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Sumario

Esta dissertacdo propde um novo protocolo de transporte modular para redes de sensores
sem fios: o WMTP — Wireless Modular Transport Protocol. Este protocolo ndo sé permite a
utilizagcdo simultdnea de todas as principais funcionalidades que s&o frequentemente
encontradas nos protocolos de transporte deste tipo de redes, nomeadamente o controlo de
congestao, a justica na utilizacao dos recursos da rede, e a fiabilidade, como também o faz
de uma forma modular. Deste modo, a aplicacdo pode utilizar exactamente as
funcionalidades que sdo requeridas, sem ter que aceitar as contrapartidas inevitaveis de
quaisquer outras que ndo o sdo. Adicionalmente, o WMTP oferece um conjunto Unico de
funcionalidades menos comuns, como a capacidade de regular o débito da geracdo dos
dados, o controlo de fluxo, a qualidade de servico ao nivel de transporte e a integragdo

opcional com descoberta de servicos.

Por outro lado, a utilizagdo desta arquitectura modular permite ao WMTP suportar ambientes
heterogéneos, onde aplica¢gBes diferentes, que utilizam funcionalidades diferentes, podem
coexistir, pacificamente, dentro da mesma rede. Adicionalmente, o administrador da rede
pode ainda preparar versdes reduzidas do protocolo que ndo suportam as funcionalidades
gue nunca virdo a ser utilizadas durante a vida Util da rede, libertando, desta forma, preciosos

recursos computacionais que poderéo ser utilizados para outro fins mais Uteis.
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Abstract

This dissertation proposes a new modular transport layer protocol for wireless sensor
networks (WSNs): WMTP — Wireless Modular Transport Protocol. This protocol not only
allows the simultaneous use of all the main features commonly found in WSN transport
protocols, namely congestion control, fairness, and reliability, but also does so in a modular
fashion. This way, the application layer can choose to use exactly the features that it requires,
without having to deal with the inevitable trade-offs associated with the ones that it doesn't.
Additionally, WMTP provides its own unique set of uncommon features such as throttling,

flow-control, transport layer quality-of-service, and optional integration with service-discovery.

On the other hand, the use of this specialized modular architecture also allows WMTP to
support heterogeneous environments where different applications, using different features,
coexist peacefully within the same network. Moreover, the network administrator may also
build stripped down versions of the protocol that don’t support the features that will never be
used during the network’s life-time, thus freeing up additional resources to be used for an

otherwise more useful purpose.
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1 Introduction

The recent evolution of networking in embedded systems has brought about new challenges
to tackle and new problems to solve. The special needs related to these new kinds of
networks and the paradigms that evolved from them ultimately led to the creation of the
concept of Wireless Sensor Networks (WSNSs), as described in [1]. These networks differ from
conventional networks in many key aspects. Generally speaking, these networks are built
upon low cost nodes with restrictive power and processing abilities. These nodes, in turn, are
comprised of the sensing or actuating unit, a microcontroller and a wireless transceiver, thus
extending the node’s functionality beyond mere sensing and enabling the creation of
intelligent data centric networks.

Although traditional network performance issues and challenges also apply, to some extent,
to WSNs, the key performance attribute that is most frequently analyzed and optimized in the
literature is energy efficiency. Since the wireless sensor nodes are frequently battery
powered, the energy consumed during their operation equates directly into the overall
network life-time. While changing the batteries on a common household device may seem
simple enough, for large-scale WSN deployments, it is commonly impractical, more
expensive, or completely impossible to change the batteries after deployment. This ultimately
means that the use of energy efficient network protocols can lead to the need to redeploy the
network with new sensor nodes equipped with fresh batteries after a year, or even longer,
rather than every few months. Aside from the complex, often overseen, considerations and
procedures that a large-scale WSN deployment ultimately entails, which were effectively
assessed in [3] and [20], economic factors and environmental concerns may also come into
play, thus making the energy efficiency performance attribute the most important aspect
behind these new networks, being one of the key factors that can make or break this
technology.

Given this key paradigm shift in what is considered as a performance attribute in WSNSs, the
use of traditional network protocols, that have already been tried and proven on typical wire-
line and wireless networks, is generally found to be inefficient or impractical to implement on
WSNs. This has led to the need to develop new network protocols specifically tailored for
these networks, either by developing entirely new concepts from scratch, or by adapting the

already existing protocols to better perform under these special conditions.

Traditionally, research and development efforts were application driven, thus embedding,
within the applications themselves, most of the functionality that would otherwise be offered
by one of the network layers. This would lead to the need to redevelop most of the protocol
stack, from scratch, every time a new application was designed. With the recent surge in
applications that rely on these networks, however, came a demand for new protocols that

could fulfill the needs of, and thus be reused by, a broader range of applications, therefore



relieving the application developers of the additional effort of developing the underlying

network layers.

Focusing specifically on the transport layer, one may find a large variety of protocols that
have already been designed to provide some specific functionality that may be used by a
broad range of applications. A more detailed analysis of some of the available protocols is
available in [25], but, generally speaking, the functionality that these protocols provide can fit

into one of the following categories: reliability, congestion control or fairness.

Reliability is the ability to retransmit lost packets, either locally, or end-to-end, to ensure their
successful delivery. This feature has already been implemented in several protocols such as
ATP ([19]), DTC ([7]), ESRT ([17]), GARUDA ([16]), PSFQ ([22]), RBC ([27]), RMST ([18]),
and STCP ([13]). Congestion control, in turn, is the ability to delay or inhibit packet forwarding
and generation in order to avoid network congestion at bottleneck nodes. This feature also
has its fair share of protocols, namely ARC ([26]), ATP ([19]), CCF ([8]), CODA ([23]), DTC
([71), ESRT ([17]), Fusion ([11]), PCCP ([24]), Siphon ([21]), and STCP ([13]). Finally, fairness
is the ability to divide network resources in an equitable fashion between all nodes, thus
ensuring that all have an equal share of bandwidth to communicate with the sink node. This
feature has been covered by ARC ([26]), ATP ([19]), CCF ([8]), Fusion ([11]), and PCCP

([24).

The weakness behind most of these protocols is one all too common in WSNs: most of these
protocols were designed with the needs of a specific application in mind, and are either not
suitable or inefficient for most other purposes. Additionally, most transport protocols designed
for reliability do not offer congestion control and vice-versa. The few protocols that do offer
both of these features ([7, 17, 13]), in turn, come short in performance, when compared to
other protocols that either just implement reliability or just congestion control. Fairness, on the
other hand, is mostly associated with congestion control, but the protocols that follow this path
don’t generally provide any reliability semantics. The one key area, where all of these
protocols come short, is modularity. Each of these protocols provides its own particular
features, or combination thereof, yet none present the application layer with the explicit option

of using whichever features they need, while leaving out the others.

1.1 Motivation and Goals

This dissertation proposes the Wireless Modular Transport Protocol (WMTP), a novel
modular approach to transport layer protocol functionality that not only seamlessly
integrates all of the above mentioned functionalities, but also provides some new features,
not commonly found in this area, such as the support for optionally integrated service
discovery and the ability to provide quality-of-service (QoS). This means that each
application may choose which features it requires and which it doesn’t, and the protocol
will assure that the basic requirements are complied with, without incurring the additional

burden and the efficiency toll associated with any unused functionality. Additionally, WMTP



supports environments with heterogeneous applications. In other words, different
applications, using different features, may coexist in the same network. On the other hand,
the use of this modular architecture also allows the network administrator to build a
stripped down version of WMTP that doesn’t support any features that will never be used
during the network’s life-time, thus freeing up valuable processor and memory resources

on the sensor nodes.

Although, as a generic protocol, WMTP could be implemented on any system, its
reference implementation has been developed on the TinyOS 1.x platform, and has been
primarily tested on Crossbow MICAz sensor nodes ([6]). The Crossbow MICAz is a
commercially available sensor platform that couples an 8-bit AVR RISC microcontroller,
the Atmel ATmegal28L ([2]), with an IEEE 802.15.14 Zigbee-ready transceiver, the
Chipconn CC2420 ([5]). The use of these platforms, in itself, is a challenge to overcome,
especially due to the reduced amount of available memory on the MICAz sensor node
(4 kB of SRAM).

TinyOS, in turn, is an open-source operating system initially developed at the University of
California, Berkeley. This operating system was specifically designed to work on
embedded systems with very severe computational constraints, such as those found in
WSNSs, and has, since then, become the de facto standard operating system for several
WSN platforms. TinyOS accomplishes its extreme resource economy through the use of
an event-driven, component-based architecture with cooperative process multitasking.
This specialized architecture is further supported by a specialized C-like programming
language, with which all TinyOS components must be programmed, called nesC ([9]).
Additionally, TinyOS provides a powerful simulation environment, TOSSIM ([14, 15]),
which enables the simulation of entire WSNs using the same source-code that is used on

real sensors.

1.2 Organization

The remainder of this dissertation is organized into five main chapters. The following
chapter, chapter two, provides an overview of the current state of the art of WSN transport
protocols. This chapter starts by providing an in-depth insight into each transport feature,
followed by a brief outline of each of the most commonly used WSN transport protocols.
Finally, each protocol is cross-referenced with the features that it provides in a series of

condensed tables.

Chapter three, in turn, provides a detailed account on how the WMTP protocol architecture
was designed. Starting off by explaining WMTP’s initial design goals and the requirements
that ultimately derived from them, this chapter provides an insight into the various
alternative solutions that were a part of the initial design phase. Finally, the architecture
that ultimately developed into WMTP will be explained in further detail, followed by some

implementation considerations.



Chapter four provides an objective validation of WMTP’s functionality, as well as an
evaluation of its performance. This validation and evaluation is processed through
simulation, hence this chapter starts by describing the test application and scenarios
developed specifically for this purpose. Once the simulation procedure is made clear, the

simulation results are presented and discussed.

Finally, chapter five draws some final conclusions and lays out the foundation for future

work in this area, followed by chapter six with a list of references.

1.3 Summary of Contributions

This dissertation was partially developed as a contribution to the CRUISE Network of
Excellence IST Project (CReating Ubiquitous Intelligent Sensing Environments), a part of
the Sixth EU Framework Programme for Research and Technological Development (FP6).

As such, the following technical reports have been delivered:

« L. Pedrosa, R. Rocha, R. Neves, “Protocol comparison and new features”,
CRUISE/WP220/1T/032/0.3/13.11.2006: This report provides an insight into the
state of the art of WSN transport protocols and ultimately became a part of the
CRUISE/WP220/D220.1/version 2.0/04.10.2007 milestone.

* L. Pedrosa, R. Rocha, R. Neves, “WMTP — Wireless Modular Transport Protocol”
CRUISE/WP220/IT/046/0.4/07.07.2007: This report contains an initial specification
for WMTP.

Although WMTP's initial specification has been submitted as a contribution, the latest version

is not, as of yet, publicly available.



2 State-of-the-Art of WSN Transport Layer Protocols

In this section, the current state-of-the art of WSN transport protocols is reviewed in further
detail. After explaining the main transport layer features that are commonly found in the
already existing WSN transport protocols, a list of atypical features will be presented and
further explained. Once this basic foundation is established, each of the main previously
existing WSN transport protocols will be briefly outlined. Next, a list of summarized tables will
be presented, cross-referencing each typical feature with the protocols that implement it.

Finally, some brief conclusions will be drawn.
2.1 WSN Transport Protocol Common Functionalities

2.1.1 Reliability

Reliability can be described as the ability that the network has to ensure the proper
delivery of information to its final destination. In wireless sensor networks reliability can
fit within one of two categories: packet reliability and event reliability. The former
ensures that all packets (or a configurable percentage of them) arrive to their final
destination, while the latter ensures that, at least, the minimum amount of packets
required to correctly detect an event, are safely delivered. Additionally, to provide either
of these reliability semantics, most algorithms are further divided into two main stages:
loss detection and notification and loss recovery. Furthermore, reliability algorithms can
be classified by the nodes that directly intervene in them, being either end-to-end or
hop-by-hop.

