying (3.7) to the equation of the chaser motion in (3.3) and given (3.2), the relative motion is

approximated by

s̈ =
dfg(r)

dr

∣∣∣
r=rt

s +
F

mc
. (3.8)

Differentiating (3.6), the relation between the acceleration in the inertial and rotating (*) frames is

d2s

dt2
=

d∗2s∗

dt2
+ ω × (ω × s∗) + 2ω × d∗s∗

dt
+

dω

dt
× s∗ , (3.9)

where the last three terms are the centrifugal, Coriolis and Euler fictitious forces, due to the expression

of the acceleration in a rotating frame.
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Substituting (3.9) in equation (3.8), we get

d∗2s∗

dt2
+ ω × (ω × s∗) + 2ω × d∗s∗

dt
+

dω

dt
× s∗ − dfg(r)

dr

∣∣∣
r=rt

s∗ =
F

mc
. (3.10)

As shown in [1], after computing all the cross products and the Jacobian, the simplification of (3.10)

for the general case of an elliptical orbit is

ẍ− ω2x− 2ωż − ω̇z + kω
3
2x =

Fx
mc

, (3.11a)

ÿ + kω
3
2 y =

Fy
mc

, (3.11b)

z̈ − ω2z + 2ωẋ+ ω̇x− 2kω
3
2 z =

Fz
mc

, (3.11c)

where s∗ = [x, y, z]
>, F = [Fx, Fy, Fz]

>, and k is the constant k = µ/h
3
2 , with h as the magnitude of the

target orbit specific angular momentum. These are known as the linearised equations of relative motion

(LERM).

The set of differential equations in (3.11) is linear with respect to the relative position, velocity and

acceleration, although it is not so with respect to the the angular velocity ω, which is not constant in the

case of non-circular orbits. This results in the relative motion dynamics being time-variant.

Notice also that the out-of-plane motion (H-bar) in (3.11b) has become detached from the in-plane

motion (V-bar and R-bar), which simplifies the problem since the two can be solved separately. This is a

result of the linearisation, and for the nonlinear dynamics the two motions are in fact coupled.

These equations are the result of linear approximations, with respect to position, of the real non-linear

motion, and are only accurate if the distance between the target and the center of mass of the central

body is significantly greater than the distance between the target and chaser spacecraft.

3.3.1 Circular Orbit Case

For the special case of a circular target orbit, the orbital angular velocity is constant ω = µ/r3
t , and so

ω̇ = 0. Since h = ωr2, we then get k = w1/2. Substituting, equations (3.11a-c) simplify to

ẍ− 2ωż =
Fx
mc

, (3.12a)

ÿ + ω2y =
Fy
mc

, (3.12b)

z̈ + 2ωẋ− 3ω2z =
Fz
mc

. (3.12c)

This system of linear differential equations is known as the Hill equations [11], and also sometimes as

the Hill-Clohessy-Wiltshire equations [12]. They describe a linear and time invariant dynamical system,
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which can be represented in state-space with the model
ẋ

ż

ẍ

z̈

 =


0 0 1 0

0 0 0 1

0 0 0 2ω

0 3ω2 −2ω 0




x

z

ẋ

ż

+


0 0

0 0

1
mc

0

0 1
mc


Fx
Fz

 , (3.13)

for the in-plane dynamics, and ẏ
ÿ

 =

 0 1

ω2 0

y
ẏ

+

 0

1
mc

[Fy] , (3.14)

for the out-of-plane motion. The closed-form solution for the Hill equations, known as the Clohessy-

Wiltshire equations, is trivial and can be found along with their derivation in [1].

3.3.2 Simplification of the General Equations

The approximate equations of relative motion in (3.11) may be simplified in order to help find a solution,

by changing the independent variable from time to the true anomaly, and by applying a coordinate

change. With the chain rule, the time derivative of a variable r is related to its derivative in respect to the

true anomaly θ by
dr

dt
=
dr

dθ

dθ

dt
. (3.15)

Given that the time derivative of the true anomaly θ is the orbital angular velocity ω, and denoting the

derivative in respect to θ by r′, the above expression simplifies to

ṙ = ωr′ , (3.16)

and the second time derivative is

r̈ = ω2r′′ + ωω′r′ . (3.17)

Applying the derivatives (3.16) and (3.17) to the positions and the angular velocity in (3.11) yields

ω2x′′ + ωω′x′ + (kω
3
2 − ω2)x− 2ω2z′ − ωω′z =

Fx
mc

, (3.18a)

ω2y′′ + ωω′y′ + kω
3
2 y =

Fy
mc

, (3.18b)

ω2z′′ + ωω′z′ − (2kω
3
2 + ω2)z + 2ω2x′ + ωω′x =

Fz
mc

. (3.18c)

The orbital angular velocity can be rewritten as

ω = (1 + e cos θ)2µ
2

h3
. (3.19)
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Defining the auxiliary parameter

ρ(θ) = 1 + e cos(θ) , (3.20)

and since k = µ/h3/2, the angular velocity becomes

ω = k2ρ2 , (3.21)

and its derivative with respect to θ is

ω′ = −2k2ρe sin(θ) . (3.22)

Substituting with (3.21) and (3.22), (3.18) becomes

ρx′′ − 2e sin θx′ − e cos θx− 2ρz′ + 2e sin θz =
Fx

mck4ρ3
, (3.23a)

ρy′′ − 2e sin θy′ + y =
Fy

mck4ρ3
, (3.23b)

ρz′′ − 2 sin θz′ − (3 + e cos θ)z + 2ρx′ − 2e sin θx =
Fz

mck4ρ3
. (3.23c)

Applying the coordinate transformation 
x̃

ỹ

z̃

 = ρ(θ)


x

y

z

 , (3.24)

the derivatives become 
x̃′

ỹ′

z̃′

 = ρ(θ)


x′

y′

z′

− e sin θ


x

y

z

 , (3.25)

and the second derivatives 
x̃′′

ỹ′′

z̃′′

 = ρ(θ)


x′′

y′′

z′′

− 2e sin θ


x′

y′

z′

− e cos θ


x

y

z

 . (3.26)

Writing (3.23) as a function of the second derivatives, substituting them in (3.26) and applying the trans-

formations (3.24) and (3.25) yields the simplified equations of relative motion in the domain of θ

x̃′′ − 2z̃′ =
Fx

mck4ρ3
, (3.27a)

ỹ′′ + ỹ =
Fy

mck4ρ3
, (3.27b)

z̃′′ − 3

ρ
z̃ + 2x̃′ =

Fx
mck4ρ3

. (3.27c)

These are known as the Tschauner–Hempel equations [14] (also sometimes known as the Lawden

equations [28]), and are an easier set of ordinary differential equations to solve than (3.11).
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3.3.3 Homogeneous Solution

A simple homogeneous solution (F = 0) to (3.27), in the form of a state transition matrix, was introduced

by Yamanaka and Ankersen [16], and further detailed by Ankersen [17]. The transition matrix propagates

the state in the domain of the true anomaly from an initial θ0, at time t0, to the state at θt, for time t.

First, given initial conditions on position and velocity at time t0, the transformed position and velocities

must be determined for θ = θ0 with (3.24) for the position, and for the velocity
x̃′

ỹ′

z̃′

 = −e sin θ


x

y

z

+
1

k2ρ(θ)


ẋ

ẏ

ż

 . (3.28)

In matrix form, the transformations become
x̃

z̃

x̃′

z̃′

 =


ρ(θ) 0 0 0

0 ρ(θ) 0 0

−e sin θ 0 1
k2ρ(θ) 0

0 −e sin θ 0 1
k2ρ(θ)


︸ ︷︷ ︸

Λi(θ)


x

z

ẋ

ż

 ,

 ỹ
ỹ′

 =

 ρ(θ) 0

−e sin θ 1
k2ρ(θ)


︸ ︷︷ ︸

Λo(θ)

y
ẏ

 . (3.29)

Afterwards, the so-called pseudo-initial conditions must be computed for the in-plane motion with
x̄0

z̄0

x̄′0

z̄′0

 =
1

1− e2


1− e2 3es(1/ρ+ 1/ρ2) −es(1 + 1/ρ) −ec+ 2

0 −3s(1/ρ+ e2/ρ2) s(1 + 1/ρ) c− 2e

0 −3(c/p+ e) c(1 + 1/ρ) + e −s

0 3ρ+ e2 − 1 −ρ2 es


θ0︸ ︷︷ ︸

φ−1
i (θ0)


x̃0

z̃0

x̃′0

z̃′0

 , (3.30)

with s(θ) = ρ sin θ and c(θ) = ρ cos θ. Note that, for simplification, dependencies on θ for ρ, s and c

were omitted, however these parameters must be computed for θ = θ0. For the out-of-plane motion, no

pseudo-initial conditions are computed.

The state at a time t with true anomaly θt can be computed from the state at time t0 with a transition

matrix, and so we have for the in-plane motion
x̃t

z̃t

x̃′t

z̃′t

 =


1 −c(1 + 1/ρ) s(1 + 1/ρ) 3ρ2J

0 s c (2− 3esJ)

0 2s 2c− e 3(1− 2esJ)

0 s′ c′ −3e(s′J + s/ρ2)


θt︸ ︷︷ ︸

φi(θt)


x̄0

z̄0

x̄′0

z̄′0

 , (3.31)
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and for the out-of-plane motionỹt
ỹ′t

 =

 cos(θt − θ0) sin(θt − θ0)

− sin(θt − θ0) cos(θt − θ0)


︸ ︷︷ ︸

φo(θ0, θt)

ỹ0

ỹ′0

 (3.32)

with s′ = cos θ + e cos 2θ, c′ = −(sin θ + e sin 2θ) and J = k2(t− t0).

The transformed position and velocity at time t must then be reverted. The inverse transformation for

the position is then 
x

y

z

 =
1

ρ(θ)


x̃

ỹ

z̃

 , (3.33)

and for the velocity 
ẋ

ẏ

ż

 = k2e sin θ


x̃

ỹ

z̃

+ k2ρ(θ)


x̃′

ỹ′

z̃′

 . (3.34)

In matrix form, the transformation is
x

z

ẋ

ż

 =


1
ρ(θ) 0 0 0

0 1
ρ(θ) 0 0

k2e sin θ 0 k2ρ(θ) 0

0 k2e sin θ 0 k2ρ(θ)


︸ ︷︷ ︸

Λ−1
i (θ)


x̃

z̃

x̃′

z̃′

 ,

y
ẏ

 =

 1
ρ(θ) 0

k2e sin θ k2ρ(θ)


︸ ︷︷ ︸

Λ−1
o (θ)

 ỹ
ỹ′

 . (3.35)

The true anomaly at time t can be computed from t0 and θ0 by first computing the eccentric anomaly E

at time t0 with

E = arctan2
(√

1− e2 sin θ, e+ cos θ
)
, (3.36)

and then calculating the mean anomaly M at time t0 with Kepler’s equation

M = E − e sinE. (3.37)

The mean anomaly at time t can be determined with

Mt = M0 +
2π

T
(t− t0) , (3.38)

where T is the target orbital period, and the eccentric anomaly Et can then be obtained by solving

Kepler’s equation (3.37) w.r.t the eccentric anomaly E. Finally, the true anomaly θt is computed with

θ = 2 arctan

(√
1 + e

1− e
tan

E

2

)
. (3.39)

34



Summarizing, to determine the state at time t from the state at time t0 one must

• Compute the transformed position and velocity with (3.24) and (3.28) for θ = θ0;

• Compute the pseudo-initial conditions for the in-plane motion with (3.30);

• Compute true anomaly θt at time t;

• Apply the transition matrices for in-plane and out-of-plane motions with (3.31) and (3.32);

• Revert coordinate transformations with (3.33) and (3.34) for θ = θt.

These transition matrices can be used as the dynamic matrix of a discrete linear time-variant system,

setting the sampling period as Ts = t−t0, and so they allow to easily simulate the relative motion between

the target and chaser spacecraft in the LVLH frame for an elliptical orbit. These, however, only model

free drift motions, that is, in the absence of input forces. The particular solution for this problem in the

domain of the true anomaly θ is presented in the next section.

3.3.4 Particular Solution

Rewriting the system of equations (3.27) in state space form as x′ = Ax+Bu, the particular solution is

obtained with

xp(θt) =

∫ θt

θ0

Φ(θ)B(θ)u(θ)dθ , (3.40)

where Φ represents the transition matrices presented in the previous section; for the in-plane motion

Φi(θ0, θt) = φi(θt)φ
−1
i (θ0), and for the out-of-plane motion Φo(θ0, θt) = φo(θ0, θt). Also, for the in-plane

motion we have

Bi(θ) =
1

mck4ρ3(θ)


0 0

0 0

1 0

0 1

 and ui(θ) =

Fx(θ)

Fz(θ)

 , (3.41)

and for the out-of-plane motion

Bo(θ) =
1

mck4ρ3(θ)

0

1

 and uo(θ) = Fy(θ) . (3.42)

The solution requires computing several non-trivial integrals, which has already been done in [17] for

the case where the force is constant along the propagation interval (F(θ) = F). The solution presented

there for the in-plane motion is
x̃p

z̃p

x̃′p

z̃′p

 = Φi(θ0, θt)
1

k4(1− e2)


3I1J − e(Is3 + Is2) 2I3 − e(Ic2 + 3Is2J)

Is3 + Is2 − 3eI1J Ic2 − e(2I3 − 3eIs2J)

Ic3 + Ic2 + eI3 −Is2
−I1 eIs2


1

mc

︸ ︷︷ ︸
Γi(θ0, θt)

Fx
Fz

 , (3.43)
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and for the out-of-plane motion isỹp
ỹ′p

 =
1

k4

sin(θt) cos(θt)

cos(θt) − sin(θt)

 Ic3

−Is3

 1

mc︸ ︷︷ ︸
Γo(θ0, θt)

Fy , (3.44)

where the variables Ii are integrals, the values of which are presented in Appendix A.

To obtain the full solution, the particular solution is added to the homogeneous solution. Merging the

in-plane and out-of-plane motions yields the full solution

x̃t

ỹt

z̃t

x̃′t

ỹ′t

z̃′t


= Φ(θ0, θt)



x̃0

ỹ0

z̃0

x̃′0

ỹ′0

z̃′0


+ Γ(θ0, θt)


Fx

Fy

Fz

 (θ0), (3.45)

where Φ(· , ·) and Γ(· , ·) are appropriately generated from the entries of Φi, Φo, Γi and Γo. Inverting the

coordinate transformation to obtain the solution in the time-domain yields

xt

yt

zt

ẋt

ẏt

żt


= Λ−1(θt)Φ(θ0, θt)Λ(θ0)



x0

y0

z0

ẋ0

ẏ0

ż0


+ Λ−1(θt)Γ(θ0, θt)


Fx

Fy

Fz

 . (3.46)

State-Space Model

Equation (3.46) can be used as a discrete space-state model of a linear and time-variant system

xk+1 = Ak+1
k xk +Bk+1

k uk, (3.47)

where the state vector is x = [x, y, z, ẋ, ẏ, ż]> and the input vector u = [Fx, Fy, Fz]
>, and such that the

system at time k has true anomaly θ0 and at time k + 1 the true anomaly θt. Matrix Ak+1
k is the state

transition matrix from time k to k + 1, and from (3.46) is defined as

Ak+1
k = Λ−1(θt)Φ(θ0, θt)Λ(θ0), (3.48)

while Bk+1
k is the input matrix, which becomes

Bk+1
k = Λ−1(θt)Γ(θ0, θt). (3.49)
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Note that, since for the particular solution a constant force between sampling intervals is assumed, this

discretized model constitutes a ZOH discretization of the relative dynamics.

