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Abstract

Recent work has shown promising results in causal discovery by leveraging interventional data with gradient-
based methods, even when the intervened variables are unknown. However, previous work assumes that the
correspondence between samples and interventions is known, which is often unrealistic. We envision a scenario
with an extensive dataset sampled from multiple intervention distributions and one observation distribution, but
where we do not know which distribution originated each sample and how the intervention affected the system,
i.e., interventions are entirely latent. We propose a method based on neural networks and variational inference that
addresses this scenario by framing it as learning a shared causal graph among a infinite mixture (under a Dirichlet
process prior) of intervention structural causal models . Experiments with synthetic and real data show that our
approach and its semi-supervised variant are able to discover causal relations in this challenging scenario.
Keywords: causal discovery, latent interventions, variational inference, Dirichlet process.

1. Introduction

Discovering causal relations among variables has count-
less applications in many scientific fields [25]. How-
ever, causal graphs are hard to learn from data; only with
strong assumptions can we ensure that we will learn the
correct causal structures from observations alone (even
with an unlimited supply of data). Recent work by [4]
has shown very promising results in causal discovery
by leveraging interventional data with gradient-based
methods, even when the intervened variables (targets)
are not known. However, that work assumes that the
correspondence between samples and interventions is
known beforehand—often an unrealistic assumption.

Our work addresses this limitation/drawback by
proposing a method for causal discovery under fully
latent interventions, through a neural-based variational
approach which infers the correspondences between
samples and interventions from data. Our framework
falls into the class of continuous constrained optimiza-
tion methods for finding the DAG structure; other meth-
ods include constraint-based methods [31, 24, 32]. and
score methods [6, 3, 10, 18]. We assume (as [4] do)
that the data is clustered into intervention groups, but
we relax their assumption that the correspondence be-
tween intervention groups and samples is known (see
Figure 1), opening the door to more realistic scenarios.
We model these latent interventions as being generated
by a Dirichlet process prior and formulate the problem
as one of end-to-end maximization of an evidence lower
bound (ELBO). We summarize our contributions as fol-
lows:

Figure 1: Illustrative example of the causal discovery
scenario we consider.

• We formulate causal discovery under latent inter-
ventions as searching for the shared causal graph
among an infinite mixture of intervened structural
causal models.

• We propose a variational formulation with a
Dirichlet process prior to model this infinite mix-
ture. We use latent intervention embeddings with
shared parameters to enable modeling an unlimited
number of interventions.

• We develop a semi-supervised variant of our
method; for when we know the correspondence for
a subset of the samples.

Experiments on synthetic and real-world data show
that our method is able to discover causal structures,
outperforming several baselines and reaching similar
performance to correspondence-aware methods.

1



2. Background
2.1. Structural causal models
We assume a structured causal model (SCM)
M := (S, p(E)) over d endogenous variables
X = {x1, . . . , xd}, associated to d independent
exogenous variables E = {ε1, . . . , εd}, functions
F = {ζ1, . . . , ζd}, and a collection of d assignments,

xj := ζj(PAG
j , εj) , j = 1, . . . , d, (1)

where PAG
j ⊆ X\{xj} is the set of parents of xj

according to a directed acyclic graph (DAG) G, i.e.,
xi ∈ PAG

j if and only if there is a directed edge xi → xj
in G. An SCM M defines a unique joint distribution
for X , usually referred to as the entailed distribution
pM(X), which can be factorized as

pM(X) =

d∏
j=1

pM(xj |PAG
j ), (2)

where pM(xj |PAG
j ) is the conditional distribution of xj ,

given its parents.

2.2. Interventions
Given an SCM M, we obtain an interventioned SCM
M̃ by replacing one (or more) of the original assign-
ments. Let I be the set of variables targeted by the inter-
vention; if I = ∅, M̃ = M. For each variable j ∈ I , the
intervention consists in one or multiple of the following
actions: replacing the assignment function ζj by ζ̃j ; re-

placing the parents PAG
j by a subset P̃A

G
j ; changing the

noise variable from ϵj to ϵ̃j . The SCM M̃ generally has
a different entailed distribution, called the intervention
distribution:

pM̃(X) =
∏
j /∈I

pM(xj |PAG
j )∏

j∈I

pM;do
(
xj :=ζ̃j(P̃AG

j ,ε̃j)
)(xj |PAG

j ).
(3)

If there are K possible interventions, we denote the
corresponding sets of target variables as I(k), for k =
1, . . . ,K, and the corresponding SCMs by M̃(k).

We divide the types of interventions into: atomic, if
the target variable xj is set to a constant value; stochas-
tic, if xj is set to a random variable ε̃j ; imperfect (or
soft), if the intervention embedding and the set of par-
ents are changed, as long as it does not become empty.
We do not consider interventions that are able to add
new elements to PAG

j . This means that the intervention
graph only differs from the observational by the removal
of edges.