The loss detection and notification stage of the reliability algorithm is used to detect
when a packet has been lost and is thus responsible for initiating any action to recover

the loss. In order to perform this task, one of the following methods may be used:

* ACK Feedback: The ACK feedback mechanism is based on the receiver, be it
either the final destination or just one of the hops, explicitly acknowledging the
reception of each packet. Using this mechanism, the sender, be it either the
original source or just the previous hop, detects that a packet has been lost if it

has not been acknowledged by the receiver within a specific time-frame.

¢ NACK Feedback: NACK feedback, in turn, is based on the receiver explicitly
notifying the sender that it did not receive a packet. Just as before, this receiver
may either be the final destination, or just another hop along the way. Since, in
traditional networks, packets successfully arrive at their destination more often
than not, this mechanism generally implies a smaller protocol overhead on the
network. On the other hand, it also brings a new challenge: if all packets are
lost, the receiver will never be the wiser, and will therefore never notify the

sender.



e IACK Feedback: IACK (Implicit Acknowledge) feedback is a new mechanism
that takes advantage of the promiscuous nature of the radio environment. In
this mechanism, when a network node forwards a packet to the next hop, it
implicitly acknowledges the packets reception to its previous sender. Although
this mechanism presents even less overhead than the NACK mechanism, its
basic assumption, that a node may overhear the packet being forwarded, may
not always be applicable, specially if the underlying link layer protocol works
with multiple non-interfering channels, or is TDMA based.

e Sequence Number Out-of-Order: In this specific mechanism, packets are
tagged with consecutive sequence numbers. The receiving node can then
detect a missing packet when it receives another packet with the sequence
number out of the expected order. Once the loss is detected, a NACK

mechanism may be used to notify the sender.

e Time-Out: The Time-Out loss detection mechanism, like the Sequence Number
Out-of-Order variant, requires the aid of the NACK mechanism to notify the
sender. However, this specific mechanism does not rely on sequence numbers
in messages to detect when one has been lost but, rather, expects that a new
message will be delivered within a certain time-frame, after which, the message

will be considered lost.

Once the loss detection and notification stage has detected that a packet has been lost,

one of the following recovery mechanisms may be used:

¢ Increase Source Sending Rate: This mechanism is frequently found in the
event reliability semantic. Since individual packets may be lost without
hindering the overall application functionality, the sending node can increase
the total quantity of packets received on the other end by simply increasing the
total number of packets it sends.

» Packet Retransmission: This mechanism, on the other hand, is the general
choice for most packet reliability protocols. On the end-to-end variant, the
original source node retransmits the packet across the entire network, hopefully
reaching the final destination. The hop-by-hop variant, in turn, performs local
retransmissions on each hop and, by doing so, reduces overall protocol
overhead and latency. It is also possible to reach a mid-term solution, where
not all nodes along the path cache the transmitted packets. This intermediate
solution still requires multi-hop retransmissions, but still manages to avoid end-

to-end retransmissions.



2.1.2 Congestion Control

Given the convergent nature of most WSN data forwarding schemes, network
congestion is likely to happen on nodes closer to the sink node. This is especially the
case when these nodes forward data for particularly large networks which need to
convey vast amounts of information in frequent status reports. If this situation is not
taken into account, then congestion will inevitably occur sooner or later, leading to
overloaded radio links, degraded channel utilization and the wasteful transmission of

packets that will eventually be dropped.

Given the general need to maximize network utilization while avoiding the wasteful use
of energy to transmit packets that may be dropped, a general mechanism to control
source rates in a manner that avoids downstream congestion is required. The
algorithms that implement this functionality can be broken down into three stages:

congestion detection, congestion notification, and rate adjustment.

The congestion detection stage oversees the local node’s status and decides if
congestion is either already taking place or likely to take place in the near future, if
nothing else is done to prevent it. This decision may either produce a single binary
congestion notification (CN) bit, a multilevel congestion degree value, or a precise rate
at which each child node that is using the current node as its next hop should send its
packets. In order to provide this functionality, one of the following mechanisms may be

used:

» Packet Sending Success: In this simple mechanism, the success or failure to
send a packet is used to infer congestion. This can be used in a hop-by-hop
basis, where a node establishes its own congestion when it is unable to send a
packet over the next hop, or in an end-to-end basis, similar to the way TCP

works.

¢ Queue Length: This mechanism relies on the local node’'s message queue
occupancy. Once the relative quantity of queued packets surpasses a certain
predefined threshold (e.g. 75%), the node is considered to be congested, and

shall proceed to notify its peers of that fact.

e Packet Service Time: Unlike the queue length mechanism, this specific
mechanism does not rely on the local message queue status, but rather on the
local node having the ability to precisely quantify the maximum data rate at
which it may send packets over the next hop. Provided that this information is
available, the node can limit its own rate and calculate the rate at which its own
children may send packets. This information may then be propagated further
down, effectively limiting the rate of all nodes throughout the network in a way

that may keep congestion under control.



« Ratio of Packet Service Time over Packet Inter-arrival Time: Unlike the packet
service time mechanism, this mechanism does not need to establish the
maximum data rate for the following hop. By simply taking into account the
mean packet service time (the elapsed time from when the packet is delivered
to the link layer up until its last bit is successfully transmitted over the next hop)
and the mean packet inter-arrival time (the elapsed time between consecutive
packet arrivals, be them from the link layer or locally generated), a simple
congestion degree value can be obtained by calculating the ratio of the former

over the latter.

e Channel Loading: In this specific mechanism, the radio channel is constantly
monitored, allowing the node to measure the channel’s relative load, thus
detecting local congestion. Since continuous channel monitoring may entail a

high energy toll, a channel sampling scheme is implemented in practice.

The congestion notification stage, in turn, defines the method used by the parent node
to notify its children of its current congestion status. One of the following mechanisms

may be used to provide this functionality:

e Explicit Congestion Notification: Once the congestion status has been
determined, all of the local node’s children nodes must be notified so they may
take action and prevent further congestion. In explicit congestion notification,

specific protocol management messages are used for this purpose.

« Implicit Congestion Notification: Unlike in the explicit variant, implicit congestion
notification piggybacks the congestion status information on normal data
packets, reducing the overall protocol overhead on the network. On the other
hand, just like the IACK reliability mechanism, implicit congestion notification
assumes that a node may overhear forwarded packets, which may not always
be true.

Finally, the rate adjustment stage defines how children nodes should limit their
transmission rates in order to avoid further congestion at the parent node. In order to
provide this functionality, one of the following mechanisms may be used:

e Stop-and-Start Rate Adjustment: This mechanism invokes a simple principle:
once the parent node notifies its children that it is congested, the children stop
sending packets over the next hop, allowing the parent to free up its queues. If
the children, themselves, get congested, they will continue to apply back
pressure upstream, ultimately reaching the data source and temporary halting

packet generation.

When this method is allied with implicit congestion notification, some special

attention must be paid to the fact that the node may still need to send



messages to its congested parent to be able to effectively notify its own
children of its congestion status.

e Additive Increase, Multiplicative Decrease (AIMD) Rate Adjustment: Unlike
before, this mechanism does not completely stop sending packets when
parents report that they are congested. Instead, an additive increase,
multiplicative decrease scheme is used to regulate the rate at which packets

are sent.

e Exact Rate Adjustment: This specific mechanism relies on the node’s ability to
precisely determine the rate at which it may send packets over the next hop.
Provided that this information is available, the node simply schedules the
sending of its packets using specific timings in order to fulfill that calculated

rate.

2.1.3 Fairness

Given the probabilistic model of packet loss at each hop, be it by the hands of radio link
interference or by congestion, a natural consequence is that sources that require more
hops to arrive to the sink node tend to have a larger probability of packet loss than
those closer to it. This problem ultimately limits the diameter of the network and creates
an imbalance where nodes closer to the sink have an unfair advantage over those

farther away.

To counteract this natural imbalance, some special care is needed in the transport
protocol’'s design to guarantee network fairness. Generally, these guarantees are
associated with congestion control protocols and can be divided into two categories:

simple fairness and priority based, or weighted, fairness.

In simple fairness, all traffic sources are considered equal and will receive equal
transmission opportunities. In order to provide this functionality, the following
mechanisms may be used:

e Simple Rate Limiting: This mechanism is, in many ways, similar to the exact
rate adjustment congestion control mechanism, although some additional care
must be taken to provide fairness guarantees. To insure fairness, the local
node must send packets over the next hop at a rate proportional to its parent’s
total upstream rate and the ratio of the number of source nodes served by the
local node over the total number of source nodes served by its parent. This
information may either be explicitly broadcasted by the parent node or can be

inferred by overhearing the parent node’s forwarded traffic.

« Differentiating AIMD Coefficients for Local and Forwarded Traffic: When using

an additive increase, multiplicative decrease rate adjustment congestion



control mechanism, simply using differentiated coefficients for locally generated
traffic and forwarded traffic can supply a certain degree of fairness.

e Traffic Shaping based on Multiple Queues at Each Node: If each node
maintains separate queues for traffic forwarded from each of its children,
simple traffic shaping techniques may be used to guarantee fairness. These
techniques should serve each queue at a rate proportional to the number of

source nodes served by the child associated to the queue.

Priority based fairness, on the other hand, is more flexible and complex, since it allows
each traffic source to have a different priority attributed to it. This being the case, only
some of the previously mentioned mechanisms are extensible to provide this more

advanced functionality:

« Exact Rate Adjustment using Priority Based Scheduling: This mechanism is
designed as an extension of simple rate limiting that takes into account
different priorities for different data sources. Traditionally, the rate at which the
local node sends its traffic over the next hop is calculated based upon the
number of source nodes that are served by the local node and the amount
served by its parent. If, instead of just counting source nodes, a sum of their
relative weights is performed, priority based fairness guarantees may be

achieved.

» Priority Based Traffic Shaping based on Multiple Queues at Each Node: This
mechanism, just like its simple fairness counterpart, requires that each node
maintain a separate queue for traffic forwarded from each of its children. Once
again, simple traffic shaping techniques may be used to guarantee fairness
but, this time, each queue should be served at a rate proportional to the sum of
the priorities of each source node served by the child associated to it, rather

than the number of sources per se.
2.2 WSN Transport Protocol Atypical Functionalities

2.2.1 Throttling

Throttling is a basic functionality that allows the sending node to easily regulate the rate
at which it generates its data, through the transport layer. This feature, albeit quite
simple in nature, may be quite useful, since it relieves the application layer of the

burden of managing its own timers.

2.2.2 Flow Control

Flow control is a functionality that allows the receiving node to regulate the rate at

which the sending node generates its data. In fact, this feature is quite similar to



throttling, with the key difference lying in the fact that it is the receiving node that
specifies the data generation rate, rather than the sending node.

This feature is implemented simply by allowing the receiving node to send feed-back
packets towards the sending node, thus providing the explicit rate at which it should
generate its data. Albeit simple in nature, this functionality is not always trivial to
provide, especially since the basic assumption that it is possible to send data along the

reverse path, from sink to source, is not always true.

Due to the limitations that the routing layer may have, only some of the following flow-

control mechanisms may be applicable:

e Single-Hop Flow-Control: This mechanism works upon the premise that the
receiving node, probably a sink node with an external power source, may use a
stronger radio signal to reach all of the sending nodes within a single hop. The
sending nodes, in turn, may use weaker radio transmissions and a multi-hop
network, thus saving their own energy. By doing this, the routing problem is
completely circumvented, but at the cost of limiting the total size of the network
to the sink’s extended radio range.

*« Broadcast Flow-Control: This mechanism, in turn, assumes the existence of a
multi-hop broadcast routing protocol, either based on flooding or through the
use of a more complex multicast-like distribution system. Using this specialized
routing layer, the receiving node may broadcast a sender address and its
explicit rate, across the entire network, in order to configure a specific sending
node. This solution, when used in this particular way, is very inefficient but, in
many cases, it may very well be the only alternative. A more efficient use of this
mechanism may be applied when all sender nodes may be configured to
generate data at the same rate. This being the case, the effort of broadcasting
the configuration data across the entire network will have been put to a good

use.