3.4 Relative Motion in a Circular Target Orbit

In this section and the next, the relative motion between two satellites is simulated, considering circular

and elliptical target orbits, respectively. Both free drift motions and impulsive thrust manoeuvres are

presented.

The relative motion for a circular target orbit can be simulated with the Hill linearised dynamics, and

can either be numerically simulated in Simulink, with the continuous state-space model in (3.13) and

(3.14), or analytically simulated with its solution, the Clohessy-Wiltshire equations. Because numerical

simulation introduces a discretization error, it is preferable to use the analytical solution. All simulations

are performed for Earth satellites with a target orbit height of 600 km from the surface, simulated for two

orbital periods and with a sampling period of 10 s. The orbit orientation parameters are disregarded,

since a uniform gravitational field is assumed, and the Hill equations describe the relative motion on the

orbital plane.

Despite all satellite trajectories being circles or ellipses on the inertial frame, the relative trajectories

on this frame may be non-intuitive, due to it being non-inertial. On the R-bar/V-bar plots, the target

spacecraft is always on the origin; hence, if the chaser travels along the negative direction of R-bar (up)

then it gains altitude relative to the target, and if it travels along the positive direction of V-bar (left) then

it gets ahead of the target in its orbit. Because the in-plane and out-of-plane motions are decoupled in

the linearised model, they will be shown separately. The chaser initial position is marked with ’×’, while

the target position (origin) is marked with ’O’.

3.4.1 Free Drift Motions

To begin with, the motion with no action from the chaser actuators is considered, being simulated with

different initial conditions for position and velocity.

If the chaser is on V-bar (R-bar = 0) with the same velocity as the target, it will not move relative to

it, as shown in figure 3.3, because in these conditions the spacecraft are simply on a different phase of

approximately the same circular orbit.

If the chaser is at a different altitude and with zero relative velocity then it is necessarily on an elliptic

orbit, since higher/lower circular orbits have lower/higher orbital velocity. Hence, as seen in figure 3.4, if

the target starts at a higher altitude, it will gain altitude until it reaches apogee, and then come back to

perigee. On the other hand, if it starts lower, it will lose altitude and gain velocity until it reaches perigee,

and then climb back up to apogee. Moreover, the chaser at a higher orbit will have a greater orbital

period, and so will fall behind the target, while the one with the lower orbit will get ahead.

If the horizontal velocity is compensated as to ensure the chaser is on a circular orbit, it will now just

drift along a constant altitude, as shown in figure 3.5. For a difference in orbit heights of z0, the chaser
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Figure 3.3: Relative in-plane motion on a circular target orbit with V-bar start. Initial conditions s0 =
[10, 0, 0] m, ṡ0 = [0, 0, 0] m/s.

Figure 3.4: Relative in-plane motion on a circular target orbit with R-bar start. Initial conditions s0 =
[0, 0,±10] m, ṡ0 = [0, 0, 0] m/s.

relative horizontal velocity that generates a circular chaser orbit is Vx = 3
2ωz0.

Figure 3.5: Relative in-plane motion in a circular target orbit with R-bar start and circular chaser orbit.
Initial conditions s0 = [0, 0,±10] m, ṡ0 = [±10 3

2ω, 0, 0] m/s.

In figure 3.6, the chaser starts at V-bar with a lower radial velocity, which causes it to be on an elliptic

orbit, however with the same orbital period as the target. This causes the chaser to drop down and get

ahead of the target, and then looping around to the the same initial relative position.
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Figure 3.6: Relative in-plane motion in a circular target orbit with V-bar start and radial relative velocity.
Initial conditions s0 = [−10, 0, 0] m, ṡ0 = [0, 0, 0.01] m/s.

If the chaser starts on V-bar with a higher horizontal velocity, it will get ahead of the target and gain

altitude. As it does, the chaser loses velocity and starts falling behind, until it reaches apogee. It will

then lose altitude and gain velocity, and then start catching up again as it reaches perigee. This causes

the loops seen in figure 3.7 around perigee. If the chaser starts with a lower horizontal velocity, the

trajectory will be mirrored.

Figure 3.7: Relative in-plane motion in a circular target orbit with V-bar start and horizontal relative
velocity. Initial conditions s0 = [±10, 0, 0] m, ṡ0 = [±0.01, 0, 0] m/s.

The out-of-plane motion without any actuation will always be sinusoidal with respect to time. In figure

3.8, the chaser starts above the target orbital plane (H-bar=0), with the same normal velocity. It will

then decrease along H-bar and cross the target orbital plane at the ascending node, until it reaches

the opposite distance with which it started. It will then increase and intersect the orbital plane at the

descending node, until it reaches the initial position.

3.4.2 Impulsive Thrust Manoeuvres

We will now consider manoeuvres in which instant changes in velocity (∆V ) are applied by the chaser

actuators along the trajectory. Note that in reality these instant ∆V ’s are impossible, since any spacecraft

thrusters can only generate a gradual increase in velocity. Nevertheless, it is useful to consider this type
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Figure 3.8: Relative out-of-plane motion in a circular target orbit. Initial conditions s0 = [0, 10, 0] m,
ṡ0 = [0, 0, 0] m/s.

of manoeuvres for planning rendezvous trajectories. The deduction of the expressions for the ∆V ’s can

be found in [1].

Figure 3.9: Hohmann transfer manoeuvre in a circular target orbit.

In figure 3.9 a Hohmann transfer manoeuvre is shown relative to the target, in which two ∆V ’s

(presented as black arrows) are applied in order to change the altitude of the chaser by ∆z. The chaser

starts on a circular orbit below the target and then increases its horizontal velocity by

∆Vx = ∆zω/4, (3.50)

which changes its orbit to an eccentric transfer trajectory with the apogee at the desired altitude. At

apogee, the same ∆V is applied in order to circularize the orbit. Thus, it takes half an orbital period to

complete this manoeuvre.

One way to perform a V-bar transfer, in which the chaser advances or retreats by ∆x, is with two

radial ∆V ’s with magnitude

∆Vz = ∆xω/4, (3.51)

exploiting a trajectory such as the one seen in figure 3.6. In figure 3.10, the chaser is on the same orbit

but behind the target, which causes it to move below and ahead of the target. As it crosses V-bar, it
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executes the same ∆V to circularize the orbit and remain stationary relative to the target.

Figure 3.10: Radial V-bar transfer manoeuvre with radial impulses in a circular target orbit.

Another possible V-bar transfer manoeuvre is with the use of horizontal ∆V ’s (instead of radial) with

magnitude

∆Vx = −∆x
ω

6π
, (3.52)

exploiting a trajectory like the one in figure 3.7, and resulting in the manoeuvre in figure 3.11. This

manoeuvre takes one full orbital period to complete, as opposed to half a period with the radial impulses,

but costs 3π/2 times less, which is very significant.

Figure 3.11: Radial V-bar transfer manoeuvre with horizontal impulses in a circular target orbit.

To fully correct a chaser inclination difference in respect to the target orbit requires a normal ∆V at

either the ascending or descending node. If the amplitude of the out-of-plane motion is ∆y, then the

required ∆V is

∆Vy = −ω∆y. (3.53)

Figure 3.12 shows an example of this manoeuvre.
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Figure 3.12: Inclination correction manoeuvre in a circular target orbit.

3.5 Relative Motion in an Elliptic Target Orbit

The relative motion in an elliptic target orbit was simulated using the discrete state-space model in

(3.47). Due to the fact that the orbit is elliptic, the initial true anomaly θ0 now has to be defined as an

initial condition. As before, the simulations are performed for an Earth satellite, with a perigee height of

600 km from the surface, and simulated for two orbital periods and a sampling anomaly Θs of 0.5 deg.

The eccentricity of the orbit will vary between experiments. As before, the orbit orientation parameters

have been disregarded.

The relative motion in an elliptic orbit is significantly more complicated and harder to comprehend.

One of the reasons for this is that for elliptic orbits the LVLH frame rate of rotation varies along the orbit,

while for circular orbits it rotates uniformly. Also note that, for elliptic orbits, the V-bar axis is not always

aligned with the target velocity vector, unlike in the case of circular orbits.

3.5.1 Free Drift Motions

As for the circular case, the motions in the absence of thrust will first be explored. With a V-bar start

and zero initial relative velocity, it can be seen in figure 3.13 that the chaser drifts away from the target,

unlike what happens for the same conditions in a circular orbit, where it would stay stationary (figure

3.3). This happens because the magnitude of the orbital velocity is not constant along an elliptic orbit,

which means that if the chaser is ahead and with the same velocity, then it is not exactly on the same

orbit as the target, and so the spacecraft present some relative motion. Also note that, since V-bar is not

necessarily aligned with the target velocity vector, being on the same orbit may require the chaser to be

on a different R-bar position. It may also be observed that the drift trajectory changes with the position

of the target along its orbit, since the dynamics change with the true anomaly θ; if the target starts at

perigee (θ0 = 0 deg) or apogee (θ0 = 180 deg), the drift happens only along V-bar, otherwise the chaser

also drifts in R-bar. Increasing the eccentricity, the drift motions now have greater amplitudes, as shown

in figure 3.14.

If the initial relative velocity is compensated as to ensure the spacecraft are on the same orbit, but
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Figure 3.13: Relative in-plane motion in an elliptic target orbit with V-bar start and various initial true
anomalies. Initial conditions s0 = [10, 0, 0] m and ṡ0 = [0, 0, 0] m/s, with eccentricity e = 0.1.

Figure 3.14: Relative in-plane motion in an elliptic target orbit with V-bar start and different initial true
anomalies. Initial conditions s0 = [10, 0, 0] m and ṡ0 = [0, 0, 0] m/s, with eccentricity e = 0.5.

with different true anomalies, the results from figure 3.15 are obtained, where two different eccentricities

are simulated. To generate these initial conditions, the chaser and target positions were defined on

the orbital plane frame with the orbit elements, on the same orbit but with different phases, and then

transformed to the target local orbital frame with the transformation (3.5), as well as (3.6) for the velocity.

Despite being on the same orbit, the spacecraft still move relative to each other, although it can be

observed that, due to the fact that the spacecraft are on the same orbit and thus have the the same

orbital period, the chaser returns to the initial relative position after one orbit. It can be again observed

that, a higher eccentricity leads to a greater amplitude of the relative motion.

The motion along R-bar is due to the fact that, as mentioned before, the V-bar axis is not always

aligned with the velocity vector, as can be observed in figure 3.2, and so it moves relative to it along the

orbit: at perigee they are aligned, and then V-bar lowers toward the inside of the ellipse until it reaches

perigee and they become aligned again, after which V-bar raises toward the outside of the ellipse. Since

in figure 3.15 the target starts at perigee, the chaser first decreases in R-bar, and then it comes back

up until it reaches perigee and increases R-bar. On the other hand, the motion along V-bar is due to

the varying orbital velocity. As the spacecraft move toward apogee they lose velocity, and because the

chaser is ahead the target catches up with it and closes their relative distance. When moving toward
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perigee, the spacecraft speed up and the chaser gets ahead of the target, increasing along V-bar.

Figure 3.15: Relative in-plane motion in an elliptic target orbit with chaser on target orbit. Initial true
anomaly θ0 = 0 deg and initial orbital phase of ∆θ = 0.0001 deg.

With and R-bar perigee start with zero relative velocity, the result in figure 3.16 is obtained. The

drift motion is similar to that of a circular target orbit in the same conditions (figure 3.4), but now the

amplitude of the trajectory increases with each orbit. If the chaser starts at θ0 = 90 deg instead, the

motion is different, as shown in figure 3.17.

Figure 3.16: Relative in-plane motion in an elliptic target orbit with R-bar start. Initial conditions s0 =
[0, 0,±10] m, ṡ0 = [0, 0, 0] m/s, θ0 = 0 deg, eccentricity e = 0.1.

If the chaser starts on R-bar on a higher or lower orbit, but such that it has the same eccentricity as

the target orbit, the result in figure 3.18 is obtained. Unlike in the case of a circular orbit with the same

initial conditions (figure 3.5), where the chaser simply drifts along V-bar, now it also moves along R-bar.

This is in part due to the motion of V-bar relative to the target velocity vector, but also because two orbits

with the same eccentricity and a different perigee height will not have the same difference in apogee

heights. Also, because the satellites have different orbital periods, the amplitude of the motion increases

as they phase along the orbit. The initial conditions for this simulation were again defined in the orbital

plane frame, placing the chaser on an orbit with the same eccentricity but with a different semi-major

axis and on the same true anomaly, and then converting to the LVLH frame.

For the out-of-plane motion, the chaser trajectory is still approximately a sine wave, although the

resemblance fades with the increase of the eccentricity, as can be observed in figure 3.19. It can also be
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Figure 3.17: Relative in-plane motion in an elliptic target orbit with R-bar start and different initial true
anomaly. Initial conditions s0 = [0, 0,±10] m, ṡ0 = [0, 0, 0] m/s, θ0 = 90 deg, eccentricity e = 0.1.

Figure 3.18: Relative in-plane motion in an elliptic target orbit with chaser on lower/higher with target
eccentricity. Initial true anomaly θ0 = 0 deg, eccentricity e = 0.1 and difference in semi-major axis of
∆a = ±11 m.

concluded from the results that the trajectory depends on the initial position of the target along its orbit,

i.e. with the initial θ.

At perigee (θ = 0 deg), the acceleration in H-bar is greater than at apogee (θ = 180 deg), and so

if the spacecraft start at perigee (blue trajectory) the chaser will drop further down along the normal

direction than if they start at apogee (yellow trajectory). Furthermore, because of the difference in H-bar

acceleration, the spacecraft will spend more time at apogee than at perigee, which causes the peaks

of the blue trajectory to be more narrow than the valleys, while the opposite happens for the yellow

trajectory. This effect is greater for a bigger eccentricity. If the chaser does not start at perigee or

apogee (orange trajectory), the peaks and valleys do not match with apogee and perigee, and so the

varying dynamics cause the wave to be asymmetrical.
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Figure 3.19: Relative out-of-plane motion in an elliptic target orbit with increased eccentricity. Initial
conditions s0 = [0, 10, 0] m, ṡ0 = [0, 0, 0] m/s and different initial true anomalies, eccentricity e = 0.5.

3.5.2 Impulsive Thrust Manoeuvres

The ∆V for an arbitrary impulsive manoeuvre given specific initial and final conditions can be determined

with the Yamanaka-Ankersen transition matrix. Using the coordinate transformations we have for the in-

plane motion 
xf

zf

ẋf

żf

 = Λ−1
i (θf )Φi(θf )Λi(θ0)


x0

z0

ẋ0

ż0

 , (3.54)

where the index f represents the final conditions, and the transition time between the initial and final

positions is specified with θf . Given an initial position, the required initial velocity to achieve the final

position at the specified time can be obtained by solving the above equation for ẋ0 and ż0. Denoting the

transformed transition matrix as D, the first two equations yield

xf
zf

 =

d11 d12 d13 d14

d21 d22 d23 d24



x0

z0

ẋ0

ż0

 , (3.55)

and so the required ∆V s are

ẋ0 =
d14zf + (d24d11 − d21d14)x0 + (d24d12 − d22d14)z0 − d24xf

d23d14 − d24d13
,

ż0 =
d23xf + (d13d21 − d11d23)x0 + (d13d22 − d12d23)z0 − d13zf

d23d14 − d24d13
.