2.3. Faithfulness and Markov equivalence classes
Given a set F where each element ζi is sufficiently de-
pendent on all of arguments PAG

i , we obtain an SCM
M whose computations strictly follow the structure of

G. In this scenario, G and pM(X) are said to be mu-
tually faithful since G encodes all and only the condi-
tional independencies that hold in the entailed distribu-
tion. The set of faithful graphs that could entail a partic-
ular joint distribution is called the Markov equivalence
class (MEC) [34]. If there is access to intervention data
(in a set of interventions I), it is possible to shrink the
MEC to the so-called I-MEC [9]: the subset of graphs
in the MEC that have the same conditional independen-
cies after applying the interventions in I.

2.4. Continuous constrained optimization for structure
learning

Our work builds on a recent line of research that uses
continuous constrained optimization to address causal
discovery, initiated by [36] and extended by [4] to cases
where there is data from intervention distributions. In
general, these methods adopt the maximum a posteri-
ori (MAP) criterion (a.k.a. penalized maximum likeli-
hood). Based on a generative/sampling model p(D|G, θ)
for data D, given the graph structure G and parameters
θ, and on a prior p(G) over graphs, they seek a graph
that maximizes the score function

S(G) := max
θ

log p(D|G, θ) + log p(G). (4)

The prior p(G) penalizes graph complexity to avoid
over-fitting. A typical choice is p(G) ∝ exp(−λ|G|),
for λ > 0 and |G| is some graph complexity mea-
sure (e.g., number of edges). With finite data, exact
independence seldom occurs, thus graphs maximizing
log p(D|G, θ) alone would almost always be fully con-
nected. If D is a collection of i.i.d. observations, then
p(D|G, θ) =

∏n
i=1 p(xi|G, θ).

Central to this class of methods is the weighted adja-
cency matrixWG ∈ Rd×d

≥0 , whereWG
ij > 0 is equivalent

to (i, j) ∈ G, which is treated as a parameter itself or as
a function of the parameters. To ensure the estimated
graph is a DAG, [36] proposed the constraint

trace
(
eW

G)
− d = 0, (5)

where eW
G

is the matrix exponential. Several other
methods apply non-linear models such as neural net-
works [19, 37] and define WG differently.

The works from [23, 14, 4] treat the adjacency matrix
as a random variable and relax the score from Eq. 4 in
the following way:

S⋆(Λ) := (6)

max
θ

E
G∼Bern

(
G;σ(Λ)

)[ log p(D|G, θ) + log p(G)
]
,

where σ(Λ) is the sigmoid transformation applied
element-wise to the parameter matrix Λ ∈ Rd×d,
Bern

(
G;σ(Λ)

)
is a distribution over graphs, with mutu-

ally independent edges, with expected value σ(Λ). This
score tends asymptotically to S(G) as σ(Λ) progres-
sively concentrates its mass on a single DAG G.
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3. Differentiable causal discovery under latent inter-
ventions

In this section, we present a score for perfect or imper-
fect fully latent interventions, and show how this score
can be approximately maximized by using an efficient
variational optimization algorithm.

3.1. Mixture of intervention distributions
We assume that the dataset D is produced by a mixture
of SCMs, each resulting from an intervention applied to
a base SCM M. More specifically, D is partitioned into
K + 1 exchangeable groups, with group k containing
i.i.d. samples from the intervention SCM M̃(k) result-
ing from applying the kth intervention to the base SCM
M; the index k = 0 indicates the absence of interven-
tion, i.e., M̃(0) = M (observational model). We denote
by M̃ = (M̃(0), . . . ,M̃(K)) the ensemble of SCMs.

The latent variables z(i) ∈ {0, . . . ,K} indicate which
SCM generated each sample: z(i) = k if and only if x(i)

is a sample of the SCM M̃(k). Treating these correspon-
dences z(i) as latent is a distinctive aspect of our work;
while [4] also assume unknown M̃, they assume that
z(i) is observed, not latent. We call the scenario where
both M̃ and z(i) are unknown as fully latent interven-
tions.

Marginalizing with respect to the latent z(i) yields the
mixture model

p(x(i)|M̃) =

K∑
k=0

p(z(i) = k) p(x(i)|z(i) = k,M̃)

=

K∑
k=0

τk pM̃(k)(x
(i)),

where we define τk = p(z(i) = k). Conditioning on
z(i) and invoking Equation 3 leads to

p(x(i)|z(i),M̃) =

K∑
k=0

I(z(i) = k)
∏

j /∈I(k)

pM(x
(i)
j |PAG

j )∏
j∈I(k)

pM;do(xj :=ζ̃k
j (PAG

j ,ε̃j))(x
(i)
j |PAG

j ).