* Unicast Flow-Control: Finally, this mechanism uses a unicast routing layer, if
one exists, to send the explicit generation rate configuration directly to the
sender node, thus avoiding that the configuration data be forwarded where it is

not needed.

2.2.3 Quality-of-Service

Quality-of-service is a functionality that has a different meaning, depending on the layer
from which it is viewed. According to [4], quality-of-service can be either perceived from
an application standpoint or from a network standpoint. This way, while applications
generally concern themselves with such quality-of-service parameters as network

coverage, exposure to phenomena, measurement errors, and optimum number of



active sensors, the network generally attempts to ensure that local or end-to-end

performance guarantees are met.

This being the case, application quality-of-service is primarily addressed during the
deployment phase, although some network support is also required. Network quality-of-
service, on the other hand, attempts to use prioritization schemes, admission control
and reservation mechanisms to differentiate traffic, thus providing performance
guarantees for some flows, while using “best effort” policies for the others. This can be
seen both at the link layer, where quality-of-service is used to ensure that priority traffic
is sent over the radio within a bounded time frame, as well as the upper layers, where
end-to-end guarantees, such as maximum overall packet delay and minimum
throughput, are pursued.

At the transport layer, the main concerns are related to these last kinds of guarantees.
The main idea behind transport layer quality-of-service is the ability to allow
applications to attempt to reserve network resources for specific network flows. Once
the network asserts that it meets all the conditions necessary to honor the request, it
proceeds to reserving the associated resources, and signaling the application that its
request was completed successfully. Under these new circumstances, the transport
layer must provide a high level of assurance that the application’s performance
requirements will be met, regardless of future traffic conditions. Evidently, given the
unpredictability of the wireless medium, not to mention the possible network topology
changes that may occur in a mobile scenario, these assurance are far from being
considered guarantees, but are rather a form of conditional hope that, while all stays as

is, the previously negotiated conditions will continue to honored.
2.3 Existing WSN Transport Protocols

2.3.1 Adaptive Rate Control (ARC)

The Adaptive Rate Control (ARC) protocol, as described in [26], provides congestion
control and simple fairness semantics. The idea behind the protocol is that when a
node transmits data over to its parent node, it uses the success or failure to send the
data as a congestion detection mechanism. This way, AIMD mechanisms may be used

to regulate the rates at which data is locally generated or forwarded for other nodes.

Additionally, simple fairness is achieved by using different AIMD parameters for local
traffic generation and remote traffic forwarding. By monitoring the traffic that it forwards,
each node establishes how many children nodes it ultimately serves. It then uses this
knowledge to carefully calculate the AIMD parameters for both local traffic generation

and remote traffic forwarding.



2.3.2 Ad-hoc Transport Protocol (ATP)

The Ad-hoc Transport Protocol (ATP), as described in [19], is yet another TCP
alternative, specifically developed for ad-hoc networks. This protocol intends to resolve
several of the key problems that TCP has traditionally suffered over wireless ad-hoc
networks by using a novel approach that not only decouples congestion control from
reliability, but also uses additional feed-back from intermediate forwarding nodes to
calculate precise estimates of the network’s state. These mechanisms, alongside a
three-phase congestion control mechanism, allow ATP to adapt to network conditions
much faster and more accurately than TCP.

In order to provide congestion control and simple fairness, the intermediate nodes
along the data’s forward path collaborate to calculate the maximum packet service time
by piggy-backing the highest value amongst them alongside the packet's data. The
receiver node then uses this information to periodically send packets back along the
reverse path, ultimately providing the sender with an explicit rate. The sender node, in
turn, uses this rate to feed a three-phase congestion-control mechanism that uses
distinct rate progression procedures during the increase, decrease, and maintain
phases.

As for reliability, ATP uses a selective ACK (SACK) mechanism to allow the receiver to
specify exactly which packets it has received and which remain to be received, being
detected as holes in the sequence number’s natural progression. The sender node
then uses this information to retransmit the lost packets, without relying on any

retransmission timeouts.

Overall, ATP outperforms TCP but, ultimately, its mechanisms are not optimized to
minimize energy consumption, but rather to maximize performance at high data rates

and are, thus, not quite tailored for WSNs.

2.3.3 Congestion Control and Fairness (CCF)

The Congestion Control and Fairness (CCF) protocol, as described in [8], is used to
provide congestion control and fairness semantics. To accomplish this, each node
measures the rate at which it can send data and then divides it by the number of
children nodes it serves, thus obtaining the per-node packet rate. This per-node packet
rate is then piggy-backed alongside forwarded data, thus taking advantage of the
broadcast nature of wireless networks to implicitly transmit this data to the node’s
children. If a node overhears its parent’s rate and it is slower than its own, it will apply it

locally, as well as use it in future broadcasts.

Additionally, each node creates individual packet queue for each of its children nodes,

as well as one for its locally generated data. This being the case, the node now uses



the already established per-packet rate, as well as a specialized traffic shaper, to
provide the intended fairness.

2.3.4 Congestion Detection and Avoidance (CODA)

The Congestion Detection and Avoidance (CODA) protocol, as described in [23], is
used to avoid congestion in data flows from sources to sink. To accomplish this, two
detection techniques are employed: a traditional queue occupancy threshold and a

channel loading mechanism.

Once congestion has been detected, using a combination of these methods, CODA
then uses two feed-back mechanisms to recover from it: open-loop backpressure for
light, transient, congestion and closed-loop sink generated ACKs for heavy, long-term,

congestion.

2.3.5 Distributed TCP Cache (DTC)

The Distributed TCP Cache (DTC) protocol, as described in [7], is an extended version
of the traditional TCP protocol that is optimized for energy efficiency. This is
accomplished through the use of local caches, along the connection’s route, that
enable a quicker and more efficient local loss recovery process, instead of relying

solely on TCP’s end-to-end loss recovery mechanisms.

Additionally, DTC uses a network aided process, called flying-start, to provide more
accurate initial round-trip-time estimates to the source node, thus providing a 10% to

25% performance increase over the conservative values that TCP traditionally uses.

2.3.6 Event-to-Sink Reliable Transport (ESRT)

Event-to-Sink Reliable Transport (ESRT), as described in [17], is used to provide event
reliability. Instead of the traditional concept of packet reliability, where individual
packets are retransmitted, in order to assure their safe delivery at the sink, this protocol
defines event reliability as the received packet rate associated to a particular sensing
process. This way, higher event reliability is synonymous with the reception of more

packets, thus providing a more accurate perception of the sensed phenomena.

The true problem that ESRT intends to solve is how to reach the ideal event reliability,
thus providing the right amount of data to produce the required accuracy, while also
avoiding network congestion. If sources generate data too slowly, the required reliability
metric won't be met, on the other hand, if data is generated too quickly, too much
reliability may occur, or worse, network congestion may lead to dropped packets, thus
lowering the event reliability once again, possibly even below the required threshold.

This concept is illustrated in Figure 2.1.
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Figure 2.1: ESRT Event Reliability Behavior, as a F  unction of the Reporting Frequency

In order to solve this problem, ESRT uses a flow-control mechanism that assumes the
existence of a single high-powered sink node that can control all of the source nodes
within a single hop. The source nodes, in turn, may have low-power radios, and thus
may use a multi-hop network to reach the sink. Under these circumstances, the sink

calculates the optimal reporting frequency and directly regulates sources.

2.3.7 Fusion

The Fusion protocol, as described in [11], is used to provide congestion control and
simple fairness semantics. In order to provide congestion control, each node detects
congestion by monitoring its packet queue. The node then simply piggybacks a
congestion notification bit alongside its data, thus taking advantage of the broadcast
nature of the wireless medium to broadcast it congestion state to its neighbors. Once
each node knows its parent’s congestion state, it refrains from sending it more than one
packet, thus implementing an open-loop back pressure mechanism. This ability to send
a single packet to a congested parent is specifically allowed, so that the child node may

to still warn its neighbors when it eventually becomes congested.

Fairness, on the other hand, is accomplished through a separate mechanism. The idea
is that each node monitors its own forwarded traffic, as well as that of its parent. Using
this information, the node is able to determine not only the number of source nodes that
it serves, but also the number of source nodes its parent serves. Armed with this
knowledge, the node then uses a token bucket mechanism to regulate the rate at which
it forwards it own data, thus ensuring that it is forwarded at the appropriate fraction of

the rate of its parent.



2.3.8 GARUDA

The GARUDA protocol, as described in [16], is used to reliably send data from sink to
sources. In order to provide this functionality, this protocol starts off by creating a loss
recovery core, during its first packet flood. This core is formed by all nodes with a hop-
count that is a multiple of three, thus approximating a minimum dominating set. Each
core node then piggybacks, alongside its forwarded data, special availability maps (A-
Maps), containing lists of packets that it is holding in local cache. These core nodes are

also responsible for retransmitting any NACKed data packets.

Under these circumstances, each node, whether it belongs to the core or not, detects
packet loss through out-of-order sequence numbers, yet these out-of-order packets are
still forwarded. Once a lost packet is detected, the node may only initiate its recovery
process when it receives an availability map, containing the lost packet, from its

preceding core node.

Additionally, GARUDA circumvents the single-packet loss problem, which is
traditionally associated with NACK based mechanisms, through the use of out-of-band

Wait-for-First-Packet (WFP) pulses, that are assumed to be reliable.

2.3.9 Priority-Based Congestion Control Protocol (P CCP)

The Priority-Based Congestion Control Protocol (PCCP), as described in [24], provides
congestion-control and weighted fairness semantics. In order to provide this
functionality, PCCP uses a novel congestion detection mechanism, based the ratio of
its packets’ service time (the time it takes the link layer to dispatch them) over inter-

arrival time (the time elapsed between consecutive receptions).

Each node then piggybacks this congestion information, together with the number of
nodes it serves and the sum of their weights, alongside its forwarded data, thus taking
advantage of the broadcast nature of the wireless medium to broadcast its status to its
neighbors. Each node then uses its parent’s status information to perform exact rate
adjustments on the rate at which it forwards its data, as well as the rate at which it

generates it.

2.3.10 Pump Slowly, Fetch Quickly (PSFQ)

The Pump Slowly, Fetch Quickly (PSFQ) protocol, as described in [22], is used to
reliably disseminate send large amounts of information across the entire network, being
primarily designed to enhance network retasking or reprogramming. Under these
circumstances, data cache sizes are not relevant, since all nodes must hold all data

segments anyway.

The idea behind this protocol is to flood the network with new segments (pump) slowly,

while recovering from a detected loss (fetch) quickly. These losses are detected



through out-of-order sequence number and recovered using a simple NACK
mechanism. Additionally, nodes do not propagate out-of-order segments to prevent
downstream nodes from initiating a fetch operation.

Finally, when the entire operation is complete, the nodes cooperate to send aggregated

report messages.

2.3.11 Reliable Bursty Convergecast (RBC)

The Reliable Bursty Convergecast (RBC) protocol, as described in [27], is used to

provide reliability semantics for traffic with real-time requirements.

In order to provide this functionality, this protocol uses a novel implicit windowless block
acknowledgement approach that, in conjunction with a specialized prioritization
mechanism, allows new packets to be generated and forwarded, without ever having to
wait for old lost ones to be recovered. Additionally, in some special cases where the
receiving node is able to proactively detect that it did not receive a sent packet, it

accelerates the recovery process through the use of implicit block NACKs.

2.3.12 Reliable Multi-Segment Transport (RMST)

The Reliable Multi-Segment Transport (RMST) protocol, as described in [18], was
designed to run over Directed-Diffusion (see [12] and [10]), specifically to reliably

fragment and reconstruct data sets for sending over reinforced gradients.

This being the case, fragment loss is detected through out-of-order sequence numbers
and time-outs and is notified through a NACK mechanism. Additionally, a special
caching mode may be used, where intermediate nodes may cache fragments and

participate in the recovery process.

2.3.13 Siphon

The Siphon protocol, as described in [21], provides congestion control through the use

of a specialized, high-powered, long-range, secondary radio network.