(3.56)

Note that, due to the denominator in the above expressions, a transition time equal to an orbital period

generates a singularity, and so is not possible. To eliminate the relative velocity at the end of the transfer,

the final ∆V can be determined by computing the negative of ẋf and żf from equation (3.54).

Figure 3.20 shows an example of a V-bar transfer manoeuvre, similar to the one seen in figure 3.9
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for a circular target orbit. It can be observed that the chaser achieves the final position in the specified

transfer time. Figure 3.21 shows an in-plane transfer between arbitrary points.

Figure 3.20: R-bar transfer manoeuvre in an elliptic target orbit. Initial position s0 = [−10, 0, 10] m at
θ0 = 0 deg, final position sf = [−10, 0,−10] m at θf = 180 deg, with eccentricity e = 0.4.

Figure 3.21: Arbitrary in-plane transfer manoeuvre in an elliptic target orbit. Initial position s0 =
[−75, 0,−15] m at θ0 = 0 deg, final position sf = [10, 0,−40] m at θf = 180 deg, with eccentricity e = 0.4.

For the out-of-plane dynamics, equation (3.54) becomesyf
ẏf

 = Λ−1
o (θf )Φo(θf )Λo(θ0)

y0

ẏ0

 , (3.57)

which yields the ∆V

ẏ0 =
k2ρ(θ0)

sin(θf − θ0)
[ρ(θf )yf − (cos(θf − θ0) + e cos(θf ))y0] . (3.58)

This expression is singular for θf−θ0 = nπ, n ∈ N, and so transfers of a half or full orbit are not possible.

Notice how for all these manoeuvres the first ∆V is greater than the last. This is due to the fact that

these manoeuvres end at/near apogee, where the dynamics are slower than at perigee.
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Chapter 4

Rendezvous With Model Predictive

Control

In traditional rendezvous mission design, guidance trajectories are designed offline, and so manoeuvres

are performed in open-loop, often times with punctual mid-course correction boosts determined online

from the trajectory deviation [1]. In this context, an increasing amount of research has been dedicated to

applying Model Predictive Control (MPC) to the rendezvous problem [6, 19, 29–35], in order to perform

these thrust manoeuvres online and in full closed-loop. This is desirable since it increases the auton-

omy of the spacecraft and allows for more precise manoeuvres. Furthermore, MPC can handle crucial

operational constraints present in a rendezvous mission, such as:

• minimization of propellant consumption,

• limited thruster authority,

• spacecraft collision safety and passive safety.

Most of the MPC literature for rendezvous is dedicated solely to the translational control of the space-

craft. In fact, in rendezvous processes the attitude and position control are typically separated, since

there is a weak coupling between translational and rotational motion [1]. Docking and berthing opera-

tions require the two controllers to be coupled, though these manoeuvres are outside the scope of this

work. Furthermore, the spacecraft attitude may be subject to more operational constraints, such as the

exposure of the solar panels to the sun, or the orientation of antennae towards ground stations, which

significantly complicate the MPC optimization problem. Thus, this work only deals with translational

control. Nevertheless, MPC has been applied to spacecraft attitude control [36], and to coupled control

[37–39].

MPC can perform both guidance and control functions. The manoeuvre terminal state can be input

as the controller reference, generating a trajectory much like a guidance system. It also generates a

sequence of control decisions, which can be discarded in favour of a different low-level controller. MPC

can also perform solely controller functions if a reference trajectory is provided, instead of a reference
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terminal state, although that is not explored in this work. The navigation function is not considered in

this work, and the state is always assumed to be known, although Section 4.6 considers the presence

of measurement noise.

The computational requirement of MPC is its greatest limitation. In a rendezvous context, however, it

can be computationally feasible to implement MPC online, due to the fact that orbital dynamics are fairly

slow, and that relative dynamics can be accurately linearised, as shown in Chapter 3, which allows for

the use of Linear MPC. The MPC computation time will be a major consideration in this chapter.

In Section 4.1 we present a method for sampling the dynamics for the prediction model, which deals

with the fact that orbital dynamics are highly time-varying for highly elliptical orbits. Section 4.2 applies

the standard MPC approach with the receding horizon strategy to the rendezvous problem, showing

how it is not appropriate for use in this applications. In Section 4.3, the finite-horizon strategy is pre-

sented and shown to be more appropriate for rendezvous, as opposed to the receding-horizon strategy,

since it allows for fuel-optimal manoeuvres. Section 4.4 presents the alternative variable-horizon MPC

formulation, which allows for optimizing manoeuvre duration simultaneously with fuel. In Section 4.5 we

approach the passive safety problem, presenting two new techniques for an efficient implementation of

these constraints for real-time optimization. Section 4.6 considers the presence of disturbances, and

presents a several robustness techniques, of which some are first proposed in this work. Finally Sec-

tion 4.7 presents several simulations with the methods presented in this Chapter, some of them in the

conditions of the PROBA-3 RVX.

4.1 Relative Dynamics Sampling

The prediction model to be used in the MPC formulation is the Yamanaka-Ankersen state transition

matrix [16] together with the Ankersen ZOH particular solution [17], presented and derived in Chapter

3, which provides a linear model of the relative dynamics between two spacecraft in an elliptic orbit. A

difficulty arises, however, related to the fact that orbital dynamics are time-varying in an elliptic orbit. For

example, in the conditions of the Proba-3 mission, where the perigee height is 600 km and the orbit is

highly elliptical with an eccentricity of 0.8111, the orbital period is approximately 19.6 hours. Despite

this very long period, in just 100 seconds the spacecraft will change their true anomaly by 8.3o from

perigee, while in the same amount of time they cover only 0.091o from apogee, as illustrated in figure

4.1. Thus, in these conditions the dynamics are about 100 times faster at perigee than at apogee, which

then translates to the velocity of the relative motion.

Because in MPC there is a limited amount of samples, associated with the length of the prediction

horizon, these must be allocated appropriately along the orbit in order to get the best performance, since

the point at which the thrust is applied is important for the optimality of the trajectory. If the dynamics

are sampled with constant time intervals, as is often the norm, with 100 samples and in the conditions

of the PROBA-3 mission we get the result in figure 4.2. The samples concentrate on apogee because

the orbital velocity is lower there, which is opposite to what is desired, since the dynamics are faster on

perigee. This results in the true anomaly interval between samples being over 50o at perigee, and less
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Figure 4.1: Illustration of the time-variation of the relative dynamics, in the conditions of the PROBA-3
mission.

than 1o at apogee.

Figure 4.2: Time sampling of relative dynamics with 100 samples in conditions of PROBA-3 mission.

An alternative is to sample the dynamics with a constant true anomaly. This has the opposite effect,

as seen in figure 4.3, where now the samples are concentrated on perigee, which is more desirable.

One further advantage is that Kepler’s equation no longer needs to be solved numerically in order to

determine the true anomaly and compute the transition matrix. However, the samples at apogee may

now be too spread apart, and the time interval is almost 4000 seconds at apogee, and 40 seconds at

perigee.

A final possibility is to sample the system with constant eccentric anomaly intervals. As seen in figure

4.4, this results in the samples being evenly spread in space. Furthermore, the time intervals are still

greater at apogee than at perigee, but the difference is not as considerable as before. Thus, this ap-

proach might be the most appropriate, and will be used throughout this chapter. Note that sampling the

system without time-constant intervals has an effect on the actuation profile, since a ZOH discretization

is utilized, which results in a constant thrust along each sampling interval and so each thrust action will

have a different duration. In the case of a circular target orbit, the dynamics are time-invariant, and so

time sampling will be used. Since manoeuvres can last up to several hours, sampling periods are often

very large, and thus the ZOH discretization results in very long constant burns being commanded, which

may be undesirable. However, the burn time in the particular solution in (3.40) can be set to less than

the sampling period, yielding a partial zero-order-hold discretization.
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Figure 4.3: True anomaly sampling of relative dynamics with 100 samples in conditions of PROBA-3
mission.

Figure 4.4: Eccentric anomaly sampling of relative dynamics with 100 samples in conditions of PROBA-3
mission.

4.2 Rendezvous with Receding-Horizon MPC

The most common and naive approach for the MPC formulation is to use a quadratic cost function, as

presented in equation (2.13), together with the standard receding horizon strategy. In the absence of

state and control constraints it becomes

min
ū0,...,ūN−1
x̄0,...,x̄N

(x̄N − xref )>Qf (x̄N − xref ) +

N−1∑
i=0

(x̄i − xref )>Q(x̄i − xref ) + ū>i Rūi (4.1a)

s.t. x̄0 = xt, (4.1b)

x̄k+1 = Ak+1
k x̄k +Bk+1

k ūk, k = 0, . . . , N − 1 (4.1c)

where the prediction model is that presented in (3.47).

This section will show through simulation that the receding horizon strategy is not appropriate for

the rendezvous problem, as well as show the progression toward an optimal formulation. To simplify, a

circular target orbit will be considered, with the height of the perigee of the PROBA-3 mission (600 km),

and the chaser mass considered is that of the PROBA-3 Occulter Spacecraft, with 211 kg (launch mass).

51



A simple V-bar transfer manoeuvre of 30 metres is considered, in order to easily evaluate the controller

performance by comparing it with the ideal impulsive manoeuvres of this type, shown in figures 3.10 and

3.11. The controller parameters used in the following simulations, as well as the ∆V spent performing

the manoeuvre and the average computation time, are presented in table 4.1. In the absence of any

state or control constraints, the QP can easily be solved analytically.

Figure Ts N R Q Qf ∆V tavg
4.5 1 s 10 I 100I 100I 6.77 m/s 40 µs
4.6 1 s 10 I I I 1.41 m/s 39 µs
4.7 100 s 10 106I I I 111 mm/s 50 µs
4.8 290 s 20 I 0 100I 5.27 mm/s 70 µs

Table 4.1: Controller parameters and results for V-bar transfer manoeuvre simulations with receding-
horizon quadratic MPC.

Also, because the in-plane and out-of-plane motions are decoupled, the two can be solved in sep-

arate MPC problems, where each problem becomes smaller and easier to solve. Although solving

separately was found to improve the computation time when solving analytically, it often became worse

when solving numerically. Furthermore, this separation is not possible in the presence of constraints

that relate both motions, such as collision avoidance and passive safety constraints.

Short Horizon

In a first simulation, a short sampling period of 1 s and a prediction horizon of 10 samples are used,

granting only 10 seconds of prediction, which is a much shorter time frame than that of the orbital

motion, given that the orbital period is approximately 96 minutes. Furthermore, a high state cost is used,

which results in the whole manoeuvre being performed in a straight line in approximately 60 seconds, as

shown in figure 4.5. The generated manoeuvre requires a ∆V of 6.77 m/s and a thrust that would greatly

exceed the capabilities of the small spacecraft. In comparison, the ideal V-bar transfer manoeuvre with

two horizontal impulses requires a total ∆V of 3.45 mm/s, as determined with equation (3.52), which is

almost 2000 times less spent fuel. On the other hand, the ideal manoeuvre requires one orbital period

to complete, but because the spacecraft fuel is extremely limited, and in order to take advantage of the

relative dynamics, this is the standard time frame for rendezvous operations.

To decrease the manoeuvre ∆V , the state cost is reduced, which makes the controller slower and

decreases the fuel spent. However, as observed in figure 4.6, the system is now more affected by the

natural drift between the satellites and is not able to converge on the reference. This happens because

the controller only predicts 10 seconds ahead, and so is not able to predict much of the natural drift, and

it does not have the authority to react to it.

Long Horizon

To counteract this, the prediction window is increased to the order of magnitude of the orbital period.

However, since increasing the prediction horizon significantly worsens the computation time, the sam-

pling period is instead increased to 100 s, granting the controller a prediction of 1000 seconds. The
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Figure 4.5: V-bar transfer manoeuvre with receding-horizon quadratic MPC, short prediction window and
high state cost.

Figure 4.6: V-bar transfer manoeuvre with receding-horizon quadratic MPC, short prediction window and
lower state cost.

input cost is also increased, to compensate for the fact that thrust intervals are now longer and so have

a greater effect on the system. As observed in figure 4.7, the chaser actuation now has lesser amplitude,

but because its prediction is improved it can use the natural relative motion to better converge on the

reference. This is also evidenced by the fact that now there is extensive R-bar actuation, despite the fact

that the reference is only offset in V-bar from the initial position. The manoeuvre ∆V is now 111 mm/s,

which is a significant improvement, but still far from the ideal figure.

Intermediate State Cost

To improve the performance, the intermediate state cost can be disregarded, by setting Q = 0, which

allows the controller to better plan ahead, since now it is not penalized for not being on the reference state

while halfway through the manoeuvre. Furthermore, in an attempt to reproduce the ideal V-bar transfer

manoeuvre with horizontal impulses, the sampling time is chosen such that the prediction window is

exactly one orbital period. The prediction horizon N is also increased in order to avoid the sampling

time becoming too great. As shown in figure 4.8, the trajectory resembles that of the ideal manoeuvre,

although the spacecraft cannot reach the reference in one orbital period, and in the final approach it
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Figure 4.7: V-bar transfer manoeuvre with receding-horizon quadratic MPC and long prediction horizon.

circles the reference, getting closer and closer while never reaching it. This is due to the receding

horizon strategy; since the prediction horizon slides forward every sample, the state that is being tracked

is always one orbital period away, and so the controller never makes the final effort to reach the reference.

Therefore, a different strategy is required.

Figure 4.8: V-bar transfer manoeuvre with receding-horizon quadratic MPC, long prediction horizon and
no intermediate state cost.

4.3 Fixed-Horizon MPC

An alternative to the receding-horizon strategy is to decrement the prediction horizon every sample,

such that its edge is always at the same time-instant, and thus known as Fixed-Horizon MPC (FH-MPC)

[19]. This, together with the use of a terminal state cost and no intermediate state cost, allows for the

manoeuvre to be completed in a specified amount of time, which in turn allows for the controller to

generate the ideal optimal manoeuvres. The parameters for the following experiments are presented

in table 4.2. Because the prediction horizon is decremented and thus the computational complexity

decreases every sample, the worst case is now shown instead of the average.

With the same conditions as in figure 4.8 and the FH strategy yields the result in figure 4.9. The tra-

54



Figure Ts N R Q Qf umax ∆V tmax
4.9 290 s 20 I 0 100I - 7.61 mm/s 121 µs

4.10 290 s 21 - - - - 3.45 mm/s 7.97 ms
4.11 58.0 s 100 - - - 1 mN 4.68 mm/s 9.40 ms

Table 4.2: Controller parameters and results for V-bar transfer manoeuvre simulations with FH-MPC.

jectory closely resembles that of the ideal manoeuvre and the system reaches the reference in exactly

one orbital period, although the ∆V applied is still over two times greater. This is due to the quadratic

cost used for the input variable, meaning that the cost function is not directly proportional to the manoeu-

vre ∆V , since this parameter is linearly proportional to the absolute value of the input force. This also

results in a continuous control action instead of sparse like the ideal manoeuvre, with just two thruster

burns.

Figure 4.9: V-bar transfer manoeuvre with FH-MPC and quadratic input cost.

Fuel-Optimal LP Formulation

To obtain a fuel-optimal trajectory, the `1-norm must be used for the input cost instead of the quadratic

function, while the terminal state cost remains quadratic. This resembles the Lasso cost function dis-

cussed in section 2.2.4, with R = 0 and Rλ = I. However, the inclusion of the `1-norm term significantly

complicates the optimization problem and makes it more difficult to solve, since it is no longer a QP.