We also consider that, like the group memberships, the
set of targets I(k) of each intervention k is unknown (ex-
cept for I(0) = ∅).

3.2. Distribution over causal graphs
We represent the causal graph G via the adjacency ma-
trix AG ∈ {0, 1}d×d. Following previous work, our
prior models each entry AG

ij , corresponding to edge
xi → xj , as a Bernoulli variable independent of all the
others,

p(G) =
d∏

i,j=1

σ(λij)
AG

ij
(
1− σ(λij)

)1−AG
ij , (7)

where σ(u) = eu/(1 + eu) is the usual logistic trans-
formation (sigmoid) and the λij are hyper-parameters.

This prior over graphs is simplistic since it does not
encode that G has to be a DAG. In this paper, we set
λij = λG , for all i, j; however, in practice, a do-
main expert using the proposed method can embed prior
knowledge in these hyper-parameters (our method can
be straightforwardly adapted to that case).

The adoption of a probabilistic prior p(G) should not
be seen as expressing that it is in fact a random object,
but rather as a subjective prior in the context of epis-
temic uncertainty about it.

3.3. Intervention embeddings and shared intervention
space

We use density estimators, e.g., neural networks and
normalizing flows [27], to model the conditional den-
sities in both the observational and interventional dis-
tributions. With this goal in mind, we use an appro-
priate encoding of the changes in the intervened as-
signments and the intervention targets. The set of tar-
gets in the kth intervention M̃(k) is indicated by a d-
dimensional binary vector rk = [rk1, . . . , rkd], where
rkj = 1 if and only if j ∈ I(k), and rkj = 0 otherwise.
Since I(0) has no targets (it corresponds to the obser-
vational SCM M), we have r0 = [0, 0, . . . , 0]. To en-
code the type of intervention, we introduce the interven-
tion embedding vector uk ∈ Rh, where h is an hyper-
parameter. The vector uk represents the changes in the
affected assignments for intervention M̃(k). We denote
by R = [r0, r1, . . . , rK ] ∈ RK×d the matrix of inter-
vention targets, and by U = [u0, u1, . . . , uK ] ∈ RK×h

the matrix of intervention embeddings. We use (R,U)
as the representation of the interventions M̃.

Putting everything together, when given the graph G,
interventions M̃, indicator z, and assuming the inter-
vention is imperfect, the log-probability of single data-
point x is given by

log p(x|z,M̃,G; θ) = (8)

=

d∑
j=1

log gj(xj |AG
j ⊙ x, (e⊤z R)j (e

⊤
z U − u0) + u0; θj),

where ez ∈ RK is a one-hot vector indicating z, and
AG

j ⊙x is the Hadamard (elementwise) product between
the jth column of the adjacency matrix of G and x, which
is equivalent to selecting the entries of x in PAG

j . The
parameters θ = (θ1, . . . , θd) parameterize the condi-
tional densities g1, . . . , gd. We will consider in the se-
quel several forms for these conditional densities, e.g.,
using parametric families and normalizing flows. Cru-
cially, each conditional density gj is a distribution of
xj , and the parameters θj are shared between all of the
interventions—only the intervention-specific interven-
tion embedding vector uk changes depending on the in-
tervention. This enables dealing with an unlimited num-
ber of interventions, as we shall see.
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3.4. Modeling the conditional densities
A simple nonlinear model for the conditional densities
gj can be constructed using neural networks. We use a
neural network NN([uk, A

G
j ⊙ x]; θj) : R(h+d) → Rm,

a parametric non-linear mapping, parameterized by θj ,
that receives the concatenation of the parents of xj and
the intervention embedding uk and outputs m parame-
ters of some distribution f(xj ;NN([uk, A

G
j ⊙x]; θj)) of

the variable xj . There are many possible choices for the
distribution f , depending on the problem at hand and on
whether xj is discrete or continuous: Poisson (m = 1),
Bernoulli (m = 1), univariate Gaussian (m = 2), cat-
egorical, etc. In this paper, we focus on three density
families in R, which we experiment with in Section 4.

Linear Gaussian We use a neural network
NN(uk; θj) to output coefficients ãj ∈ Rd, and
σ̃j , b̃j ∈ R. Then, we use these as parameters of
a Gaussian distribution whose mean is an affine
transformation of the values of the parents of xj :

gj(xj |AG
j ⊙ x, uk) = N

(
ã⊤j
(
AG

j ⊙ x
)
+ b̃j , σ̃

2
j

)
.

Non-Linear Gaussian We use a neural network
NN([uk, A

G
j ⊙ x]; θj) to output coefficients µ̃j ∈ R and

σ̃j ∈ R, given the values of the parents of xj as input.
Then, we use these as parameters of a Gaussian distri-
bution:

gj(xj |AG
j ⊙ x, uk) = N

(
µ̃j , σ̃

2
j

)
.