This way, aside from a single physical sink that collects and consumes the network’s
data, siphon proposes the use of several virtual sinks, laid across the network. These
virtual sinks are equipped with two radio modules, one low-powered and short-ranged
and one high-powered and long-ranged. Although most conventional communications
will go through the low-power radio network, these virtual sinks can use the alternative

high-power radio to divert traffic, thus avoiding congestion on the primary network.

Additionally, two distinct congestion detection methods are used, a node initiated
method and a sink aided, “post-facto”, mechanism. The node associated method uses
a local channel load measurement mechanism, as well as a traditional packet queue

monitoring scheme, to perform an early detection of transient or deep network



congestion situations. The sink aided, “post-facto”, mechanism, in turn, allows the
physical sink to perform a high level assessment of the application data fidelity, thus
forcing the use of the secondary radio network whenever it sees fit.

2.3.14 Sensor Transmission Control Protocol (STCP)

The Sensor Transmission Control Protocol (STCP), as described in [13], is a flexible
protocol that is used to provide both end-to-end reliability and congestion control

functionality.

Within the reliability realm, STCP also provides the option to either use full or partial
reliability semantics, thus allowing the application to specify how many packets, within
a fixed window size, must be reliably delivered. Additionally, if the data is to be
generated continuously at a fixed predictable rate, the receiving node may use a time-
out mechanism to detect a packet's loss, followed by a NACK packet to initiate its
recovery. For unpredictable, event driven packets, a less efficient alternative ACK

mechanism may be used.

As for congestion-control, STCP uses a simple, end-to-end, closed loop, congestion
detection mechanism, based on packet queue occupancy monitoring. The idea is that,
if an intermediate node detects that it is congested, it sets a congestion notification bit
that is piggybacked along to the receiving node. Once the receiving node receives this
information, it also piggybacks a congestion notification bit, but this time onto one of the
ACK packets that return along the reverse path, thus instructing the source node to

reduce the rate at which it generates its data.

2.4 Protocol vs. Feature Cross-Reference

In this section, each protocol is cross-referenced with the features that it provides, as
well as with the methodology used to implement them. This information is condensed

within three tables, one for reliability, one for congestion control, and one for fairness.



Reliability
Loss Detection and Notification Loss Recovery
Protocol Sequence Increase
Category Direction Type AcK | Nack JACK Number Time Source Packet
Out-of- Out Sensing Retransmission
Order
ARC
ATP Packet Both End-to-End . °
CCF
CODA
DTC Packet Both Hop-by-Hop . . .
Event-to-
ESRT Event Upstream Sink .
Fusion
GARUDA Packet sDt?:':\rr]n Hop-by-Hop . .
PCCP
PSFQ Packet sDt?:':\rr]n Hop-by-Hop . . .
RBC Packet Upstream Hop-by-Hop . .
RMST Packet Upstream Hop-by-Hop . . .
Siphon
STCP E\;i[:; Upstream End-to-End [ . . .
Table 2.1: Reliability Protocol Comparison
Congestion Control
Congestion Detection Con.g.estllon Rate Adjustment
Protocols _ _ Notification
Packet Queue | Service Service Time / Channel - L Stop-
Sending ) Inter-arrival ) Explicit Implicit and- AIMD | Exact
Length Time ) Loading
Success Time Start
ARC Hop-by-Hop °
ATP . ° °
CCF . .
CODA . . ° °
DTC End-to-End )
ESRT . .
Fusion . °
GARUDA
PCCP ° °
PSFQ
RBC
RMST
Siphon * End-to-End . .
STCP . °

* — Siphon does not perform any rate adjustment to mitigate congestion but, rather, redirects traffic through “Virtual
Sinks” which use an alternative long-range radio network to reach the “Physical Sink”.

Table 2.2: Congestion Control Protocol Comparison

Fairness

Protocols

Simple Fairness

Priority Based Fairness

Simple Rate Limiting

Differentiating AIMD Coefficients

Traffic Shaping

Exact Rate Adjustment

ARC

ATP

CCF

CODA

DTC

ESRT

Fusion

GARUDA

PCCP

PSFQ

RBC

RMST

Siphon

STCP

Table 2.3: Fairness Protocol Comparison




2.5 Discussion

A critical analysis of the previously mentioned protocols and features merely confirms what
had been stated in chapter one: several transport protocols for WSNs have already been
developed, but most of them were specifically designed to solve problems posed a
particular application. This being the case, these protocols excel when used for the
specific application for which they were designed, but are ultimately inadequate for any
other use. Additionally, the few of these protocols that are actually generic in design,
namely ATP ([19]), DTC ([7]), and STCP ([13]), attain their generality at the expense of
performance (at least from a WSN'’s point of view). On the other hand, most of these
protocols have been developed isolated from other research areas that are becoming
progressively more popular in the WSN world, such as possible integration with service

discovery mechanisms, or the inclusion of transport layer guality-of-service semantics.

This situation ultimately stresses the need for the development of a new modular approach
to WSN transport layer functionality, a need that ultimately led to the development of
WMTP. This new approach is generic by nature, yet it allows the application to include
exactly the features it requires, while leaving out any others, a simple principle that is not
followed by any of the mentioned protocols. This basic approach not only avoids the
inevitable trade-offs one must concede to when using additional features, but also cuts
down on the use of unnecessary overheads and, thus, will ultimately contribute to saving

energy, therefore extending the network’s useful life-time.



3 WMTP Design and Implementation

In this chapter, the design considerations behind WMTP’s architecture will be further
discussed. To start off with, the initial design goals, as well as the requirements that derived
from them, will be presented, while outlining some of the alternative solutions that were
thought of, during the initial design phase. Then, the interface that WMTP provides to
applications will be explained, followed by a detailed coverage of WMTP’s system
architecture. Finally, some special considerations will be discussed regarding WMTP’s

reference implementation.

3.1 Design Goals and Requirements

As previously mentioned, the basic transport feature categories, namely, congestion-
control, fairness, and reliability, have already been covered by several established and
well proven transport protocols. What these protocols fail to provide is a modular
architecture that enables the optional use of any one of these features, or a combination

thereof, in a manner that is completely transparent to the application.

This is where WMTP comes in. WMTP was born from a proposal to develop an
architecture that could integrate all of these features into a single protocol. Additionally,
several new features were proposed, some simple such as throttling and flow-control,
some not so simple, like quality-of-service. Finally, the ability to easily integrate with
service-discovery systems was also proposed, although the service discovery system, in
itself, would not be a direct part of the WMTP protocol.

The simplest way to do this would be to create a single protocol, using a design based on
principles already implemented by a selection of preexisting protocols, while also
cramming in the new features. This hypothetical protocol would effectively offer all of the
proposed features, but not in a modular fashion, thus forcing the application to apply all of
these features, even when not needed. This rigid design is clearly not practical, as the
utilization of unnecessary features leads to the wasteful use of network resources and

entails inevitable trade-offs that could otherwise be avoided.

Unlike before, a modular architecture would allow the application to choose which features
it would need and which it could dispense, on demand. Ideally, the system would analyze
the application’s requirements and provide a solution that not only complied with them, but

would also do so in the most efficient way possible.

To comply with this additional requirement of modularity, a simple requirement-matching
system could be developed. This system would use a repository of several protocols of
varying complexity, each supplying a list of the features it provides. The system would
simply analyze the applications request and choose the right protocol from the pool,

accordingly. This choice could be optimized to use the simplest protocol that still complies



with the application’s request. Additionally, the system could base its decision not only a
list of required features, but also on a list of optional ones, allowing the application to
further participate in the process. This system, albeit functional, requires that a great effort
be invested into the design and development of a large variety of sub-protocols that would
go into the pool. Not only would the need arise to develop a sub-protocol for each
individual feature, but also for every conceivable combination thereof. Otherwise, the
system would be forced, like before, to apply unneeded features in a wasteful way.
Additionally, the simultaneous use of several of these sub-protocols across the network
could have unforeseen behavior, as it would be unconceivable to predict how each sub-

protocol could interact with all of the others.

Another possible solution could be based on a layered approach. Each feature could be
developed as a stackable sub-layer that would communicate with its upper and lower
layers using a single common interface. Since all feature sub-layers would both use and
provide the same interface to its upper and lower layers, several sub-layers could be
modularly stacked together, on demand, to offer the features that were requested, while
keeping out those that weren’t. Although, on face value, this seems to be a good idea, this
simplistic architecture entails several problems that are not trivial to solve. On one hand,
the order in which the layers are stacked is not irrelevant and, thus, would require further
study. On the other, this solution does not provide any additional mechanisms to isolate
each feature’s functionality from the others, in other words, each feature would have to be
designed to take into account the possible effects of all the others. This not only off-loads
an additional burden onto the feature development effort, but is also close-minded by
nature, since it does not facilitate the design of new, unthought-of, features in the future.

Finally, a different solution was found that not only provides the required modularity but
also does so in a way that both facilitates current feature development and also leaves
room for future work to be done on new or improved features. This solution, the one that
eventually was used in WMTP, is based on the creation of a transport layer framework.
This framework is based on the existence of a central core that, by itself, provides only
minimal functionality. The true features would be developed as additional modules or plug-
ins that would interact with the core through very specific interfaces. These interfaces
would be designed to minimize the possibility of unforeseen interactions between distinct
modules, while also making it clear exactly what kind of interactions are predictable. This
way, each feature module could be developed as a stand-alone feature, and yet, could still
be used in conjunction with others. Additionally, this architecture would interact with the
upper and lower layers using specialized interfaces that would enable additional features,
although this might require the development of specialized “translation” modules or
adaptation layers. Under these circumstances, the core’s true functionality would reside in
coordinating the overall activity, acting as the “glue” between all of the feature modules
and the upper and lower layers, thus providing a coherent and integrated functionality that

is presented to the application in a way that is as transparent as possible.



In order to provide the flexibility that WMTP’s modular architecture requires, a specialized
network protocol stack was designed. This unconventional protocol stack, illustrated in
Figure 3.1, partially breaks the traditional layered paradigm that is commonly used in
conventional network protocol stacks, since, contrary to what would be expected, WMTP

does not sit neatly between the application layer and the network layer.

Application Layar

WMTP Core Transport Layer Features

Llnk—layer Frame Handling | Link-layer QoS Provisioning

Figure 3.1: WMTP Protocol Stack

As illustrated above, the WMTP core actually resides directly between the application layer
and the link layer. Although the network layer is not directly a part of WMTP, tight
integration with the core functionality is required in order to provide some of the advanced
functionality that WMTP’s modular framework uses.

As for the interface with the application layer, WMTP was designed to meet the needs of
typical WSN applications and thus this interface could not deviate excessively from the
traditional interfaces typically used for this purpose. On the other hand, in order to make
full use of some of WMTP's features, some extensions had to be employed. While the use
of most of these extensions is not mandatory, the application would not be able to take full
benefit of what WMTP has to offer without them. Although most applications shouldn’t
need to be recoded to use WMTP, some may benefit from a little remodeling, especially if

they want to take full advantage of all the features the protocol can provide.

WMTP’s interface with the link layer, in contrast, is much more traditional. The only
extension that needed to be employed was an additional interface to obtain the layer's
quality-of-service characteristics. On the other hand, this interface can be implemented by
a dummy module that simply conveys the absence of quality-of-service or, alternatively, a
more elaborated adaptation module that provides statistical assurance levels, based on
the measured characteristics of the preexisting link layer protocol. Additionally, WMTP fully
benefits from the promiscuous nature of the wireless medium by piggybacking any
management information on forwarded traffic. On the other hand, if the link layer does not
provide this feature, WMTP is flexible enough to still manage to operate, albeit not as
efficiently, by using explicit management packets, thereby effectively creating a

transparent graceful degradation mechanism.

As already previously mentioned, the multi-hop network layer needs to be tightly integrated
into the WMTP protocol stack. This approach was followed due to the high level of
collaboration that WMTP pursues with this layer, going beyond the scope of what the
traditional layered approach envisions. Additionally, WMTP needs to manage its own core
queue, which is a job that traditionally would be delegated to the network layer. Amongst

other advantages of using this approach is the ability of the network layer to collaborate



with WMTP to implement connection oriented routing, a service that is a basic requirement
of some of WMTP’s features, namely the quality-of-service feature (which depends on the
pre-reservation of network resources), and the fairness feature (which requires that each
node have a previous context for each connection that passes through it). In order to
provide this service, not only does the network layer have to identify to which connection
does an incoming packet belong to, it also has to collaborate with WMTP to establish the
connection in the first place. Additionally, this cross-layered approach also allows WMTP

to use multiple concurrent network layer implementations with ease.