One possible way to simplify the optimization problem is to modify the prediction model such that the

input forces are split into its positive and negative components

F = F+ − F− (4.2)

by extending the B matrix, and thus extending the input vector to u =
[
F+
x , F

−
x , F

+
y , F

−
y , F

+
z , F

−
z

]>. This

increases the number of optimization variables, which is disadvantageous, but now each input variable

can only take positive values, which makes its absolute value equal to itself. Thus, the `1-norm can be
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discarded and the formulation becomes

min
ū0,...,ūN−1
x̄0,...,x̄N

(x̄N − xref )>Qf (x̄N − xref ) +

N−1∑
i=0

∆ti1
>ūi (4.3a)

s.t. x̄0 = xt, (4.3b)

x̄k+1 = Ak+1
k x̄k +Bk+1

k ūk, k = 0, . . . , N, (4.3c)

ūk ≥ 0, k = 0, . . . , N − 1, (4.3d)

which is again a QP, where 1 is a column vector of 1’s. Note that the input variables are weighted by

the time interval between samples ∆t, which is crucial in obtaining a fuel-optimal formulation in case the

dynamics are not sampled with constant time intervals, since the ∆V is proportional to the duration the

thrusters are fired. Furthermore, the constraint (4.3d) ensures that this formulation is equivalent to that

with the `1-norm, since it constrains each of the input force components to be equal to or greater than

zero.

The formulation can be further simplified by using a terminal state constraint, instead of a terminal

state cost, and thus the problem becomes

min
ū0,...,ūN−1
x̄0,...,x̄N

N−1∑
i=0

∆ti1
>ūi (4.4a)

s.t. x̄0 = xt, (4.4b)

x̄k+1 = Ak+1
k x̄k +Bk+1

k ūk, k = 0, . . . , N, (4.4c)

ūk ≥ 0, k = 0, . . . , N − 1, (4.4d)

x̄N = xref , (4.4e)

which is now an LP and can be solved very efficiently. Another advantage of this formulation is that,

once the manoeuvre duration is defined, there are no controller parameters that need to be tuned, and,

in the absence of disturbances, the controller will always reach the reference state without static error.

Thus, since the cost function only contains one term that is linearly proportional to the ∆V and since

the optimization problem is convex, this formulation is guaranteed to always generate the fuel-optimal

trajectory in the specified transfer duration. The disadvantage of using a hard terminal constraint is

that the optimization problem may become infeasible, given the constraints and the length of prediction

horizon, especially since in the FH-MPC strategy the prediction horizon is decremented until it is only one

sample. However, in the absence of disturbances the problem will never become infeasible if previous

iterations are feasible, and so this issue will only be addressed in Section 4.6.

Figure 4.10 shows the result of the fuel-optimal linear FH-MPC formulation applied to the one-orbit

V-bar transfer. It can be observed that the manoeuvre is performed solely with two thruster actions in

the horizontal direction, much like the ideal impulsive manoeuvre in figure 3.11. Furthermore, the total

∆V applied is approximately the same as in the ideal manoeuvre, validating the fact that this formulation

is fuel-optimal. Note that, to obtain this exact ∆V value, the manoeuvre duration has to be one sample
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more than the orbital period, to account for the time it takes to perform the last braking input action.

Figure 4.10: V-bar transfer manoeuvre with fuel-optimal linear FH-MPC.

Control Saturation

Limiting the maximum thrust that can be applied by each of the spacecraft thrusters, constraint (4.4d)

becomes

umax ≥ ūk ≥ 0, (4.5)

where umax ∈ R6 is the maximum thrust for each of the input components. Notice that with this constraint

the maximum thrust is independent for each direction. If the spacecraft does not have omnidirectional

thrust, however, it is more appropriate to constrain the magnitude of the total thrust vector, although this

cannot be performed with linear constraints. In [40], this more realistic constraint is utilized, formulating

the optimization problem as a second-order cone program. However, if the simpler constraint is used,

as it will be in this work in order to maintain the optimization problem as an LP, umax must be lesser

than the physical maximum thrust possible, which is a suboptimal approach since the full capacity of the

thrusters is not utilized [29]. In the case of the PROBA-3 Occulter Spacecraft, there is omnidirectional

thrust and thus the constraint (4.5) realistically models the spacecraft thruster limitations.

In figure 4.11, the prediction horizon is increased and control limits of 1 mN for each component are

added, and thus it can be observed that the initial and final control actions now happen over more than

one sample. Also, the ∆V has slightly increased from the previous experiment, which is due to the fact

that the thrusters are now limited. Finally, from table 4.2 it can be seen that, despite having increased the

prediction horizon by a factor of five and adding more constraints, the computation time only increased

by approximately 18%, which is due to the fact that the optimization problem is an LP and can be solved

very efficiently. Hence, we showed that this formulation can generate fuel-optimal trajectories, similar to

the ones already used to plan rendezvous missions, and that it can generate them very efficiently and

feasibly in real-time.
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Figure 4.11: V-bar transfer manoeuvre with fuel-optimal linear FH-MPC, control limits and increased
prediction horizon.

4.4 Variable-Horizon MPC

The previous formulation optimizes the fuel required for the manoeuvre given a pre-specified transfer

duration. However, it is also desirable to optimize the manoeuvre duration as well as fuel expenditure.

This requires adding the prediction horizon N as an integer optimization variable, and so the formulation

known as Variable-Horizon MPC (VH-MPC) becomes

min
ū0,...,ūNmax−1
x̄0,...,x̄Nmax

N∈N

γN +

Nmax−1∑
i=0

∆ti1
>ūi (4.6a)

s.t. x̄0 = xt, (4.6b)

x̄k+1 = Ak+1
k x̄k +Bk+1

k ūk, (4.6c)

0 ≤ ūk ≤ umax, k = 0, . . . , Nmax − 1, (4.6d)

x̄N = xref , (4.6e)

1 ≤ N ≤ Nmax, (4.6f)

where Nmax is the bound for the prediction horizon. The prediction horizon is also added to the cost

function, and thus the parameter γ is used to tune the trade-off between transfer time and fuel con-

sumption. If γ = 0, the solution is the manoeuvre duration that minimizes the fuel within the bounds of

the prediction horizon; for simple manoeuvres in a circular target orbit, the solution will typically be at

Nmax, while for more complex manoeuvres and in elliptic target orbits that may not be the case. Con-

straint (4.6e) now becomes nonlinear, since it indexes an optimization variable with another, and thus

the problem is a mixed-integer nonlinear program, which is computationally expensive to solve.

A method of transforming this problem into a mixed-integer linear program (MILP) was first presented

by Richards and How [41] and applied to rendezvous in [19], requiring the substitution of the prediction

horizon by two vectors of binary optimization variables. Variable vk is 1 if the manoeuvre is completed
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exactly at instant k, and 0 otherwise, and thus

Nmax∑
k=1

vk = 1. (4.7)

The variable pk is 1 while the manoeuvre is not completed, and 0 afterwards, and so conceptually we

have
Nmax∑
k=1

pk = N. (4.8)

The two binary variables are related by the dynamic equation

pk+1 = pk − vk+1, (4.9)

which maintains their integrity: if the manoeuvre is completed at k + 1, then vk+1 = 1 which forces pk+1

to flip values, otherwise it is maintained. The VH-MPC MILP formulation then becomes

min
ū0,...,ūNmax−1
x̄0,...,x̄Nmax

p0,...,pNmax∈{0,1}
v1,...,vNmax∈{0,1}

γ

Nmax∑
i=0

pi +

Nmax−1∑
i=0

∆ti1
>ūi (4.10a)

s.t. x̄0 = xt, (4.10b)

x̄k+1 = Ak+1
k x̄k +Bk+1

k ūk, (4.10c)

0 ≤ ūk ≤ umax, k = 0, . . . , Nmax − 1, (4.10d)

− (1− vk)h ≤ xk − xref ≤ (1− vk)h, (4.10e)

pk+1 = pk − vk+1, k = 0, ..., Nmax − 1, (4.10f)

pNmax = 0, (4.10g)
Nmax∑
k=1

vk = 1. (4.10h)

Notice that the optimal prediction horizon is no longer implicitly included in the cost function, but

rather the sum of the p variables, since we have the relation in (4.8). Also, the properties in equations

(4.7) and (4.9) are included as optimization constraints in (4.10h) and (4.10f), respectively, while the

constraint (4.10g) forces the manoeuvre to be completed at least by the end of the maximum prediction

horizon. Lastly, the terminal state constraint in (4.10e) is now an inequality constraint, where parameter

h is a sufficiently large number. Thus, the term (1 − vk) allows to trigger the terminal constraint: at

the moment the manoeuvre is completed, vk is 1 and this term is 0, such that the bounds of the linear

inequality are tight and the terminal state constraint becomes active; otherwise it is 0, and so the bounds

are very wide and thus the constraint becomes inactive.

The computational load for this formulation is greater than for the FH-MPC, since MILP problems are

harder to solve. Thus, in a real-time scenario, it may be preferable to predetermine offline the manoeu-

vre duration and use the FH-MPC formulation instead. However, as proposed in [35], determining the

59



manoeuvre duration offline can be performed in an optimal way by using the VH-MPC formulation. The

optimal transfer time may change slightly along the way due to disturbances, but the time determined

offline can still be expected to remain approximately optimal. As will be discussed in Section 4.6, how-

ever, using the VH-MPC formulation online is advantageous for its feasible robustness property. When

used online, if the maximum manoeuvre duration counting from the initial instant is to be maintained for

subsequent iterations then Nmax should be decremented every instant, otherwise the controller might

deviate from its initial trajectory and extend the manoeuvre beyond the initial maximum final instant in

order to spend less fuel.

In [35] the authors present an extension to the VH-MPC framework that allows for multi-step ma-

noeuvres to be considered, where the durations of the sub-manoeuvres are optimized simultaneously

and offline, also via integer linear programming. The resulting multi-step manoeuvre is then performed

online as a sequence of several FH-MPC manoeuvres.

4.5 Passive Safety

It is a requirement in rendezvous missions that, besides ensuring that the nominal trajectory does not

cause a collision between the spacecraft, the free-drift motion from any point in the trajectory also remain

collision-free within a specified time-horizon. Designing trajectories in this way ensures that, in case a

thruster fails to fire, the two spacecraft will not collide due to the natural drift, and thus this is known as

passive safety. Furthermore, in the event of any other fault that warrants an abort in the approach, it

becomes a safe strategy to simply shut-down the spacecraft thrusters. Figure 4.12 illustrates the need

for designing passively safe rendezvous trajectories, where a V-bar transfer manoeuvre is shown such

that a collision occurs after one orbit in case the final thrust fails.

Figure 4.12: Illustration of the passive safety problem in a V-bar transfer manoeuvre.

Typically, passively safe trajectory design is performed by choosing specific classes of manoeuvres

with good passive safety properties. For example, in the example in figure 4.12, if radial pulses are

applied instead of horizontal, the nominal trajectory will be similar to the one in figure 3.10, and the

free-drift failure trajectory would be similar to figure 3.6, which returns to the initial position after half an
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orbit, thus avoiding collision in an infinite horizon. Ensuring passively safe trajectories usually comes at

the cost of increased fuel expenditure; in the previous example, the radial-pulse manoeuvre requires a

∆V over four times greater.

For rendezvous with MPC, passive safety design has to be included in the optimization problem as

a constraint. Typically, this is performed by constraining the discrete states in the nominal and failure

trajectories to be outside of the target spacecraft or its safety region. The following sections present

different methods of formulating these obstacle avoidance constraints, which will then be extended to

passive obstacle avoidance constraints in Section 4.5.4.

4.5.1 Obstacle Avoidance with Nonlinear Optimization

The most straightforward approach to formulating an obstacle avoidance constraint is to simply constrain

the states to be outside the region defined by the obstacle. Since this constrains a connected region

of the state-space, the feasible set becomes non-convex. Thus, these obstacle avoidance constraints

result in a optimization problem with nonlinear constraints, which makes it difficult to solve and introduces

different local minima.

For example, for the circular obstacle illustrated in figure 4.13, the obstacle avoidance constraint

becomes

‖xk − c‖2 ≥ r2, k = 1, . . . , N, (4.11)

requiring N nonlinear optimization constraints. With the passive safety constraints as well, the number

of nonlinear optimization constraints increases dramatically, greatly lowering computational performance

and making it infeasible to use this approach in real-time.

Figure 4.13: Illustration of obstacle avoidance of circular object with nonlinear constraints.

4.5.2 Obstacle Avoidance with Mixed-Integer Linear Optimization

An alternative method of formulating an obstacle avoidance constraint is with the use of linear constraints

and auxiliary binary optimization variables, thus turning the problem into a MILP [42]. The binary vari-

ables are used to activate and deactivate the different constraints that define the obstacle, allowing these

constraints to be linear inequalities. In the example in figure 4.14, the state at time k is only subject to
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constraints xmin and ymin, while the other constraints are not active, while for the state at time k + 2,

only the constraint ymax is active.

Figure 4.14: Illustration of obstacle avoidance with mixed-integer linear optimization.

The obstacle avoidance constraint for the state at time k then becomes

xk ≤ xmin +Mak,1 (4.12a)

−xk ≤− xmax +Mak,2 (4.12b)

yk ≤ ymin +Mak,3 (4.12c)

−yk ≤− ymax +Mak,4 (4.12d)
4∑
i=1

ak,i ≤ 3, (4.12e)

where ak,i are binary optimization variables, and M is a large positive number. If ak,i = 0, the linear

inequality is tight and thus constraint i is active for the state at time k. Otherwise, the linear inequality

is relaxed and the constraint inactive. Constraint (4.12e) is crucial, as it forces at least one constraint

to be active. With this method, only polytope obstacle shapes can be modelled, since it relies on linear

inequalities.

In a three-dimensional space and with a cubic obstacle, this method requires six optimization vari-

ables and seven optimization constraints per time instant, which again can make it infeasible to operate

in real-time with the passive-safety constraint, since integer programming is NP-complete. An advan-

tage of this method, however, is that the global minimum can more easily be found, since there is a finite

number of active constraint configurations.

4.5.3 Obstacle Avoidance with Linear Optimization

Another method to perform obstacle avoidance is with pure linear optimization. In [43] the obstacle

constraint is replaced with a convex set that excludes the obstacle, but is static along the the prediction.

This approach does not allow for trajectories that bend around the obstacle, and otherwise results in a

significant ∆V increase, since the trajectory must lie within a much more conservative region.
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Figure 4.15: Illustration of obstacle avoidance with linear constraints.

Another approach is to subject each state in the trajectory to a different linear inequality constraint

Dkxk ≤ bk, k = 1, . . . , N, (4.13)

which is tangent to the original obstacle, as illustrated in figure 4.15. The linear constraints have to be

determined a priori to the optimization, which can be performed offline. Furthermore, the state at each

time is now subject to a more conservative constraint, which can affect the optimality of the trajectory,

although the optimization problem becomes an LP again, allowing it to be solved much more efficiently.

The method used to determine the linear constraints Dkx ≤ bk currently found in the literature is to

rotate the constraint around the obstacle with time [29, 30, 33, 44], where the rate at which it rotates is a

controller parameter that must be optimized offline. This method is not appropriate to use in the passive

safety problem, as each failure trajectory would require different rates of rotation that must be optimized

simultaneously.