Normalizing flows To model non-linear non-
Gaussian conditional densities, we employ normalizing
flows. A normalizing flow [27] is a transforma-
tion of a base probability density (in our case a
Gaussian) through a sequence of invertible map-
pings τ(xj ; W̃j) = τl ◦ τl−1 · · · ◦ τ1(xj ;ω1), where
W̃j = {ω1, . . . , ωl}. We use a model introduced in
[12], called Deep Sigmoidal Flows (DSF), where each
of the invertible mappings has the following form:

τl(x) = σ−1(w⊤
l σ(alx+ bl)),

wl ∈ △F−1, al ∈ RF
+, bl ∈ RF .

where △F−1 is the probability simplex and F is
an hyper-parameter. We use a neural network
NN([uk, A

G
j ⊙x]; θj) to output the parameters W̃j . With

the former, we obtain a controllable flow τ(xj ; W̃j) that
when given xj , outputs the parameters of a Gaussian
distribution µ̃, σ̃. Altogether, the joint density has the
following form:

gj(xj |AG
j ⊙ x, uk) =

∣∣∣∣∣det
(
∂τ
(
xj ; W̃j

)
∂xj

)∣∣∣∣∣N(µ̃, σ̃2
)
.

3.5. Modeling latent interventions with a Dirichlet pro-
cess

To obtain a complete statistical description of the data-
generating process, we still need to design a prior distri-
bution for the latent interventions, apart from the sam-
pling model gj . Namely, we need a prior distribution
for the correspondence z, the intervention embeddings
U , and the intervention targets R. Furthermore, while
experimentally, we can design scenarios where K, the
number of latent interventions, is known, in general,
given a data set, it will not be clear what the number
of latent interventions is. Therefore, we will formulate
the model to support a potentially non-specified number
of latent interventions K.

We do this by using a Dirichlet process prior with a
stick-breaking process representation [7, 30] as the prior
distribution of the variables associated with the latent
interventions. The generative story is as follows. We
first draw the graph G from p(G), as described in Equa-
tion 7. Then, for k = 0, 1, . . . , we sample the variables
uk and rk, associated with each intervention M̃(k), as
well as the probability βk of picking that intervention as
a stick-breaking process, with scaling parameter α > 0
(which controls the clustering effect of the Dirichlet pro-
cess) and hyperparameter γ (which controls the sparsity
of the intervention targets), as follows:

uk ∼ N (0, Ih)

rkj ∼ Bern(σ(γ)), j = 1, . . . , d

βk = vk

k−1∏
k′=0

(1− vk′), with vk ∼ Beta(1, α).

Then, to generate the data, we first sample the interven-
tion index z(i), and then sample a point x(i) condition-
ing on the corresponding intervention M̃(z(i)):

z(i) ∼ Cat(β0, β1, . . . , βk, . . .)

x
(i)
j ∼

{
gj(xj |AG

j ⊙ x(i), u0) if rz(i)j = 0

gj(xj |AG
j ⊙ x(i), uz(i)) if rz(i)j = 1.

Figure 2 contains a graphical model representation of
this joint distribution.

3.6. Variational approximation
To obtain the marginal likelihood p(D|G; θ), it is nec-
essary to marginalize over the joint distribution of the
model present in Section 3.5, i.e.:

p(D|G; θ) =
N∏
i=1

p(x(i)|G; θ) (9)

=

N∏
i=1

Ez(i),M̃∼p(z(i),M̃)

[
p(x(i)|z(i),M̃,G; θ)

]
.

However, the exact maximization of this marginal log-
likelihood (which involves a product of Gaussians, Beta
distributions, and complex conditional distributions
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Figure 2: Graphical model representation of the Dirich-
let Process Mixture model augmented for the causal dis-
covery problem.

generated by neural networks) is intractable. There-
fore, we resort to approximate variational inference
[2]. We design a family of tractable variational distri-
butions qϕ(z(i),M̃) to approximate the true posterior
p(z(i),M̃|x(i),G; θ). For the variables associated with
latent interventions M̃ we propose the fully factorized
and finite variational family

q(M̃) =

K∏
k=0

( d∏
j=1

qR(rkj)
)( h∏

l=1

qU (ukl)
)
qV (vk),

where here the hyper-parameter K defines the trunca-
tion level of the variational approximation, and the dis-
tributions associated with vk, ukl, and rkj take the fol-
lowing form:

qV (vk; ρk, wk) = Beta
(
ρkwk, (1− ρk)wk

)
;

qU (ukl;µkl, σkl) = N (µkl, σ
2
kl);

qR(rkj ;πkj) = Bern(πkj).