Although connection oriented routing has its benefits, the initial delay during which the
connection is established, and its context is propagated across the network, can be
undesirable under certain circumstances. An example of a situation where this feature
would be a burden would be a highly mobile scenario, where a node may have to change
routes very frequently, thus leading to the connection being broken and rebuilt. On the
other hand, since connections require that each forwarding node maintain an individual
context, this poses serious scalability problems, especially when large-scale deployments
come into play. To overcome this problem, WMTP also supports connectionless routing
modules which, albeit using the same interfaces as their connection-oriented counterparts,
use a dummy connection establishment process that entails little or no additional delay.
Additionally, in the absence of connections, the use of local memory is not proportional to
the number of nodes that forward their data through the local node, thus also enabling

large-scale deployments.

The connection establishment functionality, in turn, is directly related to the multi-hop
routers in use. This functionality may also be integrated with more advanced naming and
addressing schemes that go beyond WMTP’s scope, or otherwise provide service
discovery semantics. If the underlying router is connection-oriented, then this module will
not only be responsible for discovering the routes to one or more destination nodes that
fulfill the requested connection’s criteria but also to establish and configure the
connection’s context. On the other hand, if the router is connectionless, then this module

may simply be a stub for neighbor or gateway discovery.

Once this basic protocol stack is established, the specific features that characterize WMTP
may be built upon it. Although this framework is designed to be flexible and to facilitate the
implementation of additional features and improvements, the following feature set has

been listed for initial development:

» Throttling: Packet generation is automatically throttled, thus relieving the

application of this task.

* Flow Control: The receiving node may regulate the rate at which the source node

generates its packets;



» Congestion Control: Packet transmission is delayed along the forwarding nodes,

ultimately delaying packet generation, to avoid bottleneck node congestion;

» Fairness: Packet generation along the several sources that share a sink is

throttled in order to divide the available throughput in either an equitable fashion or

providing weighted differentiation;

» Reliability: Packets are automatically retransmitted, when losses are detected, in

order to guarantee the reliable delivery of all packets;

* Quality-of-Service: The application may specify the minimum requirements and/or

the desired values for certain QoS metrics such as end-to-end packet delay and

packet throughput;

Although the WMTP protocol may support all of these features and even allow them to

coexist peacefully on the same network, the user may wish to entirely disable unneeded

features. This allows the partial compilation of only the components that are required for

the provisioning of the remaining features, thus freeing resources that would otherwise be

wasted.

3.2 Application Level Interface

In order to fulfill its purpose, WMTP offers the application developer a specialized interface

that, while still maintaining some similarities with conventional packet dispatching

interfaces, has some special nuances that must be carefully taken into consideration.

Although the complete reference of this interface is provided in Annex 1, the most relevant

commands and events are illustrated in Figure 3.2.
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Figure 3.2: WMTP Application Level Interface




The application level interface is divided into three major parts. The connection
management interface, the sending application interface, and the receiving application
interface.

The connection management interface is responsible for all functionality that relates to the
successful establishment of connections between nodes. If a connectionless router is in
use, this functionality may be reduced to a mere stub or, eventually, neighbor and gateway

discovery.

Basically, the application starts off by registering the service that it provides to the network
through the RegisterService command. By doing this, the application is essentially opening
the door to start accepting new inbound connections. This function call is also used to
register any naming, addressing or service discovery conventions that may be used by
other network nodes to find this particular service and connect to this application. Using a
traditional, socket based, analogy, this command resembles the bind system call, as it
associates an identifier that the network can recognize, to the application, the difference
being that the identifying data is a more generic service specification, rather than a port
number. Later on, the service may also be cancelled with the CancelService command,

thus denying any future connections.

At the other end, the initiating application opens a connection with the OpenConnection
command. This function call receives a connection specification that, amongst other
possible options, specifies how the connection is established and routed, how each feature
should operate on this connection, and any quality-of-service requirements that should be
met. As a part of this connection specification, in some cases, a service specification may
be supplied using the same basic format that was used with RegisterService command.
This service specification, when applicable, can be used during the connection
establishment phase to feed a service discovery mechanism and will also be used to

connect to the appropriate remote application.

Once a connection has been successfully established, both ends will be notified through
the ConnectionOpened event. This event also provides a hew connection specification that
is unique to the established connection and must be passed on to all further function calls
related to it. Unless the connection specification is specifically configured to do otherwise,
the OpenConnection command may lead to the establishment of multiple connections to
several nodes that fulfill the specified criteria. If this is the case, the connection initiator,
and not just the service provider, must also be prepared to handle multiple connections.
When multiple connections are established, the ConnectionOpened event will be signaled

for each one, providing a different connection specification each time.

Once a connection has been established, some of its parameters may be dynamically
updated. This action is handled through the ReconfigureConnection command.
Accordingly, the ConnectionReconfigured event is used to notify the application that the



remote end has reconfigured the connection and that the new parameters will be effective

immediately.

Finally, either end may terminate a connection, on demand, by using the CloseConnection
command. The ConnectionClosed event is signaled whenever the connection is
terminated by any means other than a local call to CloseConnection, in other words, when
the remote node explicitly terminates the connection, or when it is simply lost due to a

broken wireless network link.

If a connectionless router is in use, the Connection Management interface must still be
used, albeit with some additional peculiarities. This is necessary because WMTP
virtualizes connectionless routing as a special case of connection-oriented routing that
does not establish any initial context across the network. Nonetheless, this pseudo
connection establishment procedure must still be followed so that WMTP may establish
the local context associated with the connectionless data. Under these circumstances, the
receiving application must register a service, using the same methodology followed by a
connection-oriented application that accepts incoming connections. On the other hand, the
sending application must establish a pseudo-connection using the same methodology a
connection-oriented application would, to establish a traditional one. Soon after the
OpenConnection command is called, the ConnectionOpened event will be signaled, thus
providing the connection specification that must be passed on to any future function calls.
The receiving application, in turn, will not be signaled with a ConnectionOpened event,
since, under these circumstances, it is a mere passive listener that can neither send data
back to the sources, nor have any influence on the configuration that is applied to any

incoming packets. As usual, received packets are signaled with the Receive event.

The sending application interface, in turn, is much simpler and maintains a closer
resemblance to traditional packet dispatching interfaces. Like any normal packet
dispatching interface, there is a Send command that may be used to pass new data from
the application layer on to the transport layer. The novel aspect in this interface is the
ClearToSend event. This event is used by WMTP to notify the application when it should
ideally provide its data, if it intends to conform to the restrictions implied by the
connection’s configuration. If all the applications running on each node in the network use
this event to coordinate the rate at it which they generate data, then all the conditions will
be met to provide the guarantees that each feature promises (i.e. avoid bottleneck node
congestion, provide fairness, etc.). If, on the other hand, the application chooses to ignore
this event, a certain amount of local queuing may absorb short bursts, but most features

will probably not be able to guarantee the overall functionality that they were designed for.

The receiving application interface, on the other hand, is the simplest of all the interfaces.
Just like any other packet receiving interface, there is one simple Receive event that is

used to pass received data on to the application.



3.3 System Architecture

As previously explained, WMTP’s functionality is based on the existence of a modular
transport layer framework. In this section, this framework will be further broken down and
explained in full detail. After an initial overview of how the system architecture works, each
individual interface will be thoroughly explained. Then, all of WMTP’s initially developed
features will be systematically viewed, covering not only the basic mechanisms that back
them up, but also the way they interact with the core, using one or more interfaces, in

order to fulfill their ultimate purpose.

WMTP’s basic architecture is composed of a common coordinating core and a collection of
specialized modules that are linked to it using standardized interfaces (see Figure 3.3 and
Annex 2) and that share with it a common set of data types (see Annex 6). These modules
can use these interfaces to either implement a transport layer feature or perform a specific
task that the core explicitly delegates (see Annex 3, Annex 4, and Annex 5). While feature
modules will generally use a combination of the Traffic Shaper, Reliable Transmission
Hook, Feature Configuration, Connection Management Data Handler, Local Management
Data Handler, or Core Monitor interfaces to provide their functionality, the Service
Specification Data Handler, Connection Establishment Data Handler, Multi-Hop Router,
and Link Layer QoS Indicator interfaces were specifically designed to allow the core to

delegate certain functions to external modules.
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Figure 3.3: WMTP Core Interfaces

In the case of the Connection Establishment Data Handler and the Multi-Hop Router
interfaces, the delegated tasks actually constitute WMTP’s specialized network layer
interface, used to outsource the specific functionality that belongs to this layer and, thus,
goes beyond WMTP’s scope. The Link Layer QoS Indicator interface, in turn, is the

additional extended link layer interface that WMTP uses to obtain this layer's quality-of-



service characteristics. The remaining delegation interface, the Service Specification Data
Handler, as will be further explained in the corresponding section below, is used to match
together remote service data (requested interests), with local service specifications
(offered services). Aside from determining if the local node is capable, or not, of accepting
the incoming request, the core also uses this functionality to determine to which local
application the incoming connection should be associated with. The use of external
modules to provide this matching service is a key extension point that enables WMTP to
work with more advanced naming, addressing, or service discovery mechanisms that go

beyond its scope.

Finally, the Connection Scratch Pad Hook and Packet Scratch Pad Hook interfaces are
additional helper interfaces that, albeit not directly used to regulate the core’s behavior in a
way that provides the desired feature’s functionality, provide convenient tools that greatly

simplify the development of feature modules.

3.3.1 WMTP Core Interfaces

3.3.1.1 The Traffic Shaper Interface

As previously mentioned, the traffic shaper interface is specifically designed to be
used by WMTP feature modules. This interface basically allows these modules to
regulate the rate at which packets are forwarded or generated. Although the
interface provides a broader range of commands and events (see Annex 2), its
basic operation is achieved through the use of specialized Start and Stop
commands. These commands, in turn, can either be applied to individual packets, in
which case they regulate when the packet is forwarded, or to connections, thus
regulating packet generation at the application layer, through the ClearToSend

event, as already seen in the sending application interface.

Additionally, multiple modules may use traffic shaping to influence the same packet
or connection, in which case the core manages each module’s state and uses an
AND logic to only forward or generate packets once all relevant modules have

sanctioned the operation.

The intelligent use of this interface is essential to provide many features. For
example, when providing fairness, a traffic shaper may be used to throttle data
generation, thus regulating its throughput. It is important to note that, due to the
AND logic used to check if a connection or packet is clear to send, when multiple
modules use traffic shaping, the resulting rate is limited by the “slowest” module. In
other words, the result rate is approximately the minimum of all the rates specified
by all of the traffic shaping modules.



3.3.1.2 The Reliable Transmission Hook Interface

The reliable transmission hook is a special interface provided specifically for
reliability feature modules. Through a specialized set of commands and events (see
Annex 2), this interface not only provides the means for these modules to tell the
core when a packet must still be cached for future reference, and when it is no

longer of any use, but also to detect repeated packets upon reception.

Unlike the traffic shaper interface, each packet can only be controlled by a single
reliability feature module. In other words, although WMTP may have several
reliability feature modules available, each individual packet may be controlled by at

most one of them.

3.3.1.3 The Feature Configuration Handler Interface

As the name implies, the feature configuration handler interface is also specifically
designed to be used by feature modules. This specific interface is used to allow
each feature module to manage its own configuration, thus providing specialized
commands that not only allow the module to initialize a connection’s configuration
with default values, but also to convert this configuration to and from a format that
may be transported along the network (see Annex 2). This way, the WMTP core
may use this interface to perform a connection’s configuration across the network,
as well as to make sure that individual connectionless packets are also

appropriately configured.