Offline Nonlinear Optimization

In this work we propose a different method for determining the linear inequality constraints which is

simple, does not require any parameter tuning, and relies on offline optimization. First, the problem

is solved once and offline with the original obstacle constraints, formulated with either of the methods

from Sections 4.5.1 and 4.5.2. Figure 4.16a) illustrates this step, with a circular obstacle and for a V-

bar transfer manoeuvre. Then, as demonstrated in figure 4.16b), the planes tangent to the obstacle

and facing each of the states are determined. These tangent planes are then used to define the linear

obstacle constraints of the online LP.

In the absence of disturbances, the result of the linear optimization will exactly match that with the

nonlinear constraints. Otherwise, there might be some loss of optimality since the linear constraints

are more conservative than the original one, given that they restrict a greater region of the state-space.

On the other hand, the linear constraints completely cover the obstacle, meaning that there is no pos-

sibility of the original constraint being violated in the optimization. It can, however, be violated after a

disturbance acts on the system, an issue which will be addressed in Section 4.6.
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(a) (b)

Figure 4.16: Illustration of the method for determining the linear obstacle avoidance constraints with
offline nonlinear programming.

Finally, note that the optimization problem with the nonlinear obstacle constraints is non-convex,

while the problem resulting from this technique is an LP and thus convex. Therefore, the LP will always

find a solution that is close to the local minimum found in the NLP, which may not be a global mini-

mum. However, because the NLP is solved offline, it is feasible to find the global minimum, which will

correspond approximately to the minimum found by the online LP. This technique will be referred to as

obstacle avoidance with offline nonlinear programming (OAONP) for the rest of this work.

Iterative Linear Optimization

Another possible way of determining the online linear constraints first proposed here is to use the un-

constrained LP instead of the optimization problem with nonlinear constraints. Figure 4.17a) is the result

of the unconstrained problem, where, naturally, violations of the obstacle avoidance constraint can oc-

cur. The tangent planes for this trajectory are determined, just like in the previous approach, and these

are then used as linear obstacle constraints for LP optimization. This yields the result in figure 4.17b),

where the trajectory now avoids the collision, but is more conservative than necessary since it flies-by

the obstacle at a distance. The process can then be repeated, where this trajectory is used to again

determine the linear constraints for another LP optimization. This yields the trajectory in figure 4.17c),

which is very similar to that obtained previously with the nonlinear optimization in figure 4.16b).

It is then possible to achieve obstacle avoidance with a sequence of purely linear optimizations.

However, note that in some situations the linear constraints determined from the first unconstrained

optimization can make the feasible region empty, as will be shown in Section 4.7.3, which limits the

use of this technique. Moreover, there is currently no guarantee that the trajectory converges to a local

minimum of the problem with the nonlinear obstacle constraints, although that optimization problem may

be warmstarted with the result from this technique for faster convergence.

This technique will hereby be referred to as obstacle avoidance with iterative linear programming

(OAILP) and Algorithm 1 summarizes the strategy, where the stopping criteria may be the discrete

states in the trajectory between iterations being equal up to a specified tolerance. It can be feasible to
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(a) (b) (c)

Figure 4.17: Illustration of the method for determining the linear obstacle avoidance constraints with
iterative optimization with linear constraints.

use the OAILP technique online, since it relies purely on linear optimization. Alternatively, this algorithm

may also be applied only once offline to determine the linear constraints, which are then used for online

optimization, much like the OAONP strategy. This latter approach, however, will suffer from the same

problem as the OAONP strategy, where the disturbances can make the linear constraints determined

offline less optimal. In the presence of disturbances, it is then preferable to use the OAILP algorithm

online, where the number of iterations is limited.

Algorithm 1: Obstacle Avoidance with Iterative Linear Programming

1 Solve optimization problem without obstacle constraints

2 repeat

3 Determine planes tangent to obstacle facing each point in the trajectory

4 Solve optimization problem with tangent planes as linear constraints

5 until trajectory convergence

4.5.4 Passive Safety Constraint

To formulate the passive safety constraint, the failure trajectories must be propagated with the prediction

model, as first proposed by Breger and How [43], and then constrained with the methods presented in

the previous sections. If a total thruster failure occurs at time k, the resulting free-drift failure trajectory

xFk is described by

xFk,t = Atkxk, t > k, (4.14)

where Atk is the dynamic matrix that transitions the state from instant k to t, as illustrated in figure 4.18.

The passive safety constraint then becomes

xFk,t 6∈ Obstacle, k ∈ {1, . . . , N}

t ∈ {k + 1, . . . , k + S}, (4.15)
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Figure 4.18: Propagation of the free-drift failure trajectories.

where failures at all discrete instants in the trajectory are considered and tracked for S samples, where

S is the safety horizon. This can be seen as a type of move blocking strategy, as described in Section

2.4, where the control actions past the control horizon are zero.

Notice that, while at instant k = 1, the failure trajectory for instant k = N is considered and con-

strained, which might seem conservative; this, however, allows the controller to generate a more ac-

curate trajectory right away and avoid corrections later. However, this requires N × S optimization

constraints, which have a great computational burden and thus require an efficient implementation, such

as the OAONP or OAILP methods presented in Section 4.5.3. If those methods are utilized, each failure

trajectory will have its own set of linear constraints. Also, an additional N constraints are required for the

nominal trajectory collision avoidance. One way to reduce the online complexity is to check in the offline

computation if some failure trajectories are very far from violating the constraint or superimposed with

other trajectories, and remove the constraints associated to those, although this strategy is not employed

in this work.

Note that this method does not consider thruster failures during a ∆V , considering only that thrusters

fail to fire in the first place. Often those types of failures will also be covered as a consequence of

applying the method, although this cannot be guaranteed. Because MPC operates in discrete time, it is

not possible to consider mid-thrust failures at every continuous time-instant, although some additional

discrete intermediate points can be considered, at the cost of greater computational complexity.

Another disadvantage of working in discrete time is that only the discrete states are constrained to

be outside the obstacle, and not the whole continuous trajectory, which can lead to a collision if the time

between samples is too great. This can be minimized by decreasing the sampling time or by including

extra intermediate samples, both at the cost of a greater computation time. An alternative approach

presented in [26] allows to constrain trajectories in continuous time, by transforming the optimization

problem into a semidefinite program. This also comes at the cost of increased computation time, but

completely eliminates the issue.

Finally, another limitation of this method is that it only guarantees passive safety within a finite horizon

S. For most operations this is sufficient, since it gives ground operators enough time to react accordingly

in face of a fault. Sometimes, however, it might be desirable to achieve passive safety with an infinite
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horizon. In [43] this is achieved by forcing all failure orbits to be invariant with respect to the target, via

the constraint

xFk,k = Ak+No
k xFk,k , k ∈ {1, . . . , N}, (4.16)

where No is the number of samples in an orbit. This, however, can constrain the problem too much and

easily make it infeasible, and in [43] it is only tested for very close-range operations and in a circular

target orbit.

4.6 Robust Rendezvous

There are many sources of disturbances in a real rendezvous mission scenario, to which the controller

must be robust. Firstly, there are modelling errors, since the prediction model used is a linearization

of the real dynamics. Furthermore, this approximation emerged from a nonlinear model that assumed

the gravitational field of the central body is uniform, which is never the case and is another significant

perturbation on the model, of which the most significant for Earth satellites is the J2 effect, due to the

planet’s oblateness.

There are also navigation errors on the position of the chaser relative to the target, especially when

relative navigation is based on vision, such as in the PROBA-3 mission. Navigation uncertainty in the

absolute position of the spacecraft is also present, which generates errors in the orbital parameters used

for the prediction model. Another considerable perturbation is actuator errors, which are in magnitude,

due to imprecise thruster action, in direction, due to error in the spacecraft orientation and thrusters

mounting misalignment, and in burn duration, due to imprecise timing. Often, spacecraft thrusters can

only be turned on or off, with no intermediate thrust possible. Thus, intermediate thrust commands are

performed via pulse width modulation (PWM), as it is for the PROBA-3 spacecraft, which is another

source of mismatch between prediction and reality. Furthermore, there is also a minimum thrust value

that can be generated via PWM, due the delay in opening the thruster valves, and thus this is another

perturbation on the system.

Finally, there are undesirable external forces acting on the spacecraft which are another source

of disturbance, such as atmospheric drag, solar radiation pressure, or the gravitational effect of other

massive bodies such as the Moon. These, however, affect both spacecraft and thus only the difference

in forces generate a disturbance in the relative position, although absolute forces will change the orbit

over time.

Robustness to these disturbances means not only that the controller remains stable, but also that it

can still accurately converge to the reference, in approximately the specified manoeuvre duration and

without a very significant increase in ∆V , in what we address here as robust performance. Furthermore,

it is necessary that state constraints, such as passive safety, are not violated due to disturbances, which

is known as robust constraint satisfaction. Finally, the disturbances can often push the system to a state

that renders the optimal control problem infeasible, and thus the controller must have robust feasibility.

There is some inherent stability robustness for MPC [2], resulting from the fact that it is a closed-loop
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control strategy. Sometimes this is enough, though often robust strategies must be employed to increase

performance and also to ensure state constraints are not violated due to a disturbance. Several robust

strategies exist for general Robust MPC, such as Min-Max Feedback MPC [45] and Tube MPC [46],

although it is often difficult to feasibly implement these in real-time. More on Robust MPC can be found

in [2]. We will first review some of the robustness strategies presented in the literature specifically for

MPC for rendezvous, before presenting our own contributions.

4.6.1 Robustness Techniques Review

In an early robustness technique for rendezvous, the authors How and Tillerson [47] extend the LP

formulation and consider uncertainty in the initial condition, optimizing the trajectory simultaneously for

multiple initial states. The technique is tested with nonlinear simulations that include differential drag,

and although it is an improvement upon the non-robust controller, it is overly conservative and requires

a ∆V much greater than in the unperturbed case. Also, no constraints at all are considered.

A different approach is taken by Richards and How [19], extending the VH-MPC formulation to yield

robustness in face of an arbitrary unknown but bounded disturbance. Using the VH strategy solves the

terminal constraint infeasibility that can easily occur for FH-MPC at the end of the manoeuvre, when the

prediction horizon is short. Furthermore, the VH formulation is extended with correction control decisions

in the next two steps which are limited given the disturbance bounds. This two-step correction of the

disturbance guarantees that if the problem is feasible at the current step, it will also be at the next, thus

achieving robust feasibility. Furthermore, the correction steps ensure that, given any disturbance, the

state can converge to the nominal trajectory in two steps, hence granting robust stability. The downsides

for this approach are that only bounded additive disturbances are considered, and a MILP formulation is

required which can be difficult to implement in real-time. Also, the robust strategy required almost twice

the nominal fuel for one simulation, and it does not address robust constraint satisfaction.

In [48], Deaconu et al. consider a bounded but unknown navigation error, and a technique based

on the feedback-MPC strategy from the Tube-MPC framework is presented, meaning that the decision

variables are feedback policies, parametrized as affine control laws, instead of control actions. The state

uncertainty at each step is propagated as elliptical sets, and the optimal control problem becomes the

minimization of the terminal uncertainty set, turning it into a convex conic optimization problem. The

advantage in the use of feedback-MPC is that the full plan can be determined offline, while the online

work becomes the computation of small disturbance correction terms, which is performed with simple al-

gebraic computations. However, the fuel-optimality of the resulting controller is not evaluated, and more

complex disturbances for which the computation of bounds is not possible are not considered. Further-

more, only control saturation constraints are included, and thus robust state constraint satisfaction is not

addressed.

In [49], the same authors consider bounded execution errors in firing time and orientation. The

terminal state constraint is substituted by a convex polytopic set, where its dimensions are minimized

as decision variables such that it is guaranteed to contain the terminal state, taking into account the
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propagation of the uncertainty due to the bounded errors. By assuming the terminal polytopes are par-

allelotopes, linearizing the effect of orientation errors, and by introducing several auxiliary optimization

variables, the problem can be formulated as an LP. A fuel budget constraint is included to limit propel-

lant consumption, but because the cost function contains only the dimensions of the terminal set, the

formulation is not necessarily fuel-optimal. Furthermore, magnitude thruster errors are not considered,

although simulations are performed with the nonlinear dynamics including the J2 effect and atmospheric

drag. Navigation errors are also not considered, and this method is incompatible with the one in [48]

due to necessarily very different formulations.

An approach that simply relies on the intrinsic robustness of MPC is presented by Di Cairano et al.

[29] for in-plane proximity manoeuvring, using a quadratic cost and the Receding-Horizon strategy. The

controller is shown to be robust for large actuation disturbances of up to ±25% magnitude and ±45 deg

in orientation, and to solar pressure and atmospheric drag. However, the authors do not analyse fuel-

consumption, although it can be seen that it is significantly greater than the ideal sparse manoeuvres,

since the resulting trajectories are approximately straight-line approaches with significant non-sparse

actuation. Furthermore, navigation errors are not considered and robust constraint satisfaction is not

addressed. This work is extended by Weiss et al. [33], by including the out-of-plane motion, obstacle

constraints, and formulating two different controllers for the rendezvous and docking phases of the mis-

sion, for which the first is complemented with a reference governor. The manoeuvres generated appear

to require a ∆V orders of magnitude higher than is typically expected for these medium distance ma-

noeuvres in a circular orbit. We strongly believe that a robust MPC controller for rendezvous should be

based on the Finite-Horizon strategy with a cost function proportional to the ∆V , as was presented in

Section 4.3.

An effective method for robust constraint satisfaction is constraint tightening [50], in which the bounds

of state constraints are constricted along the horizon, in order to account for disturbances that could push

the system to the infeasible region. The greatest advantage for this approach is that the complexity of the

original problem is retained. However the tightened constraints can becomes too conservative, affecting

performance and causing infeasibility. This technique is used in a rendezvous application by Breger et al.

[31], where the tightened constraints are determined by propagating uncertainty sets with a preselected

feedback nilpotent control law and given a bounded navigation disturbance, and computing the Pontrya-

gin difference between the original constraint region and the uncertainty region. However, this method

is not applicable when dynamics are time-varying, and is applicable with unbounded disturbances.

Gavilan et al. [32] present a probabilistic constraint tightening approach, labelled chance-constrained

MPC, where all disturbances are assumed to be Gaussian and are estimated in real-time. The constraint

bounds are then adjusted taking into account the uncertainty due to disturbances, guaranteeing that the

original constraints are satisfied with a specified probability. Although many disturbances are not ad-

ditive in nature, this approach shows good performance when simulated with the nonlinear dynamics,

thrust magnitude and orientation errors, and unmodeled eccentricity, where the state constraint con-

sidered is a line-of-sight cone. However, only circular orbit dynamics are considered, and the issue of

infeasibility when constraints become too conservative is not addressed. This technique is extended for
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a general elliptic orbit in [35], and also improved by exploiting the fact that navigation error Gaussian

parameters are often known and don’t need to be estimated. Furthermore, infeasibility in the terminal

state constraint is dealt with a technique first presented by Tillerson et al. [51], where the terminal con-

straint is allowed to be relaxed into a terminal box in face of infeasibility. The technique presents good

performance in the presence of nonlinear dynamics, J2 effect, atmospheric drag, navigation errors and

thruster errors, although the parameters chosen for these last two are quite small and not representative

of real conditions, such as those in the PROBA-3 mission.

As can be seen, no single robustness strategy has yet emerged as the definite standard approach.