where πkj , µkl, σkl, ρk, wk are free parameters to be op-
timized, for each k ∈ {0, . . . ,K}, l ∈ {1, . . . , h} and
j ∈ {1, . . . , d}. For the distribution of interventional as-
signments z, we propose the following variational pos-
terior:

qZ(z) ∝ exp

(
u⊤z NN(x;ϕZ)√

h

)
, k = 1, . . . ,K ,

where NN(x;ϕZ) : Rd → Rh is a neural network. We
provide details in Appendix A about the derivation and,
in the case of the beta distribution, closed-form approxi-
mation of the Kullback–Leibler divergence between the
proposals and the prior. We use the shorthand ϕ to de-
note the vector of all variational parameters, which in-
cludes ϕZ , µkl, σkl, ρk, wk, πkj for all k ∈ {0, . . .K},
l ∈ {1, . . . , h}, and j ∈ {1, . . . , d}.

Given the ingredients above, we obtain the follow-
ing lower bound for the marginal likelihood from Equa-

tion 9:

logp(D|G; θ) ≥
N∑
i=1

Ez(i),M̃∼q(z(i),M̃;ϕ)

[
log p(x(i)|z(i),M̃,G; θ)

]
︸ ︷︷ ︸
−DKL

[
q(z(i),M̃)||p(z(i),M̃)

]︸ ︷︷ ︸
ELBO

q(z(i),M̃;ϕ)
(x(i),G;θ)

(10)

For different choices of ϕ, we get different lower bound
approximations to the marginal likelihood. By maxi-
mizing the ELBO w.r.t. ϕ we minimize the approxima-
tion gap, which equals he KL divergence between the
approximate and the true posterior.

3.7. A score for latent interventions
Using the log-likelihood proposed in Equation 9, we
write a new score function S(G) for our model with la-
tent interventions, with an associated relaxation to sup-
port a weighted adjacency σ(Λ), as shown in Equation
6. As discussed in Section 3.6, in general we will not
be able to exactly maximize this score. However, using
the variational approximation from Equation 10, and as-
sociated variational family Q, we can approximate the
score S(G) with a surrogate score SQ(G;ϕ), for any ϕ,
as follows:

S(G) ≥

max
θ

N∑
i=1

ELBOq(z(i),M̃;ϕ)(x
(i),G; θ) + log p(G)︸ ︷︷ ︸

SQ(G;ϕ)

.

Observing equation

SQ(G;ϕ) =
S(G)− DKL

[
q(z(i),M̃;ϕ)||p(z(i),M̃|x(i),G; θ∗)

]
,

we notice that, by maximizing the SQ(G;ϕ) w.r.t. ϕ
we minimize the approximation gap between S(G) and
SQ(G;ϕ), which equals the Kullback–Leibler diver-
gence between the approximate and the true poste-
rior. Given this insight, we propose the surrogate score
SQ(G), where the following inequality holds for all ϕ:

S(G) ≥

max
θ,ϕ

N∑
i=1

ELBOq(z(i),M̃;ϕ)(x
(i),G; θ) + log p(G)︸ ︷︷ ︸

SQ(G)

≥ SQ(G;ϕ). (11)

As many score-based causal discovery methods do, we
can relax the surrogate score from Equation 11, yielding

S∗
Q(Λ) = max

θ,ϕ
E
G∼Bern

(
G;σ(Λ)

)[ (12)

N∑
i=1

ELBOq(z(i),M̃;ϕ)(x
(i),G; θ) + log p(G)

]
.
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The gap between the relaxed score S∗(Λ) and our surro-
gate S∗

Q(Λ) tends asymptotically to the KL divergence
between the best approximate posterior from Q and the
true posterior, as σ(Λ) progressively concentrates its
mass on single DAG G, more concretely:

S∗(Λ)− S∗
Q(Λ) = E

G∼Bern
(
G;σ(Λ)

)[
DKL

[
q(z(i),M̃;ϕ∗)||p(z(i),M̃|x(i),G; θ∗)

]]
,

where θ∗ and ϕ∗ are respectively the model and varia-
tional parameters that maximize Equation. 12.

3.8. Inference algorithm
The surrogate score, coupled with the acyclicity con-
straint from [36], enables us to formulate causal discov-
ery under latent interventions as the following optimiza-
tion problem:

Λ∗ = argmax
Λ

SQ(Λ)

s.t. Tr
(
eσ(Λ)

)
− d︸ ︷︷ ︸

h(Λ)

= 0, (13)

Following [36], we use the augmented Lagrangian pro-
cedure [11, 26, 8] to transform the problem in Equa-
tion 13 into a sequence of unconstrained optimization
subproblems. When we estimate the gradients using
the path-wise gradient estimator [17, 28], each uncon-
strained optimization subproblem reduces to sampling
the graph and the latent variables from the variational
posteriors using the reparametrization trick, minimizing
the following objective:

L(θ, ϕ,Λ, z,M̃,G;x, µt, φt) =

− log p(x|z,M̃,G; θ) + Ω(ϕ)− λG ||Λ||1 + φth(Λ)

+
µt

2
h(Λ)2,

where Ω(ϕ) denotes the sum of the Kullback–Leibler
divergences, and µt and φt are the parameters of the
augmented Lagrangian at the tth iteration. For esti-
mating the gradients of Λ, q(z) and q(rkj) we used a
Gumbel-softmax continuous relaxation [13, 21] which,
for the causal graph’s distribution, was combined with
the straight-through gradient estimator [1], to make sure
the graph samples actually represented the hard depen-
dencies of the SCM, instead of fractional ones. Hav-
ing estimated the gradients, for each sample, we aver-
age them and feed them to the first order stochastic op-
timization algorithm Adam [15]. We implemented our
method with the PyTorch framework [20].

3.9. Semi-supervised extensions
The causal discovery algorithm can be extended to cases
where we have information about the correspondences
z(i) and/or the intervention targets I(k). To achieve
this, we only have to ignore the corresponding varia-
tional posteriors and use the observed values z(i) and

r(i) as constants. We designate the original version of
our model the latent variant, the one with observed z(i)

the unknown variant, and the one with observed z(i)

and r(i) the known variant. It is straightforward to ex-
tend our method to a semi-supervised setting—a sce-
nario where we only observe the correspondence z for
a fraction of the samples. Under this scenario, we still
use the samples from the variational posterior to predict
the unobserved values of z and use the observed ones
to improve the variational posterior. In essence, with
the semi-supervised variant, we obtain a model that in-
terpolates between the latent variant and the unknown
variant. We follow the approach from [16] and extend
the ELBO objective (in our case, the lower bound of the
distribution p(D|G; θ)). Let O be the set of the indices
for which the intervention assignment z is known, and
with ẑ(i) its particular value. We rewrite the bound on
the log-likelihood as :

logp(D|G; θ) ≥
N∑
i=1

ELBOθ,q(ẑ(i),M̃)(x
(i),G)

+ κ I(i ∈ O) EM̃∼q(M̃)

[
log q(ẑ(i)|x(i),M̃;ϕz)

]
,

where in the first term, when i ∈ O, we do not sample
from q(z(i)|x(i),M̃;ϕz), using the observed value ẑ(i)

instead. The variable κ ∈]0, 1[ is an hyper-parameter
that controls the relative importance of supervised com-
ponent of the objective. Using this bound, we can write
a new relaxed surrogate score S∗

SLL(Λ) as:

S∗
SSL(Λ) = E

G∼Bern
(
G;σ(Λ)

)[
N∑
i=1

ELBOθ,q(ẑ(i),M̃)(x
(i),G)

+ κ I(i ∈ O) EM̃∼q(M̃)

[
log q(ẑ(i)|x(i),M̃;ϕz)

]]
.

4. Experiments
We tested our method on synthetic and real data. The
synthetic datasets allow us to do a systematic, controlled
comparison of different methods in different scenarios
(graph size and density, intervention and assignment
types). In order to generate SCMs, perform interven-
tions on them, and sample the corresponding entailed
distributions, we created a Pytorch package for this pur-
pose.1

Single-node interventions. We generated SCMs with
d = 10 variables with a Erdős-Rényi scheme with ex-
pected number of edges per node e ∈ {1, 4}. We gen-
erated 10 SCMs for each combination of e, conditional
density (linear Gaussian, non-linear Gaussian, and nor-
malizing flow), and intervention type (stochastic and

1The code will be provided upon acceptance.
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Figure 3: Histogram of Hamming distance in the exper-
iments with cause-effect pairs.

imperfect). In each of the SCMs, we performed 1 in-
terventions for every variable. For each SCM within
each configuration, we explored the following hyper-
parameter range: λG ∈ {−.1,−.01, 0, .01, .1}, and
γ ∈ {−.1,−.01}. For the remaining hyperparameters,
we set α = 9, h = 248 and the truncation level K =
11—the hyperparameter configuration that achieved the
best log-likelihood on a validation set. From the gen-
erated SCM, we produced a dataset with n = 10000
samples, where each intervention has ⌊ n

d+1⌋ elements.
This dataset was split into training (80%) and valida-
tion (20%). The models were trained for 500 epochs for
the first iteration of the augmented Lagrangian and 50
epochs for the remaining ones, with a full batch(B =
8000) until h(Λ) < 10−8, and learning rate of 10−2.5.
The results from these experiments are shown in Table
1. The metric we use is Hamming distance (HD) be-
tween the adjacency matrices of the ground-truth graph
and the estimated one. The columns from Table 1 cor-
respond to the different variants we present in Section
3.9: latent refers to our model, unknown assumes that
the correspondences are known (as [4]), and known as-
sumes that both correspondences and intervention tar-
gets are known. We additionally include a “naive” ob-
servational model (a baseline which ignores the exis-
tence of intervention data, i.e., that assumes K = 1 as
if all data was generated by the observational model).
The experimental results preponderantly show that our
method (the latent variant) consistently outperforms the
observational baseline and is worst than the unknown
variant, as expected, but only slightly. This indicates
that taking account latent interventions, when these are
present, improves the recovery of the causal graph.