3.3.1.4 The Connection Management Data Handler Inte rface

The connection management data handler interface, also specifically used by
feature modules, allows these modules to piggy-back their own management data,
alongside a packets payload, across the network. This is especially useful to

append packet specific information, such as identifiers or sequence numbers.

This being the case, this interface provides both the means to generate and handle
these headers, as well as to access them from within a currently enqueued packet
(see Annex 2).

3.3.1.5 The Local Management Data Handler Interface

The local management data handler interface, like its connection management data
counterpart, allows feature modules to generate and handle their own management
data. Unlike connection management data, that is piggy-backed alongside a packets
payload across the network, local management data is not associated with any
particular packet and is, thus, repeatedly broadcasted to the local neighborhood.
This particular kind of management data is especially useful to keep the neighboring
nodes up to date on the local node’s status (e.g. whether it is congested, or not).



This being the case, this interface provides the commands and events that allow the
application to generate and handle these headers (see Annex 2). Additionally, the
feature module is signaled when its data is being broadcasted, thus allowing it to
update or delete it own data, immediately after it is broadcasted.

Although local management data is not directly associated with any packets, the
WMTP core does not necessarily have to broadcast it in its own dedicated
messages. If the link layer in use supports radio snooping, then the WMTP core will
automatically piggy-back all management data onto some, otherwise unassociated,
data packet. Since using the radio transmitter is, generally, one of the most
expensive operations that sensor node’s perform, in terms of energy consumption,
the ability to piggy-back local management data along with data packets is a key
factor in saving energy and, thus, extending the network’s overall life-time.

3.3.1.6 The Connection Scratch Pad Hook Interface

The connection scratch pad hook is a special interface that allows multiple feature
modules to maintain independent, per-connection, state variables locally associated
to each open connection, thus relieving the individual feature modules from the

burden of managing their own memory buffers for this purpose.

3.3.1.7 The Packet Scratch Pad Hook Interface

The packet scratch pad hook, like its connection counterpart, relieves the feature
modules of the burden of managing their own state memory. Unlike the connection
scratch pad hook, this interface provides per-packet state management, thus
allowing feature modules to associate their own state variables to each individual
packet.

3.3.1.8 The Core Monitor Interface

The core monitor is a special interface that allows any module to obtain the WMTP
core’s current status, as well as to be notified whenever this status is changed (see
Annex 2). This interface provides the means to monitor registered services, open
connections, and the core queue. Additionally, the monitoring module is notified
whenever a packet is generated, received, sent or dropped from the core queue, as
well as whenever a radio message is received, about to be sent, or when its sending

process has completed.

3.3.1.9 The Service Specification Data Handler Inte  rface

Service specification data handlers are the components that match together locally
registered service specifications (locally provided services) with incoming service
data (remote interests). By delegating this functionality to external modules, the

WMTP core maintains its generality by not creating any strong ties to any specific



service discovery architecture. This approach avoids unnecessary cross-layer
dependencies and eases the development of future extensions that may support
more complex or advanced naming, addressing or service discovery systems.

Although this interface provides a broader set of commands (see Annex 2), its main
functionality is centered on verifying if a local service specification matches a remote
interest, as well as generating the data that expresses this interest in remote

services, from an equivalent service specification object.

3.3.1.10 The Connection Establishment Handler Inter  face

Although some of WMTP’s features rely on connections, the components that
establish these connections don’'t have any strong ties to the core itself. In fact,
when an application requests to open a connection, the request is simply rerouted to
the appropriate connection establishment handling module. This module, in turn,

then uses its own mechanisms to establish the connection as requested.

In order to accomplish this task, this interface provides several commands that the
module may use during the connection establishment phase (see Annex 2). These

commands provide the following functionalities:

e« The core extends the functionality that the service specification data
handlers offer it, thus allowing the connection establishment modules to
generate service data representing interests, as well as to find local

services that match remote interests;

e Similarly, the core extends the functionality provided by the feature
configuration handlers, thus giving the connection establishment modules
the ability to manage a connection’s configuration. This way these modules
are provided with the tools that enable them to both generate configuration
data from an already configured connection specification object, as well as

to initialize a new connection with remotely generated configuration data;

e The core itself must also be notified when a connection has been opened,
not only so that it can maintain its own records up to date, but also to notify
any other modules of the fact. This being the case, this interface also
provides a set of commands that are used to notify the WMTP core that a
connection has been established, be it either a locally terminated
connection, or simple one that is forwarded over the local node. The WMTP
core then uses these commands to update its lists of open connections, as

well as to signal any other resulting events.

e The core provides the ability to generate dummy keep-alive packets for an
established local connection. These packets, when dispatched, will be

forwarded across the network towards the opposite end of the connection.



e Special commands are provided to interact with the WMTP core quality-of-
service reservation subsystem. This subsystem will be further explained, in

a section of its own, further below.

3.3.1.11 The Multi-Hop Router Interface

As previously mentioned, WMTP uses an unconventional protocol stack that doesn’t
sit upon the network layer, but rather uses it through a specialized interface. The

multi-hop router is the interface used for this purpose.

The WMTP core uses this interface to query connection-oriented and
connectionless routing modules alike, on how to forward its packets. The only
difference between these two kinds of routing modules is whether they supply a

connection specification object, alongside the response, or not.

This command is also used to generate and handle routing headers. This special
kind of header is piggy-backed alongside the packet's data, in a way similar to
connection management data (see Annex 7) and may contain information (e.g. a
connection identifier or the destination node’s addresses) that will be used by

forwarding nodes as a part of the routing decision process.

Additionally, the core may use different routers for different packets, thus enabling

the coexistence of several different routing schemes within the same network.

3.3.1.12 The Link Layer QoS Indicator Interface

The link layer QoS indicator is the specialized interface that the WMTP core uses to
obtain the link layer’'s quality-of-service characteristics, hamely the maximum time
the WMTP core should have to wait between dispatching the packet to the link layer

and the packet actually being sent.

Normally, a specialized module should be developed for the link-layer in use, in
order to correctly reflect its behavior, since the absence of such a module will make
the WMTP core assume that the link layer does not provide any quality-of-service
semantics, thus disabling the entire quality-of-service reservation subsystem. On the
other hand, WMTP also provides a special implementation of this module, the
StatisticalQoSIndicator (see Annex 3), that, if used, measures the link layer's

behavior in real-time and calculates a statistically assured maximum delay.

3.3.2 WMTP Core Functionality

As previously mentioned, the WMTP core is essentially the glue that sticks together all
of the individual modules. Its job is to call upon the appropriate components for each
packet or connection and to aggregate the information from multiple components of the

same kind to make coherent decisions.



In this section, the specific functionalities, that the WMTP core is responsible for, will be
explained in more detail. These functionalities are further categorized into several
subsystems, each explained in its own subsection. These subsystems, in turn, are not
isolated compartments within the WMTP core and are only presented here for the sake

of clarity.

3.3.2.1 General Functionality

This section covers the functionality that is not directly associated with any
subsystem in particular but is still a basic part the WMTP core. To be more specific,

the core must handle the following duties:

 Maintain a list of open connections that feature modules may consult

through their specialized interfaces;
e Signal any associated event handlers whenever any relevant event occurs;

« Implement each command or event specified by the core interfaces, either
by supplying the desired functionality as described in the WMTP
specification, or by providing a dummy response indicating that this
particular functionality is not supported, when the specification explicitly

allows this.

3.3.2.2 Message Generation and Parsing Subsystem

WMTP uses a specialized message format that supports the encapsulation multiple
instances of local management data, as well as multiple data packets, each
containing a routing header as well as multiple instances of connection
management data and the packet's payload (see Annex 7). This particular
subsystem is responsible for generating and handling these messages, thus

entailing the following functionalities:

e Accept local management data from multiple feature modules and ensure that
it is periodically broadcasted. If the link layer supports radio snooping and there
are data packets ready to be sent out, piggy-back the local management data
alongside the outgoing data packets, otherwise, use a dedicated management

packet;

e Whenever a message is received from the link layer, sequentially parse its
contents by calling the appropriate handling modules, be them local or

connection management data handlers, multi-hop routers or applications;

« Whenever a new packet is generated by an application, call the appropriate
multi-hop router to generate its routing header. Next call all of the individual
connection management data handlers and append any data that they may
generate, alongside the packet’s payload;



« Handle any received connection management data by passing it along to the
appropriate feature modules. Keep a record of the individual management

headers in case the feature module requests it at a later time.

3.3.2.3 Data Forwarding and Delivery Subsystem

This particular subsystem is responsible for ensuring that data packets are sent
across the network ultimately reaching their destination. This requires the following

functionalities:

e Ignore received data packets that are not intended to be forwarded through this

node (i.e. that were received promiscuously);

* Whenever a packet is generated by an application or otherwise received from
another node, use the appropriate multi-hop router to obtain the next hop’s
address. If the specified next hop is the local node, deliver the data to the

appropriate application, otherwise, enqueue the data so it may be forwarded.

3.3.2.4 Queuing Subsystem

The queuing subsystem, in turn, is responsible for holding a limited number of
packets in local cache so that they may be forwarded at a later time. Additionally,
this subsystem also cooperates with reliability modules by only dropping packets
from the core queue when the appropriate module tells it to. This subsystem, thus,

entails the following functionalities:

» Use the appropriate reliability module, when applicable, to detect repeated

packets, and discard them.

e If a packet is configured to use reliability semantics, retain it in the core queue
until the appropriate reliability module indicates that it may be dropped, even if

it is destined for local delivery;

* Send the next packet from the core queue, as soon as the link layer signals

that the previous packet has already been sent;

* When selecting which packet to send next, ignore all packets that have been
marked, by at least one traffic shaping module, as inactive. Of the remaining
packets, choose the one with the highest quality-of-service priority. If there are
several packets with the same priority level or if all the packets don't have
quality-of-service enabled, choose the oldest packet.

3.3.2.5 Traffic Shaping Subsystem

This particular subsystem is responsible for maintaining the Boolean state of each
traffic shaper, associated to each connection and packet. Each traffic shaper can

control its own state through the StartConnection, StopConnection, StartPacket, and



StopPacket commands, thus leaving the connection or packet in an active or
inactive state, respectively. This way, this subsystem will provide the following

functionalities:

e Maintain the individual active/inactive status of all open connections and
qgueued packets for each traffic shaping module;

« Whenever a traffic shaping module starts a local connection, infer the global
status using an AND logic and, if the connection changes its global status from
the inactive to the active state, signal the appropriate application with the
ClearToSend event.

3.3.2.6 Memory Management Subsystem

Since dynamic memory is a rare commodity in embedded systems, especially on
the resource constrained ones used in WSNs, the WMTP core must manage its own
memory for all of its dynamic structures. There are two data structures that require
the WMTP core’s direct action as a memory manager, core queue elements, and
connection specifications. This memory management is achieved through the use of
a basic list of idle elements from which a new element may be retrieved and put to
use, on demand. Accordingly, once an old element is no longer needed, it may be

“destroyed” simply by returning it to the list of idle elements.

In the case of the connection specifications, these elements are not only used
internally by the WMTP core, but also by external modules, including applications.
This way, these modules may use the GetNewConnectionSpecification and the
DestroyConnectionSpecification commands to take advantage of the core queue’s

memory management abilities.

Additionally, the WMTP core provides two convenient interfaces that relieve feature
modules of some additional memory management hassles, namely, the connection
and packet scratch pad hooks. Although these interfaces do not require the use of
dynamic data structures, the WMTP core must still maintain individual connection
and packet scratch pads, for each module that uses them, associated to each open

connection or queued packet, respectively.

3.3.2.7 Configuration Management Subsystem

The configuration management subsystem allows the WMTP core to manage the
configuration of each feature module. Albeit most of the work is done by the feature

module, the WMTP core is still responsible for the following functionalities:

« Whenever a connectionless packet is generated, the applicable configuration

data must be appended using a special type of connection management data.



Accordingly, when one of these packets is received, its configuration must be

initialized using said data;

e When a connection establishment handler requests the generation of
connection configuration data, it should be pieced together by sequentially
requesting that each feature module generate its own data;

e When a connection establishment handler requests that a connection be
configured using configuration data, the WMTP core must first initialize the
connection for every feature module. Next, each feature that is specified within
the configuration data should be configured by calling the appropriate feature

module.