These often neglect one or more of the core requirements for a robust MPC controller for rendezvous,

such as fuel-optimality, being computationally feasible for real-time operation, manoeuvre accuracy,

guaranteeing robust constraint satisfaction and robust feasibility, or being robust to all possible types

of disturbances and uncertainty. The chance-constrained approach in [32, 35] comes close, since it

takes into account all disturbances via online estimation in order to ensure constraint satisfaction with-

out increasing the complexity of the optimization problem, uses the fuel-optimal FH-MPC formulation,

and deals with infeasibility in the terminal state constraint. However, as will be shown later on, in the

presence of navigation and thruster errors in the magnitudes expected for the PROBA-3 mission, the

FH-MPC strategy faces some difficulty related to fuel expenditure and reference convergence. Further-

more, the constriant-tightening approach has not been tested with passive safety constraints, although

with the obstacle avoidance techniques presented in 4.5.3 these can be written as linear constraints, to

which the chance-constrained technique can easily be applied.

4.6.2 Feasible Terminal Box

In the presence of disturbances, the optimal control problem can often become infeasible, which should

be avoided at all costs in a real-time application. The terminal state constraint in the FH-MPC strategy

in particular is prone to this issue, since its prediction horizon is decremented until it is only one sample.

Also, the system is not one-step controllable, meaning that it is not possible t o transfer between any

two arbitrary states in just one control action. Therefore, although the controller initially plans for the

terminal state to be reachable from the penultimate state, disturbances can push it to a position from

which the terminal state cannot be reached in one step, rendering the optimization problem infeasible.

This limitation can be further increased by other control and state constraints, and even more so when

constraint tightening techniques are used.

One possible solution to the infeasibility problem is to use a quadratic terminal state cost as in (4.3),

instead of the terminal constraint. This is undesirable, however, since it turns the optimization problem

into a QP, and introduces more parameters for tuning. Another solution that is commonly used is to relax

the equality constraint into an inequality, thus introducing the concept of terminal box [19, 26, 30, 43].

Constraint (4.4e) then becomes

− δbox ≤ x̄N − xref ≤ δbox, (4.17)

where δbox ∈ R6 defines the bounds for the box. The issue with this approach is that to improve the
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guarantee of feasibility, the size of the terminal box has to be increased, which in turn worsens the

accuracy of the controller since it will tend to aim for the edges of the terminal box. Furthermore, there

is no guarantee that the chosen dimensions for the terminal box will always ensure the existence of a

solution for all possible scenarios.

This approach can be improved upon by introducing the dimensions of the terminal box as optimiza-

tion variables and including them in the cost function for minimization [51]. Introducing the optimization

variables δ1, . . . , δ6, the terminal constraint (4.17) becomes

−


δ1
...

δ6

 ≤ x̄N − xref ≤

δ1
...

δ6

 , (4.18)

which remains a linear constraint with respect to all optimization variables. Furthermore, the cost func-

tion (4.4a) now includes the new variables

V (·) =
N−1∑
i=0

∆ti1
>ūi +

6∑
j=1

hjδj , (4.19)

where hj is a large enough number as to ensure the controller only relaxes the terminal constraint

to ensure feasibility, and not to save fuel. Thus, the terminal box will always have the minimum size

that guarantees feasibility, and thus we designate this technique as feasible terminal box. Note that,

although the box dimensions can be upper-bounded as to avoid the terminal box becoming too large,

this should be avoided as it no longer guarantees the terminal constraint will always be feasible. It is also

not necessary to lower-bound the box dimensions with 0, since negative values are already impossible.

The obvious drawback for the feasible terminal box approach is that it requires the addition of six new

optimization variables, although this is a very small number when compared to the usual dimensions of

the control variable.

4.6.3 Dynamic Terminal Box

In the presence of stochastic disturbances, such as navigation or actuation errors, the terminal state

constraint will cause the controller to perform frequent trajectory corrections, in an attempt to maintain

the predicted terminal state exactly on the reference. However, because the controller acts on imperfect

information and because its commands are not perfectly executed, this results in an overcorrection that

results in the waste of fuel. Such an effect may be minimized by considering a terminal box constraint

instead of a terminal equality constraint, thus loosening the terminal constraint and resulting in fewer

trajectory corrections. This is similar to the feasible terminal box technique, although that was for pre-

venting infeasibility whereas this is for improving the fuel consumption, and the two are not mutually

exclusive. However, loosening the terminal constraint results in reduced manoeuvre accuracy. Thus, we

propose here that the terminal box is reduced as the the manoeuvre is performed in what we designate

as dynamic terminal box, thus achieving reduced fuel expenditure and maintaining accuracy.
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One idea for achieving this is to dynamically change the weights hj of the feasible terminal box

technique, increasing them with time such that the box is increasingly tightened. However, because

of the sparsity of the linear cost function, changing the box cost only results in either the terminal box

having the minimum size that allows the problem to be feasible, or the the terminal box being completely

loosened such that no control input is required. An alternative is to make the box cost quadratic, although

this is undesirable since it makes the optimization problem a QP. Thus, the box margins have to tuned

directly.

We propose here a modification on the feasible terminal box constraint to include a time-varying

margin εt, where t is the time instant at which the optimization problem is being solved. Thus, constraint

(4.18) becomes

−


δ1
...

δ6

− εt ≤ x̄N − xref ≤

δ1
...

δ6

+ εt. (4.20)

Although this approach can achieve increased performance, it requires significant tuning of the margins

for each time instant. In Section 4.7.4 we experiment with an initial box ε0 that decreases linearly with

time until it is zero at the final iteration. This may be improved, for example by determining the box

dimensions as a function of the uncertainty, and thus may warrant further research.

4.6.4 Terminal Quadratic Controller

The sparse thrust profile of the FH-MPC formulation is not appropriate for executing accurate manoeu-

vres in the presence of stochastic disturbances such as navigation and execution errors. This is due to

the fact that crucial ∆V ’s tend to be performed in one sample only, while planning under imperfect state

information and with imperfect execution of the ∆V . One of these crucial ∆V ’s is the final braking thrust

that is usually performed at the end of the manoeuvre in order to cancel all relative velocity, which under

sparse actuation and in the presence of the mentioned disturbances tends to not be very effective.

Thus, we propose here the use of the following terminal linear-quadratic MPC controller to substitute

the last sample of the FH-MPC manoeuvre

min
ū0,...,ūNT−1

x̄0,...,x̄NT

(x̄NT − xref )>Qf (x̄NT − xref ) +

NT−1∑
i=0

ū>i Rūi (4.21a)

s.t. x̄0 = xt, (4.21b)

x̄k+1 = Ak+1
k x̄k +Bk+1

k ūk, (4.21c)

− umax ≤ ūk ≤ umax, k = 0, . . . , NT − 1, (4.21d)

where xt is the state measurement/estimate at the penultimate iteration of the manoeuvre, and NT is the

prediction horizon of the terminal controller. The use of the quadratic cost for the input variable results

in a less sparse actuation that, combined with the fact that one control decision is substituted with NT

decisions, allows for a more precise execution of the final braking ∆V . To maintain the manoeuvre
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duration specified initially, the prediction horizon NT covers the same time window as the last sample

of the FH-MPC controller. Furthermore, the FH strategy is also utilized, where the prediction horizon is

decremented every sample to ensure the manoeuvre is completed in the specified time, although the

terminal state constraint is substituted by a terminal quadratic cost. Finally, no intermediate state cost is

used, since it decreases the controller performance, as shows in Section 4.2.

Since the prediction horizon for the terminal controller is not required to be very long, it is feasible

to implement it with Explicit MPC, granting computational advantages which are desirable given that

the braking manoeuvre is critical. Furthermore, because the terminal controller only has to cancel the

relative velocity at the end of a manoeuvre that was planned with the FH-MPC formulation with passive

safety constraints, the inclusion of these constraints for this controller may be unnecessary, further

increasing the feasibility of implementing it with Explicit MPC.

4.7 Tests and Results

This Section features several simulations and experiments with the methods presented along this Chap-

ter. The MPC optimization problems are solved with the MATLAB Optimization Toolbox, where function

linprog with the dual-simplex algorithm is used for linear programming for the FH-MPC formulation,

function intlinprog is used to solve the MILP in the VH-MPC formulation, and fmincon with the sequen-

tial quadratic programming algorithm is used for solving the nonlinear program that arises in the OAONP

technique for the passive safety problem. Because these algorithms do not take advantage of the MPC

problem structure, the state-substitution technique presented in Section 2.2.2 is always utilized. The

computation times for solving these optimization problems are always presented, solved with a 4th Gen-

eration 2.4GHz Intel-i7 Processor.

4.7.1 FH-MPC

In this section, several rendezvous experiments are performed with the FH-MPC formulation, recreating

several of the thrust manoeuvres presented in Chapter 3 and thus proving this formulation is indeed

fuel-optimal. The V-bar transfer manoeuvre in one orbital period has already been validated in figure

4.10. The parameters and results for the following experiments are contained in table 4.3.

Figure Ts Es e θ0 N ∆V tmax tavg
4.19 59.2 s - 0 - 50 16.25 mm/s 8.84 ms 7.37 ms
4.20 58.3 s - 0 - 200 3.45 mm/s 12.1 ms 7.79 ms
4.21 58.6 s - 0 - 100 5.47 mm/s 11.6 ms 7.68 ms
4.22 59.2 s - 0 - 50 10.83 mm/s 8.51 ms 7.38 ms
4.23 - 3.6 deg 0.4 0 deg 100 119.0 mm/s 9.26 ms 7.41 ms
4.24 - 1.8 deg 0.8111 180 deg 200 52.1 mm/s 10.3 ms 8.03 ms
4.25 - 1.70 deg 0.8111 179 deg 100 407.4 mm/s 9.52 ms 7.89 ms

Table 4.3: Controller parameters and results for V-bar transfer manoeuvre simulations with FH-MPC.

In figure 4.19, a V-bar transfer manoeuvre with a duration of half an orbital period is presented. The

trajectory and thrust profile generated by FH-MPC exactly matches the well-known V-bar transfer with
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two radial impulses, such as the one presented in figure 3.10, and the obtained ∆V is exactly the same

as that computed with (3.51).

Figure 4.19: V-bar transfer manoeuvre in half an orbital period with FH-MPC.

Figure 4.20 presents another V-bar transfer, but now with a two orbit manoeuvre duration. It can be

seen that the generated trajectory is much like the V-bar transfer manoeuvre with horizontal thrust, such

as presented in figures 3.11 and 4.10, but with half the thrust such that it takes two orbits to reach the

final state. The obtained ∆V is also the same as that obtained with (3.52) where ∆x is half the total

transfer distance.

Figure 4.20: V-bar transfer manoeuvre with in two orbital periods with FH-MPC.

A one-orbit R-bar transfer manoeuvre is presented in figure 4.21. It can be observed that the result-

ing trajectory resembles the Hohmann transfer, such as the one presented in figure 3.9, and thus the

manoeuvre is actually completed in only half of one orbit. The ∆V is also the same as that obtained

with (3.50), although note that the FH-MPC manoeuvre is performed with asymmetric thrusts, gener-

ating a slightly different trajectory but equivalent regarding fuel consumption which suggests that the

optimization problem is not strictly convex.

Next, in figure 4.22 an H-bar correction manoeuvre is performed in one orbital period. Because the

ascending node is crossed after only half an orbit, the reference is reached after this period of time. The

∆V obtained is the same as that obtained for the inclination correction manoeuvre in figure 3.12 and
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Figure 4.21: R-bar transfer manoeuvre in half an orbital period with FH-MPC.

computed with (3.53).

Figure 4.22: H-bar transfer manoeuvre in half an orbital period with FH-MPC.

Introducing now some eccenctricity, the manoeuvre presented in figure 4.23 is in the same conditions

as that in figure 3.21. The trajectory obtained with the FH-MPC formulation is the same as the ideal one

with the two impulses, and the ∆V required is the same as that computed with (3.54) and (3.56), since

the generated manoeuvre also only has two thrust actions. Also note that, because the target orbit is

now elliptical, the eccentric anomaly sampling technique presented in Section 4.1 is used, where Es is

the sampling eccentric anomaly, meaning that the initial and final thrust actions have different durations.

A manoeuvre with the eccentricity of the PROBA-3 RVX is presented in figure 4.24. It can be seen

from table 4.3 that the ∆V obtained is 52.1 mm/s. On the other hand, the ∆V obtained for the ideal two

impulse manoeuvre, which can be computed with (3.54) and (3.56), is 72.7 mm/s, which is significantly

higher. The more efficient manoeuvre obtained with the FH-MPC formulation is due to the use of an

intermediate thrust in V-bar around 30000 s, while the ideal manoeuvre is constrained to only an initial

and final thrusts. This greater degree of freedom from the use of MPC thus allows it to generate more

fuel-efficient trajectories than the traditional two-impulse manoeuvres.

Finally, a manoeuvre that includes H-bar and is an actual manoeuvre planned for the PROBA-3 RVX
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Figure 4.23: Arbitrary in-plane transfer manoeuvre in half an orbital period in elliptic orbit with FH-MPC.

Figure 4.24: Arbitrary in-plane transfer manoeuvre in half an orbital period in PROBA-3 orbit with FH-
MPC.

is presented in figure 4.25. It can be observed from table 4.3 that the required ∆V is 407.4 mm/s. On

the other hand, the ∆V required for the two-impulse manoeuvre computed with (3.54) and (3.56) is

481 mm/s. Therefore, the FH-MPC formulation requires only 85% of the fuel that the manoeuvre that

is typically employed requires, which, once again, is achieved via intermediate thrust action, this time

seen in H-bar. We have thus showed in this section through simulation that the FH-MPC formulation is

fuel-optimal.
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Figure 4.25: Manoeuvre from the PROBA-3 RVX with FH-MPC.

Regarding computational load, notice from table 4.3 that the increase of the prediction horizon has

a relatively small impact on the execution time. For example, for an horizon of N = 50 the worst-case

computation took 8.84 ms, while increasing the horizon by four times to N = 200 resulted in this value

being 12.1 ms, which is only a approximately 37% increase. This is due to the fact that the optimization

problem is formulated as a linear program, which can be solved very efficiently, in this case with the

dual simplex algorithm. Furthermore, in these simulations there aren’t any additional control or state

constraints, which would increase the computational load. In the case of control constraints, however,

this increase would not be very significant.

Figure 4.26 shows the effect of the prediction horizon on the execution time, in the conditions of the

PROBA-3 manoeuvre presented in figure 4.25, but with control saturation constraints of 1/3 N in each

component and maintaining the manoeuvre duration constant. For each prediction horizon the simula-

tion was run ten times, and the execution times were averaged. It can be seen execution time grows

approximately linearly, although the worst-case time oscillates unpredictably. This shows the compu-

tational advantage of formulating the optimization problem as an LP, where increasing the prediction

horizon by a factor of 50 only increases the computation time by less than two and half times.

Figure 4.26: Computation time of the PROBA-3 RVX manoeuvre as a function of the prediction horizon.
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4.7.2 VH-MPC

The Variable-Horizon formulation is useful to optimize both the manoeuvre duration and required fuel,

where the trade-off between the two can be tuned with the parameter γ. If γ is zero, the solution will

be the manoeuvre duration that minimizes the fuel only, where the duration is bounded by the maximum

prediction horizon Nmax. In simpler manoeuvres, however, the required fuel may be strictly decreasing

with the manoeuvre duration.