Single-node interventions on cause-effect pairs. We
generated two-variable linear Gaussian SCMs (cause-
effect pairs) with edge probability e = 2

3 (equal prob-
ability for each of the three possible graphs). The SCMs

Model e latent unknown known observational

Stochastic Interventions:
L. G. 5.9± 6.2 3.4± 3.2 0.5± 1.3 10.3± 7.8
N. L. G. 1 12.2± 3.9 10.3± 2.5 7.0± 3.6 13.7± 3.8
N. F. 8.7± 6.6 8.0± 2.7 6.6± 2.2 11.3± 5.0

L. G. 27.2± 6.2 24.1± 5.8 15.6± 6.0 39.6± 5.0
N. L. G. 4 35.8± 3.8 30.3± 5.3 27.7± 4.3 37.5± 5.2
N. F. 36.1± 4.4 35.5± 8.1 31.5± 5.6 40.2± 6.9

Imperfect Interventions:
L. G. 5.8± 4.2 6.2± 3.06 4.7± 3.6 10.4± 2.9
N-L. G. 1 9.3± 2.4 8.9± 2.5 7.8± 3.9 10.5± 2.8
N. F. 8.8± 3.0 9.1± 3.5 7.9± 1.4 11.5± 5.4

L. G. 35.9± 8.3 29.7± 5.6 17.7± 7.9 39.1± 9.1
N. L. G. 4 32.1± 6.0 32.6± 5.8 32.8± 5.4 39.8± 9.3
N. F. 30.4± 12.2 30.2± 11.2 25.8± 3.9 36.7± 9.8

Table 1: Hamming distances on synthetic 10 variable
SCMs. Our models L.G., N.L G., and N.F. stand for,
respectively, linear Gaussian, non-linear Gaussian, and
normalizing flows.

were generated as described in Appendix ??. We sam-
pled 60 SCMs, and generate a dataset of n = 999 sam-
ples, where each intervention has 333 elements. The
sampled graph G, with variables A and B is one of 3
possible graphs, A causes B, B causes A, or A and B
have no cause-effect relation. All of the possible graphs
share the MEC. We compare the variants presented in
Section 3.9 in addition to the naive observational base-
line. Figure 3 contains an histogram of Hamming dis-
tances for each of the variants. Edges in the anti-causal
direction cost HD = 2, missing edge or wrong edge
is HD = 1, and correct graph is HD = 0. The re-
sults show for this simple problem that cannot be identi-
fied using observational data alone, that our method cor-
rectly identifies a significant majority of the cause-effect
pairs, even without information about the intervention
assignments.

Real-world data set Finally, we tested our method
on the flow cytometry data set of [29]. The measure-
ments are the level of expression of phosphoproteins and
phospholipids in humans cells. Interventions were per-
formed by using reagents to activate or inhibit the mea-
sured proteins. The dataset comprises 7466 items with
11 variables each. Figure 4 contains an illustration of
the consensus graph from [29]. This graph contains 11
edges. Table 2 compares the estimated graph, under dif-
ferent conditional density assumptions but assuming im-
perfect interventions, to the consensus graph from [29].
The results from the real-world data set show that our
method outperforms several baselines, even with meth-
ods that use information regarding intervention corre-
spondences and targets. The reasons that might justify
relatively good results on this standard problem is that i)
the causal sufficiency assumption may not hold, ii) the
interventions may not be as specific as stated, and iii) the
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Figure 4: Classic signaling network and points of in-
tervention. This is a graphical illustration of the con-
ventionally accepted signaling molecule interactions,
the events measured, and the points of intervention by
small-molecule inhibitors. This illustration was ob-
tained from [29].

SHD tp fn fp rev F1 score

IGSP [35] 18 4 6 5 7 0.42
GIES [9] 38 10 0 41 7 0.33
CAM [5] 35 12 1 30 4 0.51
DCDI-G [4] 36 6 2 25 9 0.31
DCDI-DSF [4] 33 6 2 22 9 0.33

L. G. (ours) 33 7 11 22 3 0.30
N. L. G. (ours) 19 7 11 8 0 0.42
N. F. (ours) 30 9 9 21 1 0.38

Table 2: Results for the flow cytometry dataset. The
results for the baselines are reproduced from [4]. Our
models L.G., N.L G., and N.F. stand for, respectively,
linear Gaussian, non-linear Gaussian, and normalizing
flows. They all assumed imperfect interventions.

ground truth network is possibly not a DAG since feed-
back loops are common in cellular signaling networks
as noted by [4]. These reasons can potentially be detri-
mental to the other methods and our method appears to
be robust to them.