3.3.2.8 Service Management Subsystem

Although the WMTP core does not specifically implement a service discovery
system, it does use services to identify how each application is accessible from the
network (in the same way that TCP and UDP use port nhumbers). This entails the

following functionalities:
« The WMTP core must manage a list of locally registered services;

« When a connection establishment handler requests the generation of service
specification data representing an interest, the WMTP core delegates this task

on to the appropriate service specification data handler;

* Whenever remote service data, representing an interest, is matched against a
registered local service specification, once again, the WMTP core must
delegate the matching operation to the appropriate service specification data

handler;

e When a connection establishment handler requests the first service
specification that matches remote service data, representing and interest, the
WMTP core must successively test each registered service specification until

one that matches is found;

3.3.2.9 Quality-of-Service Reservation Subsystem

As previously mentioned, the WMTP core provides a quality-of-service reservation
system to the connection establishment handling modules. This system extends the
quality-of-service guarantees provided by the link layer, to provide end-to-end

transport layer quality-of-service semantics.

The WMTP core quality-of-service reservation system is based on the idea of
reserving a maximum sending delay for a connection, during its establishment
phase, thus assuring that its packets will never have to wait more than the reserved

delay to be forwarded to the next hop. As new reservations gradually take effect, the



system essentially makes sure that if a single packet from each quality-of-service
enabled connection were to arrive from all of them at once, then each one could be
dispatched within its individual required time frame.

This reservation process associates a simple priority level to the connection. This
priority level, in turn, will be used by the queuing subsystem to prioritize the
connection’s packets, thus assuring that its service levels are met. Additionally,
when quality-of-service resources are reserved for a connection, a single queue
element is also reserved specifically for the connection, thus providing the additional

guarantee that it will not be affected by network congestion.

In order to access this specific system, the connection establishment handling
modules are provided with a specialized interface. Since the end-to-end quality-of-
service reservation process is similar, in many aspects, to a transaction, it is often
desirable to reserve and/or cancel quality-of-service resources prior to actually
opening the connection. In order to provide these reservation semantics the core
quality-of-service reservation system requires that a special procedure be followed
when a quality-of-service enabled connection is being opened. This procedure is

based on the following principles and is illustrated in Figure 3.4:

e The connection establishment handling module may request that the core
reservation system calculate the shortest available delay, above a specified
threshold, that it is willing to dispense, by using the GetQoSShortestDelay
command. The request itself does not reserve any resources and its answer is
only valid during the current context (i.e. until the handler returns). Additionally,
the WMTP core may enact arbitrary policies that limit the minimum delay
calculated by this function. This means that a quality-of-service reservation with
a delay that is smaller than the one calculated by this function may still be

accepted;

e Connections with local delivery do not need to reserve any resources since
they can reach their destination without any delay. In this case, the connection

may be opened directly with the AddLocalConnection command;

* Non-local quality-of-service enabled connections, on the other hand, must first
reserve their associated resources through the ReserveQoSResources
command. Once the quality-of-service resources have been successfully
reserved throughout the entire route, the connection may be opened, using the

AddLocalConnection or AddNonLocalConnection commands, as usual;

e The FreeQoSResources command must only be used to free the resources
associated with unopened connections. The resources of an open connection
are automatically freed when the connection is closed.
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Based upon this reservation system, the connection establishment handling

modules may provide the following end-to-end quality-of-service metrics:

e Maximum end-to-end delay: The connection establishment handler
sequentially attempts to reserve the shortest available delay on each node
along the connection’s route. These calculated delays are accumulated as
the connection is established and, if, at a certain point, the specified
maximum delay is exceeded, the connection is dropped before the
establishment process finishes, thus guaranteeing that the connection is
only successfully established if the quality-of-service requirements can be
met.

« Maximum and desired generation periods: This quality-of-service metric is
equivalent to the minimum and desired throughputs, but expressed as
packet periods (in milliseconds between packets) rather than in throughputs

(in packets per second). The idea behind this quality-of-service metric is the



guarantee that if the connection generates packets at a rate that is lesser
than or equal to what was reserved, than its packets will never be dropped
due to congestion. The use of two parameters, the maximum and the
desired periods, enables the application to establish the hard requirement
that must be met to establish the connection (the maximum generation
period) and a soft preference, which ideally would be what is actually
reserved. In order to provide this quality-of-service metric, the connection
establishment handler sequentially attempts to reserve the shortest
available delay that is larger than the preferred period, on each node along
the connection’s route. If the shortest delay is higher than the maximum
period, then the connection establishment handler attempts to perform the
reservation using the maximum period. If the reservation is ultimately
unsuccessful, the connection is dropped before the establishment process
finishes, thus guaranteeing that the connection is only successfully

established if the quality-of-service requirements can be met.

Although the mechanism used by the WMTP core to manage the quality-of-service
reservations is not standardized, the recommended solution, which was used in the
reference implementation, is based on a binary reservation tree. The idea behind
this mechanism is to represent each reservation as a node on the tree in such a way
that, if a node is reserved, then none of its children nodes may be used for other
reservations. Furthermore, the depth of the node (starting from zero at the tree’s
root), represents the connection’s priority level, as will be used by the core queuing
subsystem. Under these circumstances, a reserved node is guaranteed to be able
to send out its data with a delay of (2"+1)xD, or less, where n is the connection’s

priority and D is the maximum delay reported by the link layer.

In order to prevent a delay constrained connection from tying up the reservation
system and cutting off any future reservations, the WMTP core may also enforce a
minimum level that it is willing to offer. Using this policy, whenever a connection
establishment handler requests the shortest available delay, the core quality-of-
service reservation system will never provide a value below (2"+1)xD, where n is
the minimum level, dictated by the policy, and D is the maximum delay reported by
the link layer. Although this policy does limit the values that are reported by the
GetQoSShortestDelay command, it does not interfere with the reservation process
in itself, thus creating the situation where a quality-of-service reservation with a

delay that is smaller than the one calculated by this function may still be accepted.

An example showing this reservation system in action is illustrated in Figure 3.5.
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This particular example illustrates a situation where there are two quality-of-service
reservations. For the sake of clarity, the maximum send delay that is reported by the
link layer is one second. This being the case, the following conclusions may be

drawn:

e The quality-of-service reservation that was made at level 1 is guaranteed to
have priority over all others. This means that, when a packet is received for
this connection, it will be forwarded as soon as the previously sent packet is
complete. This way, the packet will have to wait at most two seconds to be
forwarded, the maximum time it may take to finish the previously sent
packet and the maximum time it will take for it to be sent itself. This value is

smaller than the predicted maximum delay of (2"+1)xD = 3 s.

« The quality-of-service reservation that was made at level 2, on the other
hand, must yield priority to the reservation made at level 1. This means that,
when a packet is received for this connection, it will not only have to wait for
the previously sent packet to finish, but also for the packet associated with
the reservation at level 1, as well as the packet associated with a possible
future reservation made at level 2. This way, the packet will have to wait at
most four seconds to be forwarded, the maximum time it may take to finish
the previously sent packet, the higher priority packet, a possible equal
priority packet, and itself. This value is smaller than the predicted maximum
delay of (2"+1)xD =5 s,

e The remaining free nodes may support either one reservation at level 2 or
two reservations at level 3. In the former case, as before, the maximum
delay would be five seconds. In the latter, the maximum delay would be
(2"+1)xD =9s.



3.3.3 Message Formats

In order to allow nodes to communicate amongst themselves and properly implement
the above mentioned functionality, a special message format is used in WMTP. In this
section WMTP’s message format will explained but, for a complete specification of all

of the message structures and fields, see Annex 7.

All of WMTP’s messages are based on a single super-structure, the WMTP Message,
which uses a hierarchical approach to encapsulate all of the different kinds of data into
a single unit. Although this is not uncommon in other protocols, there is one key aspect
that differentiates this approach from traditional ones: when a sub-section is included
within a section, the sub-section’s size is not saved within the section itself and may not
be sent anywhere within the packet at all. The idea behind this is that most sections
have either a constant size or a size that can be trivially calculated; in which case,
adding an explicit field with the section’s size is just redundant overhead that may be

used only for validation purposes.

This way, when the WMTP core calls a handler to process a specific section of a
message, instead of passing it a data buffer and its size, it passes a data buffer and
receives the size when the call ends, which, in turn, will be used to locate the beginning
of the next section. This concept is used extensively throughout WMTP’s message

format scheme.

As already mentioned, the WMTP message uses a hierarchical structure. This
relatively complex structure is necessary not only to be able to hold data packets and
headers, but to also be able to piggyback management headers. Having this in mind,
the WMTP packet may be further broken into multiple Local Parts. These parts may
each hold either a local management header or a Connection Local Part, which
contains a data packet alongside any connection specific headers. These Local Parts
are appended sequentially within the WMTP Message, leaving the Connection Local
Parts for last. The Connection Local Part, in turn, may be further broken into a Routing
Header, followed by multiple Connection Parts and, finally, the Data Connection Part,
which holds the actual data payload.

3.3.4 Feature Implementation

Using the previously explained architecture, complete features may be implemented as
additional modules that use multiple interfaces to interact with the WMTP core, in a way
that provides a coherent result. In this section all of WMTP’s initial features will be

presented and further explained.



3.3.4.1 Queue Availability Shaper

The queue availability shaper is not exactly a formal transport layer feature, but
rather a convenient utility. This module prevents the application from generating
packets when the core queue doesn’t have enough room to accept them in the first
place. This may seem like an oxymoron, but, in the absence of this feature, the
application could be led to generate packets at a rate higher than the core queue
could absorb them, thus leading to all surplus packets being dropped immediately

after being generated.

To implement this mechanism the module needs only to use the traffic shaping and
the core monitor interfaces. Whenever a packet is generated, received or dropped
from the core queue, the queue availability shaper uses the core monitoring
interface to check if the core queue still has any space available for an additional

packet and starts or stops all connections that use this feature, accordingly.

3.3.4.2 Throttling

Throttling is one of the simplest of all features that WMTP offers, being basically a
mechanism that allows the application to specify the minimum packet generation

period.

To implement this mechanism the module needs only to use the traffic shaping and
the connection scratch pad hook interfaces. Whenever the connection generates a
new packet the throttling module basically stops the connection and sets a wake-up
timer to restart it, after the specified period. The WMTP core will eventually use the
ClearToSend event to generate the next packet. The connection scratch pad hook
interface is used merely for the convenience of storing each connections individual

wake-up time.

3.3.4.3 Flow Control

The flow control feature, in turn, is a simple mechanism where the receiving node
may regulate the rate at which the sending node generates data. This functionality is
achieved in exactly the same way as was done with the throttling feature, except
that the desired generation period is configured by the remote application, rather

then the local one.

3.3.4.4 Congestion Control

Congestion control is a feature that delays packet forwarding in order to avoid
congestion on bottleneck nodes. As these packets accumulate across upstream
nodes, the sources will eventually be affected, thus regulating packet generation as

well.



This feature is implemented using the local management data handler, the traffic
shaper, and the core monitor interfaces. Each node determines its own congestion
status by using the core monitor interface to analyze its local queue availability, thus
creating a Boolean congestion notification bit. In order to decide whether the nodes
is congested or not, two distinct thresholds are used, a minimum queue availability,
under which the node will be considered as congested, and a maximum queue
availability, over which it will cease to be considered as so. In between these two

thresholds, the node retains its last state, thus creating a memory effect.

Once this congestion status is established, this information is shared with all local
neighbors through the use of local management data. Furthermore, each of the local
neighbor’s congestion state is cached in a local neighbor table. This way, the traffic
shaping interface may be used to stop packets that will be forwarded over to a
congested node and restart them when the node is ready. Additionally, whenever
the local node changes its congestion state, all local connections are stopped or
started, accordingly, thus regulating the rate at which the application generates

packets.

A message sequence diagram, illustrating this feature in action, may be seen in
Annex 8.