Figure 4.27 shows the ∆V required for a V-bar transfer manoeuvre in a circular orbit as a function

of the duration of the transfer. For a half-orbit transfer the result corresponds to that in figure 4.19, with

one orbit we get the result from figure 4.10, and a two-orbit transfer corresponds to the result from figure

4.20. It can be then seen that the required the ∆V strictly decreases with the increase of the manoeuvre

duration.

Figure 4.27: V-bar transfer manoeuvre in circular orbit ∆V as a function of its duration.

Applying the VH-MPC formulation in the conditions from figure 4.27 with a maximum manoeuvre

duration of one orbit and γ = 0 yields the result from figure 4.28, where indeed the maximum transfer

time is the optimum. The parameters and results for these experiments are presented in table 4.4.

Figure Ts Es e Nmax γ N ∆V tmax tavg
4.28 98.1 s - 0 60 0 60 3.45 mm/s 138 ms 54.9 ms
4.29 98.1 s - 0 60 0.01 30 16.90 mm/s 184 ms 121 ms
4.31 57.9 s - 0 100 0 32 130.9 mm/s 412 ms 277 ms
4.33 - 3.6 deg 0.8111 100 0 41 48.16 mm/s 710 ms 595 ms

Table 4.4: Controller parameters and results for VH-MPC experiments.

If a manoeuvre duration cost is included (γ > 0), the optimal solution will have a shorter transfer time.

In figure 4.29, the optimal transfer time becomes approximately half an orbital period, and the trajectory

is similar to the ideal V-bar transfer with radial impulses presented in figure 3.10, although there is some

actuation in V-bar. The total ∆V for that manoeuvre, determined with equation (3.52), is 16.3 mm/s,

which is slightly lower than that obtained in this experiment due to the small V-bar actuation present

there.
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Figure 4.28: V-bar transfer manoeuvre with VH-MPC, with a maximum transfer of one orbit and no
manoeuvre duration cost

Figure 4.29: V-bar transfer manoeuvre with VH-MPC, with a maximum transfer of one orbit and a ma-
noeuvre duration cost.

When the manoeuvre initial and reference points are not invariant, meaning that natural drift occurs

if no thrust action is applied, then the manoeuvre ∆V may no longer be strictly decreasing with the

duration. Figure 4.30 represents the ∆V as a function of the duration for a manoeuvre in such conditions,

where the initial and final states are not on V-bar, and for a circular target orbit. It can be seen that the

minimum transfer time within the two-orbit interval plotted is just over half an hour, at about 32% of an

orbit. This happens because the chaser is drifting relative to the target, and thus there is an optimal time

for performing the manoeuvre that is not the maximum time. When VH-MPC is applied in this scenario

with a maximum duration of one orbit, it yields a manoeuvre with a duration that is approximately 32%

of an orbit, as shown in figure 4.31, thus validating the VH-MPC formulation.

We will now analyse the PROBA-3 manoeuvre from figure 4.25. Figure 4.32 shows the ∆V required

for that manoeuvre as a function of the transfer time. It can again be seen that the ∆V is not strictly

decreasing with the manoeuvre duration, and that the peaks of this plot are much more pronounced than

for the previous one. This happens because now the orbit is elliptical and the dynamics time-varying,

meaning that there is another factor regarding the optimal time for performing the manoeuvre. For

the PROBA-3 manoeuvre, there is a local minimum at around 40% of an orbit, but the globally optimum
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Figure 4.30: Arbitrary in-plane transfer manoeuvre in circular orbit ∆V as a function of its duration.

Figure 4.31: Arbitrary in-plane transfer manoeuvre with VH-MPC, with a maximum transfer of one orbit
and no manoeuvre duration cost.

transfer time is one orbit, while there are peaks in the ∆V for half-orbit and one-and-a-half orbit transfers,

the first of which corresponds to the manoeuvre duration from figure 4.25.

Figure 4.32: PROBA-3 manoeuvre ∆V as a function of its duration.
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Applying VH-MPC to this manoeuvre with a maximum transfer time of one orbit yields the result

from figure 4.33, where the optimal duration is 41% of an orbit. It can be seen from table 4.4 that

the ∆V required is about eight times less than that obtained in figure 4.25. Although, this value does

correspond to a minimum from the plot in figure 4.32, it is not the global minimum, which would be a

duration of one orbital period. This is due to the fact that the algorithm used – branch and bound – does

not optimize globally, and thus it converges to this local minimum. For online VH-MPC this can be a

problem as the optimization may converge to a different minimum than previous iterations, which could

affect performance; this can be avoided with the use of warm start. For offline VH-MPC it its feasible to

optimize the problem globally.

Figure 4.33: PROBA-3 manoeuvre with VH-MPC, with a maximum transfer of one orbit and no manoeu-
vre duration cost.

We see from table 4.4 that the computational load for the VH-MPC formulation is significantly higher

than for FH-MPC, due to the fact that the first is a MILP and the latter an LP. It can then be infeasible

to use this formulation online, especially with the inclusion of the very computationally heavy passive

safety constraints.

4.7.3 Passive Safety

This section features simulations of rendezvous manoeuvres with the passive safety constraint. The

OAONP and OAILP techniques for obstacle avoidance presented in Section 4.5.3 are utilized, which

allow for the online optimization problem to be an LP. The first requires one offline nonlinear optimization;

the latter requires several sequential linear optimizations, although this will only be performed once

offline since no disturbances are considered, and thus the online work also becomes solving only one

linear program. The simulation parameters and results are presented in table 4.5, where ILP denotes

the number of OAILP iterations.

Offline Nonlinear Programming

We will first consider the OAONP technique in order to achieve passive safety with online linear opti-

mization. Figure 4.34 shows a one-orbit V-bar transfer without the passive safety constraint, and the
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Figure Ts Es e θ0 N S ILP ∆V tmax toffline

4.34 193.4 s - 0 - 30 0 - 1.38 mm/s 12.3 ms -
4.35 193.4 s - 0 - 30 30 - 1.62 mm/s 21.7 ms 1.31 s
4.36 193.4 s - 0 - 30 60 - 2.80 mm/s 33.2 ms 5.57 s
4.37 - 4.5 deg 0.8111 245 deg 40 0 - 1.49 mm/s 11.1 ms -
4.38 - 4.5 deg 0.8111 245 deg 40 80 - 1.51 mm/s 81.7 ms 15.1 s
4.39 - 3.83 deg 0.8111 30 deg 45 0 - 161.4 mm/s 9.52 ms -
4.40 - 3.83 deg 0.8111 30 deg 45 90 - 165.2 mm/s 139.8 ms 26.6 s
4.41 193.4 s - 0 - 30 30 1 20.9 mm/s 18.1 ms 24.1 ms
4.42 193.4 s - 0 - 30 30 3 1.62 mm/s 17.8 ms 212.4 ms
4.43 - 4.5 deg 0.8111 245 deg 40 80 1 1.53 mm/s 54.7 ms 56.3 ms
4.44 - 3.83 deg 0.8111 30 deg 45 90 1 165.2 mm/s 116.7 ms 63.9 ms

Table 4.5: Controller parameters and results for passive safety experiments.

failure trajectories, represented in red, are propagated for one orbit and starting from each discrete point

in the nominal trajectory. Since there are no intermediate control actions, in this case all failure trajec-

tories are superimposed. The target spacecraft safety region, which is a two metre radius circle, is also

represented around the origin, which appears as an ellipse due to different scales being used. It can be

observed that if the final thrust fails, a collision with the target spacecraft occurs after almost one orbital

period.

Figure 4.34: V-bar transfer manoeuvre in one orbit, in a circular orbit and without passive safety con-
straint.

In figure 4.35, a passive safety horizon of one orbital period is included. Initially the trajectory is the

same as before, and toward the end of the manoeuvre there is some extra non-sparse actuation, which

results in a slight widening of the end of the trajectory such that all failure trajectories now stop exactly at

the edge of the safety region. Given the prediction horizon and safety horizon used, presented in table

4.5, this requires the addition of 900 optimization constraints, which nearly doubles the computation time

of the online optimization when compared to the that without the passive safety constraint. However,

note that the computation time of the offline nonlinear optimization used to determine the online linear

constraints is two orders of magnitude higher. Notice also that, as could be expected, the ∆V for the

passively safe trajectory has increased by approximately 17% in comparison to the non-safe one. Finally,

the resulting closed-loop trajectory exactly matches that obtained obtained with the offline optimization

despite using pure linear optimization, which is due to the absence of any disturbances.
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Figure 4.35: One-orbit V-bar transfer manoeuvre in one orbit, in a circular orbit and with one-orbit passive
safety horizon with OAONP.

In figure 4.36, we repeat the previous manoeuvre but with a passive safety horizon of two orbital

periods. Once again, we see that most of the trajectory is the same as the non-passively-safe one, but

now the differences start earlier in the manoeuvre. The extra R-bar actuation before the 4000 seconds

widens the approach in a such way that failure trajectories do not collide within two orbits. The ∆V

for this manoeuvre is almost double that of the unsafe one, and represents an increase of over 70% in

respect to the one with a one orbit safety horizon. Furthermore, the offline computation time increased

by over four times, while the worst case online time increased by approximately 50%. Note that as the

safety horizon increases, the R-bar actuation increases too. This results in the trajectory increasingly

resembling the V-bar transfer manoeuvre with radial impulses, which, as mentioned previously in Section

4.5, guarantees passive safety in an infinite horizon but is over four times more costly.

Figure 4.36: V-bar transfer manoeuvre in one orbit, in a circular orbit and with two-orbit passive safety
horizon with OAONP.

Figure 4.37 shows an arbitrary in-plane transfer in the conditions of the PROBA-3 mission and without

the safety constraints. It can be seen that both the nominal and failure trajectories violate the safety

region. In figure 4.38 the passive safety constraint is included with a one-orbit horizon, where the nominal

and failure trajectories are now safe with a minimal increase in ∆V , but with an eight-fold increase in the

worst-case online optimization.
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Figure 4.37: Arbitrary half-orbit in-plane transfer manoeuvre in PROBA-3 orbit and without safety con-
straint.

Figure 4.38: Arbitrary half-orbit in-plane transfer manoeuvre in PROBA-3 orbit and with one-orbit passive
safety horizon with OAONP.

Figure 4.39 presents a manoeuvre with the addition of the third dimension, H-bar, and thus the safety

region is now a sphere, with a radius of 10 metres. Without the passive safety constraint, it can be seen

that one failure trajectory violates the safety region. In figure 4.40 the constraint is added and that failure

trajectory no longer violates the safety region, at the cost of an increase in ∆V of 2.35%. It can be seen

that most failure trajectories are overlapped or very far from the safety region, and thus after an offline

analysis these could potentially be removed from the online optimization for better performance.

Iterative Linear Programming

We will now experiment with the OAILP technique presented in Section 4.5.3, where the offline optimiza-

tion becomes a sequence of linear programs. In the same conditions as in figure 4.35, one iteration of

this technique yields the result from figure 4.41. It can be seen that passive safety is indeed achieved,

but in a much more inefficient way as that obtained with the nonlinear optimization, with more than ten

times the cost in ∆V . On the other hand, the computation time for the offline work is now several orders

of magnitude lower than before.

If three iterations of the OAILP are performed, the result from figure 4.42 is obtained instead, which
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Figure 4.39: Arbitrary half-orbit transfer manoeuvre in PROBA-3 orbit and without passive safety con-
straint.

Figure 4.40: Arbitrary half-orbit transfer manoeuvre in PROBA-3 orbit and with one-orbit passive safety
horizon with OAONP.

Figure 4.41: V-bar transfer manoeuvre in one orbit, in a circular orbit and with two-orbit passive safety
horizon with OAILP.

exactly matches that with the nonlinear optimization from figure 4.35 and has the same ∆V . The offline

computation time has also increased, but remains one order of magnitude lower than that of the non-

linear optimization. If the passive safety horizon is increased to two orbits like in figure 4.36, the linear

constraints obtained after the first unconstrained optimization yield an empty feasible region, and thus
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the OAILP technique fails.

Figure 4.42: V-bar transfer manoeuvre in one orbit, in a circular orbit and with two-orbit passive safety
horizon with OAILP.

Figure 4.43 is a manoeuvre in the same conditions as in figure 4.38. With OAILP passive safety

with one iteration the closed-loop trajectory is very similar than that with the nonlinear optimization, with

a small increase in ∆V of 1.3% but a very significant reduction in the offline work of three orders of

magnitude. Note that the trajectory does not brush the edge of the safety region as it does with the

nonlinear optimization, thus being more conservative. Although we do not show the result here, if two

OAILP iterations are used, the result exactly matches that with the nonlinear optimization constraints.

Figure 4.43: Arbitrary half-orbit in-plane transfer manoeuvre in PROBA-3 orbit and with one-orbit passive
safety horizons with OAILP.

Finally, figure 4.44 presents the same manoeuvre as in figure 4.40 but with the OAILP strategy. It can

be seen that the trajectory remains very similar and the ∆V is the same, even with just one iteration.
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Figure 4.44: Arbitrary half-orbit transfer manoeuvre in PROBA-3 orbit and with one-orbit passive safety
horizons with OAILP.

4.7.4 Robustness Experiments

This section will experiment with the FH-MPC strategy in the presence of disturbances, namely modelling

errors, navigation errors and thruster errors. We will then apply the robust techniques covered in Section

4.6 to improve the robustness of the FH controller, regarding feasibility and performance. We will also

show the need for robust constraint satisfaction techniques for the passive safety constraint, although

no such techniques will be demonstrated here. The controller parameters and simulation results are

presented in table 4.6, where epos and evel are the terminal errors in position and velocity.

Figure Es N ∆V epos evel tmax tavg
4.45 1.70 deg 100 407.4 mm/s 63.61 m 57.84 mm/s 12.7 ms -
4.46 1.70 deg 100 129.6 mm/s 10.51 m 291.3 mm/s 14.4 ms 8.34 ms
4.47 1.70 deg 100 497.5 mm/s 25.44 cm 4.746 mm/s 10.1 ms 8.25 ms
4.48 0.340 deg 500 422.0 mm/s 4.196 mm 0.2457 mm/s 16.1 ms 10.8 ms

Table 4.6: Controller parameters and results for robustness experiments with PROBA-3 manoeuvre.

A valid strategy for robustness to disturbances for MPC is to simply rely on its inherent robustness,

due to it being a closed-loop strategy. Figure 4.45 exemplifies the performance of open-loop MPC in

face of disturbances, with the same PROBA-3 manoeuvre presented in figure 4.25 and simulating the

system with the nonlinear dynamics, instead of with the linearised model that is also used as the MPC

prediction model and thus introducing modelling errors. Furthermore, control limits of 1 N are added in

each thrust direction for this and all subsequent simulations. The chaser follows a similar trajectory as

that in the absence of disturbances, having exactly the same ∆V , but the fact that its prediction model

is imperfect results in a very significant terminal error of 63.6 m for position and 57.8 mm/s for velocity.

Performing the same manoeuvre but in closed-loop yields the result in figure 4.46. It can be seen that

the controller can now better approach the reference state despite the prediction model not being perfect,

although the trajectory is slightly different than what was obtained in the unperturbed case. However,

the optimization problem becomes infeasible in the final iteration due to the terminal constraint, and thus

the manoeuvre ends with a position error of 10.5 m and a relative velocity error of 291 mm/s. Thus, as
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Figure 4.45: PROBA-3 manoeuvre with nonlinear dynamics simulation in open-loop.

previously mentioned in Section 4.6.2, this formulation suffers from robust feasibility issues.