5. Related Work
The previous work that is closest to ours in that by [4].
As they do, we assume that the data is clustered in inter-
vention groups, but we relax their assumption that the
correspondence between intervention groups and sam-
ples is known, opening the door to more realistic sce-
narios.

The so-called “known” and “unknown” variants of
our method share the assumptions made by [4]; how-
ever, contrary to them, the number of distinct neural net-
works in our model is not dependent on the number of
interventions, which allows scaling well to many inter-

ventions. We achieve this by encoding the change in
assignments associated with each intervention using a
specific latent variable u that we call intervention em-
bedding and conditioning a shared model on it when
computing the log-probability.

Our method can be seen as a variational autoencoder
(VAE) with a Dirichlet process (DP) prior, with a stick-
breaking process representatoion. The work by [22] in-
troduces a VAE where the stick-breaking weights are the
latent variables. Our model differs from theirs in that
we use the entire DP (including the atoms). We only
use the stick-breaking weights in the KL divergence of
the correspondence variable z. This KL divergence has
a closed-form, so we do not sample the stick-breaking
weights as they do. [33] proposes a VQ-VAE model
with discrete latent variables, each represented as a la-
tent embedding vector (an atom). Our approach is sim-
ilar in that we use atoms (the intervention embeddings
and intervention targets) to represent discrete latent vari-
ables. However, we do it in a statistically sounder way
that more naturally fits our application.

6. Conclusion

We introduced an efficient variational optimization al-
gorithm for causal structure learning under latent inter-
ventions. Our results are competitive with other state-
of-the-art algorithms on the flow cytometry data set. Ex-
periments with synthetic data show that our approach
can recover causal relations even in our more challeng-
ing scenario, and it can consistently outperform our
purely observational alternative.

A limitation of our method is the variational family
we use. The proposal for variational posterior considers
that the stick-breaking weights, the intervention embed-
dings, and intervention targets are independent of each
other. In some cases, this can potentially create a surro-
gate score whose maximum structure is not an element
of the I-Markov equivalence class.

There are many avenues for future work. Our frame-
work is particularly appealing for problems where per-
forming interventions explicitly is expensive or unethi-
cal, but where interventions occur naturally in the data
without being explicitly observed. Experimenting with
more flexible variational families also seems appealing,
albeit this may come at the cost of the closed-form ex-
pressions for the KL divergences.
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A. Kullback–Leibler Divergences

DKL

[
q(M̃, z(i))||p(M̃, z(i))

]
=

=

T∑
k=0

h∑
l=1

DKL

(
q(ukl)||N (0, 1)

)
+

T∑
k=0

d∑
j=1

DKL

(
q(rkj)||Bern(γ)

)
+

T∑
k=0

DKL

(
q(vk)||pθ(vk|α)

)
+EM̃,z∼q(M̃,z)

[
log

q(z|u0, . . . , uT )
p(z|β0, . . . , βT )

]

Stick-breaking weights

DKL

(
q(vk)||pθ(vk|α)

)
=

log
(B(ρkwk, (1− ρk)wk

)
B(1, α)

)
+ (1− ρkwk)ψ(1)

+
(
α− (1− ρk)wk

)
ψ(α)

+ (−1 + wk − α)ψ(1 + α)

Intervention embeddings

DKL

(
q(ukl)||N (0, 1)

)
=

=
σ2
kl + µ2

kl − 1

2
− log σkl

Intervention targets

DKL

(
q(rkj)||Bernoulli(γ)

)
=

πkj

(
logit(πkj)− γ

)
+ log

1− πkj
1− σ(γ)

Correspondence

EVk,u0,...,uK∼q(Vk)q(u0)...q(uK)

[
DKL

(
q(z)||pθ(z|β0, β1, . . . , βK)

)]
=

=

K∑
k=0

Euk∼q(uk)

[
q(zk)

(
log q(zk)− EVk∼q(Vk) [log βk]

)]]
where

EVk∼q(Vk)[log βk] =

Evk∼q(vk)[log vk]+

k−1∑
k′=0

Evk′∼q(vk′ )[log 1− vk′ ]

= ψ(ρkwk)+

k−1∑
k′=0

ψ
(
(1− ρk′)wk′

)
−

k∑
k′=0

ψ(wk′),

and ψ is the digamma function. We approximate, in
closed form, using the Taylor series expansion, where
we use the reparametrization trick on uk to estimate the
expectations.
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