Figure 4.46: PROBA-3 manoeuvre with nonlinear dynamics simulation in closed-loop.

Robust Feasibility

To deal with infeasibility in the terminal state constraint, the feasible terminal box technique presented

in Section 4.6.2 is applied. This yields the result from figure 4.47, where the optimization problem

again becomes feasible at the final iteration, allowing for the manoeuvre to be completed, without any

significant computational load increase. Despite this, it can be seen from table 4.6 that there is still a

residual error in position and velocity of 24.4 cm and 4.75 mm/s, respectively, which is due to the fact

that the feasible terminal box relaxed the terminal constraint, but also due to disturbances on the last

step further affecting the system. Finally, the ∆V required to perform the manoeuvre has increased by

22% from that in the absence of this disturbance, which is a significant increase in fuel.

In figure 4.48, the prediction horizon is increased by five times, while maintaining the manoeuvre

duration. The residual errors are now significantly smaller, at 4.2 mm and 0.25 mm/s, and the ∆V only

represents an increase of 3.58% from the undisturbed case. Thus, modelling errors, or more specifically

linearisation errors, can be compensated by increasing the prediction horizon. Despite this significant

increase of the prediction horizon and respective increased performance, the computational load only
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Figure 4.47: PROBA-3 manoeuvre with nonlinear dynamics simulation and feasible terminal box.

Figure 4.48: PROBA-3 manoeuvre with nonlinear dynamics simulation, feasible terminal box and in-
creased prediction horizon.

increased by approximately 60% in the worst case, and 31% on average.

Robust Performance

We will now analyse and attempt to improve the fuel performance and accuracy of the FH-MPC formula-

tion in face of other disturbances. We will consider additive Gaussian navigation noise in the measured

state received by the controller at every step, with a standard deviation of 10 cm on position and 1 mm/s

on velocity. Although these values may seem inconsequential, such a degree of uncertainty in the initial

conditions may imply a dispersion of hundreds of meters after half an orbit. Thruster errors are also

modelled, where the thrust magnitude has a standard deviation of 10% and the orientation of the thrust

vector has a standard deviation of 0.5 degrees in each direction. Furthermore, the PWM cut-off thrust is

modelled by ignoring control commands with a magnitude lower than 1 mN for each direction.

Because the simulation is now stochastic, 20 repetitions are performed and the results are averaged

out and presented in table 4.7. In the above disturbance conditions yields the results from figure 4.49,

where the dispersion between the trajectories can be observed, although all of them are able to converge

on the reference. The thrust plot presented corresponds to only one of the simulations and is only

meant to be representative. It can be observed that the control action is now less sparse, since now
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Figure Es N ε0,p ε0,v NT ∆Vavg eposavg evelavg tmaxavg
4.49 1.70 deg 100 - - - 577 mm/s 1.08 m 28.1 mm/s 9.72 ms
4.50 0.68 deg 250 - - - 899 mm/s 44.6 cm 13.4 mm/s 13.4 ms
4.51 1.70 deg 100 8 m 5 mm/s - 499 mm/s 12.1 m 21.7 mm/s 11.34 ms
4.52 1.70 deg 100 5 m 5 mm/s - 545 mm/s 79.7 cm 18.4 mm/s 9.98 ms
4.53 1.70 deg 100 5 m 5 mm/s 10 557 mm/s 28.6 cm 3.57 mm/s 9.54 ms

Table 4.7: Controller parameters and results for stochastic robustness experiments with PROBA-3 ma-
noeuvre.

the controller corrects the trajectory at every step in an attempt to satisfy the terminal state constraint.

This results in an increased ∆V of 41% on average in respect to the unperturbed case, which is very

significant. We also see an average terminal state error of 1.1 m and 28 mm/s.

Figure 4.49: PROBA-3 manoeuvre with nonlinear dynamics simulation, navigation and actuator errors.

In an attempt to decrease the required fuel, we increase the number of samples in the prediction

horizon. The result is presented in figure 4.50, where the the trajectories are less dispersed and the

residual error is smaller. However, the average ∆V has increased to more than double of that in the

undisturbed case. This is due to the fact that now the controller performs more correction manoeuvres,

which are planned based on imperfect information, and thus more fuel is wasted in attempts to drive

the predicted terminal state to the reference. Furthermore, these corrections are not performed as

planned, due to actuator errors, inciting further corrections. Thus, increasing the prediction horizon has

the opposite effect on fuel expenditure in the presence of navigation and actuator errors than solely in

the presence of modelling errors, although terminal error does improve.

To decrease the controller sensitivity to stochastic disturbances, we substitute the terminal state

constraint with a terminal box, as discussed in Section 4.6.3. Using an 8 m terminal box for position (ε0,p)

and 5 mm/s for velocity (ε0,v), and maintaining these dimensions constant throughout the manoeuvre,

yields the result from figure 4.51. There is now less manoeuvre correction, which results in a significant

decrease of 78 mm/s in respect to the result from figure 4.49. However, the terminal error for position

is significantly higher at 12 m, which is due to the loosening of the terminal constraint, although the

terminal error for velocity is comparable.

To maintain accuracy and reduce sensitivity to disturbances, the dynamic terminal box approach

presented in Section 4.6.3 is now used, with a linear decrease with time of the terminal box dimensions.
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Figure 4.50: PROBA-3 manoeuvre with nonlinear dynamics simulation, navigation and actuator errors,
and increased prediction horizon.

Figure 4.51: PROBA-3 manoeuvre with nonlinear dynamics simulation, navigation and actuator errors,
and terminal box.

With an initial box size of 5 m and 5 mm/s, yields the result from figure 4.52. The ∆V has increased

from the previous simulation, although it remains below that without the use of a loose terminal box.

Furthermore, the terminal error for position and velocity has improved in comparison to the result from

figure 4.49. Although the gain in ∆V is not significant, this result validates this type of approach for

achieving better fuel performance in face of stochastic disturbances. With further parameter tuning and

a different method for varying the terminal box dimensions, even better performance might be achieved.

Finally, we note that the terminal velocity at the end of the manoeuvre is significant, at 18 mm/s for

the previous simulation. This value is still significantly higher than the navigation uncertainty, and thus

can be improved. As mentioned in Section 4.6.4, this is due to the sparsity of the FH-MPC controller.

Thus, we attempt to improve this by suggesting the use of a terminal quadratic controller that substitutes

the final iteration of the nominal controller, as described in that section. With a prediction horizon of

NT = 10, an input cost matrix of R = I and terminal state cost matrix Qf = diag [1, 1, 1, 104, 104, 104]

yields the result from figure 4.53, where the thrust profile of the quadratic controller is shown. We see

some increase in the ∆V , although it is less than the decrease in residual velocity, which at 3.6 mm/s
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Figure 4.52: PROBA-3 manoeuvre with nonlinear dynamics simulation, navigation and actuator errors,
and dynamic terminal box.

is comparable to the navigation uncertainty, alike the residual position which is now only 29 cm. The

terminal controller only operates during what would instead be the last sample of the FH-MPC controller,

and thus incurs no increase in manoeuvre duration. Better performance might be achieved with more

tuning of the terminal horizon NT or the terminal cost matrices R and Qf , although this result validates

this approach of achieving better accuracy.

Figure 4.53: PROBA-3 manoeuvre with nonlinear dynamics simulation, navigation and actuator errors,
dynamic terminal box and quadratic terminal controller.

92



Chapter 5

Conclusions

Model predictive control is an appropriate guidance and control strategy for use in orbital rendezvous.

By using a cost function proportional to the fuel spent, a terminal state constraint, and the fixed-horizon

strategy, a fuel-optimal formulation is obtained, where the manoeuvre duration is pre-defined. Further-

more, because this cost function can be re-written as a linear one, and because the relative dynamics

between the spacecraft can be accurately linearised via the Yamanaka-Ankersen state transition matrix

[16], allowing for the use of a linear prediction model, this fuel-optimal formulation known as FH-MPC [19]

becomes a linear program, which can be optimized very efficiently and thus possibly enabling real-time

use, although this also depends on the specific hardware of each mission.

The FH-MPC formulation presents advantages in fuel-consumption over traditional guidance tech-

niques, which usually rely on two-impulse manoeuvres. Since MPC is not constrained to just two control

decisions, intermediate thrust actions are naturally exploited by the controller to generate more efficient

trajectories which are not possible with the two-impulse approach. This becomes especially advanta-

geous for manoeuvres in elliptical orbits, such as the PROBA-3 mission rendezvous experiment [4],

where the dynamics are time-varying and the instants at which burns are executed become more criti-

cal. However, the FH-MPC formulation only optimizes the fuel for a given pre-defined transfer duration.

The VH-MPC formulation thus allows for optimizing both manoeuvre duration and fuel, by formulating

the problem as a MILP [19]. Although the online use of MILP may be infeasible, VH-MPC can be used

to determine offline the optimal manoeuvre duration, then executing the manoeuvre with FH-MPC.

The main advantage of the MPC strategy over other control strategies is that it allows for the explicit

modelling of control and state constraints [2]. In a rendezvous scenario, this is useful to model thruster

limitations, which can be accomplished realistically with linear constraints if the spacecraft has multi-

directional thrust, as does the PROBA-3 chaser spacecraft, thus maintaining the FH-MPC formulation

as an LP. Another crucial operational constraint in close-proximity operations is passive collision safety

[43]. This requires, for each failure trajectory, the addition of several obstacle avoidance constraints,

which are naturally non-convex and thus incur in a high computational cost. These constraints have

previously been formulated as linear constraints [29, 30, 33, 43, 44], though with limited applicability.

Thus, this work proposed two new approaches for achieving collision avoidance with linear constraints.
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Firstly, The OAONP approach relies on a single offline nonlinear optimization with the original obstacle

constraints, from which linear constraints are determined for online use. On the other hand, the OAILP

technique performs a sequence of optimizations with linear constraints such that the solutions converge

to that with the nonlinear constraints. Although simulations showed this after a small number of iterations,

convergence has not been theoretically proved, and scenarios where the first iteration is infeasible limits

this technique. However, the satisfaction of non-convex constraints with convex optimization is desirable

and promising, and thus this technique may warrant further research.

Another contribution of this work is the use of the Ankersen zero-order hold particular solution [17],

which, to the best of the author’s knowledge, has not been used in an MPC for rendezvous context. Typ-

ically, a simpler impulsive discretization is used instead, while a constant thrust parametrization more

realistically models the spacecraft thrust profile. Because the sampling intervals are very large, however,

it may be undesirable to command constant thrust actions for such long periods of time. Nonetheless,

this may be overcome by easily defining, in the particular solution, the thrust duration to be less than the

sampling period, in what would become a partial zero-order hold discretization. Moreover, many space-

craft, including the PROBA-3 Occulter Spacecraft, only have non-throttleable on/off thrusters, and thus

perform intermediate thrust via PWM. An even more realistic model is then to use the PWM parameters

as decision variables, although this results in a non-linear prediction model. In [34] the authors Vazquez

et al. achieve this via iterative linear programming.

Another crucial aspect is robustness in the presence of disturbances, of which the most significant

in a rendezvous scenario are modelling errors, navigation uncertainty, and execution errors. Although

MPC can inherently achieve robust convergence [2], due to the fact that it is a closed-loop strategy,

additional techniques might be required to achieve robust feasibility, performance, and constraint sat-

isfaction. To ensure that the terminal constraint present in the FH-MPC formulation never renders the

optimization problem infeasible, we use the feasible terminal box approach [51], which relaxes the termi-

nal constraint to the minimum size that allows the problem to be feasible, while maintaining the problem

as an LP and not significantly increasing the computational complexity. Robust performance, which here

refers to robust fuel-performance and manoeuvre accuracy, is often not addressed in the literature. For

avoiding over-correction of the trajectory due to stochastic disturbances, we proposed a dynamically

variable terminal box constraint that substitutes the equality terminal state constraint, showing better

fuel-performance and maintaining accuracy. This, however, requires significant tuning and can benefit

from further research, for example, to compute the size of the terminal box as a function of the uncer-

tainty. We also proposed the use of a quadratic terminal controller, which substitutes the final iteration

of the FH-MPC controller, allowing for a more precise braking manoeuvre and granting better terminal

accuracy. Neither of these proposed techniques increases the computational complexity of the prob-

lem. Finally, although robust constraint satisfaction techniques were not considered here, the need for

these techniques was shown for the passive safety constraint. The chance-constrained MPC approach

presented in [32] is a good candidate, since it employs constraint tightening with online uncertainty

estimation, and does not significantly increase computational complexity.

Although MPC has the potential to be used for guidance and control of real rendezvous missions, its
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feasible implementation depends on the specific hardware for that mission. Furthermore, while MPC can

offer increased autonomy and better fuel consumption profiles, this must be balanced with its greatest

downside, which is the required computational complexity. Also, before it becomes an attractive alterna-

tive, there is a need to analyse weather MPC indeed offers fuel benefits over the traditional approach,

taking into account all disturbances present in a rendezvous mission, which can greatly reduce its per-

formance. This ties into the need for a standard approach for granting robustness that remains feasible

to implement in real-time, which does not yet exist and thus calls for further research.

Finally, we summarize future work suggested along this thesis:

• Study convergence of the OAILP algorithm to a local minimum of the original nonlinear problem,

and improve it to consider cases where the linear constraints yield an infeasible problem.

• Test the passive safety constraint, with OAONP or OAILP, in the presence of disturbances, and

apply robust constraint satisfaction techniques.

• Extend passive safety constraint to include mid-thrust failures.

• Improve upon the methods here presented here for robust performance, namely the dynamic ter-

minal box, by directly taking account the uncertainty, and the terminal quadratic controller.

• Compare the MPC algorithms developed with the conventional approaches in a realistic simulator

and evaluate if it indeed offers fuel benefits.

• Implement the MPC algorithm in an embedded environment comparable to flight hardware (e.g.

[52]).
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Appendix A

Particular Solution Integrals

In this appendix, the expressions for the integrals in equations (3.43) and (3.44) are presented, as solved

in [17].

Is3 =
1

2e

[
1

ρ(θt)2
− 1

ρ(θ0)2

]
. (A.1)

Ic3 = (1− e2)−
5
2

[
(1 + e2)(sin(Et)− sin(E0))− e

2
(sin(Et) cos(Et)− sin(E0) cos(E0) + 3(Et − E0))

]
,

(A.2)

Is2 =
1

e

[
1

ρ(θt)
− 1

ρ(θ0)

]
(A.3)

Ic2 = (1− e2)−
3
2 [sin(Et)− sin(E0)− e(Et − E0)] (A.4)

I3 = (1− e2)−
5
2

[
(
1

2
e2 + 1)(Et − E0)+

+
1

2
e2(sin(Et) cos(Et)− sin(E0) cos(E0))− 2e(sin(Et)− sin(E0)

] (A.5)

I1 = (1− e2)−
1
2 (Et − E0) (A.6)

I1J = (1− e2)−2

[
1

2
(E2

t − E2
0) + e(cos(Et)− cos(E0)) + (e sin(E0)− E0)(Et − E0)

]
(A.7)

Is2J = (1− e2)−
5
2

[
sin(Et)(1 +

e

2
cos(Et))− Et(

e

2
+ cos(Et))−

sin(E0)(1 +
e

2
cos(E0)) + E0(

e

2
+ cos(E0))− (e sin(E0)− E0)(cos(Et)− cos(E0))

] (A.8)
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