3.3.4.5 Fairness

The fairness feature, in turn, allows all connections that are transmitting to a
common sink to share the available network resources, either in an equitable
fashion, or using a weighted differentiation algorithm.

To provide this feature the module must use the local management data handler;
the traffic shaper, the connection scratch pad hook, and the core monitor interfaces.
The basic idea is that the module measures how much time passes between
packets being dropped, thus determining the local period. This local period is then
smoothed out with an exponentially weighted moving average and multiplied by the
sum of the weights of all open connections that go through the node and use

fairness, resulting in what is called the normalized local period.

Additionally, each node broadcasts a normalized period and the address of the
limiting node. More specifically, each node starts by broadcasting its own local
normalized period, setting itself as the limiting node. As this information is shared
amongst neighbors, each node remembers the highest remote normalized period it
has heard of recently and that wasn't limited by itself, as well as the address of the
limiting node. If its own local normalized period is greater than or equal to the
cached remote version, the node continues to broadcast its own version, while still
setting itself as the limiting node. If, on the other hand, the remote normalized period
is greater, the node will broadcast the remote version, while setting the remote



address as the limiting node. What this does, in practice, is implement a distributed
algorithm that determines which node has the highest normalized period and what
its value is, while also avoiding the creation of dependency loops within the network.

Now that each node knows the value of the highest normalized period of the entire
network, it uses this value to determine the packet generation period of each of its
local connections by dividing this normalized period with the connection’'s own
weight. Once this packet period is determined it is slightly boosted using a
multiplicative factor (80% in the reference implementation), and the connection is
throttled through the use of a mechanism identical to the one used in the throttling

feature.

This boosting mechanism is used to help the fairness feature react faster to
occasional changes in the network’s characteristics. If it were not used, the fairness
feature would still effectively and quickly react to a radio link slow-down but, on the

other hand, it would have a very slow reaction if the link were to speed-up.

All of the above mentioned functionality is further replicated to provide multi-sink
fairness. In other words, each state variable is instantiated for each registered sink,
a distinct local period is measured for each sink, and the local management data is
used to broadcast multiple [normalized period, limiting node address] pairs. This
way, several fairness enabled sinks can operate independently across the network.
Additionally, the core monitor interface is used to detect when a Sink ID service is

registered, thus creating an identified sink to which sources may route their data.

3.3.4.6 WMTP Reliability

WMTP reliability is a feature that enables packet retransmission in case of loss, thus
providing an additional level of assurance that a packet will reach its destination.
This feature uses a link level reliability mechanism in which a packet is only
retransmitted over the local link where it was lost, instead of an end-to-end solution,

where lost packets are only repeated at the source nodes.

This feature is implemented through the use of the local and connection
management data handler interfaces, as well as the reliable transmission hook, the

traffic shaper, and the packet scratch pad hook interfaces.

The connection management data handler is used to associate a simple identifier to
each data packet that uses this feature. The local management data handler, on the
other hand, is used to broadcast an availability map (A-Map), in other words, a list of

the identifiers of each packet that uses this feature, currently held in the local queue.

Now that this feature has a way of identifying its individual packets and of telling its
neighbors which packets it currently has in its core queue, it uses the reliable

transmission hook interface to hold these packets until it is certain that they won't be



needed any longer. This way, a packet is considered droppable when the next hop
has already announced having received it and the previous hop no longer
announces that it is retaining it. Naturally, the sending node needs only to wait for
the former condition and the receiving node, the latter. Additionally, this specific per-

packet state is easily maintained through the packet scratch pad hook interface.

On the other hand, this feature must also make sure that a packet is only
retransmitted if some benefit may come from it. In other words, the packet must not
be retransmitted if the next hop has already acknowledged it and it should only be
retransmitted after a certain amount of time has elapsed, thus giving the next node
enough time to broadcast its availability map. This waiting period is implemented
through the use of the traffic shaper interface, by stopping the packet as soon as it
is transmitted and only restarting it after its time out timer has expired. Once again,
the packet scratch pad is used to manage these per-packet timers. Some simple
examples showing this mechanism in action are provided in Annex 9, Annex 10, and
Annex 11.

A special note must be made as for the availability map’s format. Since each
packets identifier is relatively large (32 bits in the reference implementation), and
since the core queue may have several packets with WMTP reliability, the
availability map may become quite large, which may pose a problem, especially
since the maximum packet size on WSNs tends to be quite small (29 bytes, by
default, in TinyOS). In order to circumvent this problem, the availability map must be
segmented into several local management data messages, each with a relatively
small size (12 bytes in the reference implementation). This segmentation, in itself,
also poses a problem of its own. Since not only the presence of a packet in the
availability map, but also its absence, conveys information, the use of segmented
availability maps no longer transmits this information atomically, and thus could
generate confusion as to whether a packet is absent or if it is present but just not
included in this fragment. To work around this problem, WMTP reliability builds its
availability maps by using a special packet sorting algorithm that clearly conveys the
absence of a packet, as well as its presence. This is done by ordering the
availability map’s packet ids in an ascending order and by adding special dummy
packet ids to represent the list's beginning and end. Once the availability map is
arranged in this fashion, it may be fragmented and sent out in multiple pieces, so
long as the last packet id from one fragment is included as the first packet id in the
next one. Since the packet ids are ordered, the absence of one may be detected as
either the presence of two consecutive packet ids, one smaller the absent one, and
one larger, or as the indication that the first packet id is larger than the absent one,
or that the last one is smaller. Some examples of how availability maps may be

fragmented, using this algorithm, are illustrated in Figure 3.6.
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3.3.5 Additional Modules

Aside from the core and the feature modules, WMTP also provides an additional set of
modules that provide other kinds of functionality. In this section these additional module

will be individually presented and explained.

3.3.5.1 PacketSinkServiceSpecificationHandler

This module uses the service specification data handler interface to manage the
Packet Sink service specification type. This type of service specification is used to
describe a generic catch-all sink. In other words, a Packet Sink interest will always

match a registered Packet Sink service.

3.3.5.2 SinkIDServiceSpecificationHandler

This module also uses the service specification data handler interface but, this time,
to manage the Sink ID service specification type. This type of service specification is
used to describe the identified sinks that are used with the fairness feature, by using
a seven bit sink identifier. This being the case, a Sink ID interest only matches a

registered Sink ID service if they have the same identifiers.

3.3.5.3 TOSMultihopRouter

This module, unlike the previous two, is a routing module. In other words, it provides
the Multi-Hop Router interface for the WMTP core. This routing module uses
TinyOS'’s native routing layer to provide a simple connectionless router that can be
used with WMTP. Once the data reaches the sink node (defined as node O by
TinyOS) the TOSMultihopRouter module searches for a local Packet Sink service
and delivers the data to the associated application.



3.3.5.4 TagRouter

This module, just like the previous one, is a routing module and, thus, provides the
Multi-Hop Router interface for the WMTP core, but, unlike the TOSMultihopRouter

module, this routing module provides connection oriented routing.

This router works by associating to each data packet a routing header that contains
a simple eight bit tag. This tag is then used to identify which connection the packet
is associated to, as well as the address of the packet's next hop. Additionally, this
tag is translated, over every hop, in a manner similar to what is done in ATM and
MPLS technologies.

In order to provide this functionality, this module requires an external Connection
Establishment Handling module that adds the local context with the tag
associations. This being the case, this module also provides an additional
specialized interface that can be used by Connection Establishment Handling
modules to manage this local context. Although this interface has additional
commands and events (see Annex 5), its main functionality is provided through the
AddTagAssociation command. This command creates a new tag association, which
maps the previous hop address and previous tag to the next hop address and next
tag, while also associating a connection specification object. Additionally, this tag
association may be used in bidirectional connections, as the translation mechanism

is bilateral.

3.3.5.5 SourceRoutedConnectionEstablishmentHandler

This module, in turn, is used to establish source routed connections. In other words,
it uses the connection establishment handler interface, provided by the WMTP core,
as well as the specialized interface provided by the TagRouter module, to establish
a connection’s context across the network. Additionally, this module uses a source
routing mechanism that allows the application to dictate exactly which route the

connection should follow.

In order to establish these connections, this module uses local management data to
send out connection initiation messages (see Annex 7). These messages, in turn,
not only contain the information required to establish the tag routing context
between neighboring nodes, but also a list of all of the remaining hops required to
reach the packet’s destination, as well as the configuration data that is used to
establish the connection’s context, the service specification data that expresses an
interest that must be matched at the destination node, and, finally, any quality-of-
service parameters that are used to reserve these kinds of connections. Once it is in
the possession of all of this information, this module simply uses the previously

mentioned functionality that the WMTP core and the TagRouter module provide.



3.3.5.6 StatisticalQoSIndicator

This module, unlike the previous ones, provides statistically inferred quality-of-
service characteristics of a link layer, through the Link Layer QoS Indicator interface.
This is particularly useful when the existing link layer does not explicitly support

quality-of-service, or when its true characteristics are, otherwise, unknown.

In order to provide this functionality, this module uses the Core Monitor interface to
establish how much time elapses from when each packet is passed to the link layer
and when the packet is completely sent. Once in the possession of these individual
measurements, the module then performs a simple statistical analysis that
calculates a maximum expected delay that is larger than the observed delays

approximately 95% of the times.

Since a complex statistical analysis, based on a confidence interval, would require
more memory and processor resources than is considered reasonable for an
embedded sensor node, an alternative method was used, based on exponentially
weighted moving averages. This way, the maximum expected delay is calculated

using the following methodology:

e An average delay is calculated by smoothing out individual delay
measurements with an exponentially weighted moving average that

attributes 5% to new values;

» After the average delay is updated, a current deviation is calculated as the
absolute value of the difference between the current delay value and the
average;

* An average deviation is calculated by smoothing out individual deviation
values with an exponentially weighted moving average that attributes 5% to

new values;

¢ Finally, the maximum expected delay is calculated as the average delay

plus three times the average deviation.

Simulations have shown that this maximum delay estimator provides a relatively
stable value that is greater than or equal the individual delay measurements,

approximately 95% of the time.

3.4 Implementation Considerations

Concurrently with WMTP’s design, a reference implementation was also developed. This
parallel effort not only served the purpose of demonstrating that such an implementation
was conceivable but, in the end, also produced a complete and functional system that
could be used to validate the protocols functionality, as well as to evaluate its
performance.



This reference implementation was developed for the TinyOS platform and, thus, benefits
from its modular component based architecture. Under these circumstances, each of
WMTP’s modules was cleanly mapped into an individual TinyOS component that could be
easily included or excluded from the compiled binary through the simple manipulation of a
configuration file. Using this approach, it is easy to quantify exactly how much program
and data memory is used by each feature. This way Table 3.1 shows the actual values
that apply to the MICAz platform.

ROM Code Size {Bytes) | RAM Footprint {Bytes)

TinyOS + Core 30974 3268
Queue Availability Shaper| 470 21
Throttling 1664 119

Flow-Control} 1992 139
Congestion-Control] 1908 73
Fairmess 5268 151

WMTP Reliability 5054 152

Table 3.1: WMTP Feature Memory Usage

An additional advantage of the TinyOS platform is that the same source code that
implements WMTP on real sensor nodes can also be run through the TOSSIM simulator.
This way, the simulation process is actually running a complete implementation of the
WMTP protocol, rather than a basic model that emulates its functionality. On the other
hand, this also provides a very convenient development environment, since the simulated
application can be further debugged through the use of traditional toolkits like the GNU
debugger.

Although the TOSSIM simulation environment mimics very closely real-world sensor
networks, there is one key aspect where it fails to emulate a sensor node’s true behavior.
Since TOSSIM is an event based simulator it cannot quantify the time the real embedded
processor would take to execute a certain portion of code. This way, although the
reference implementation is guaranteed to compile and fit within the limited memory
restrictions found on these nodes, it is yet to be asserted whether or not their limited
processing capabilities impose any significant restrictions on WMTP’s functionality.



4 WMTP Test and Evaluation

To assess WMTP's effectiveness, a special test application was developed to work with
WMTP while being simulated under the TOSSIM environment. This simulator was built to
reproduce real-life WSN conditions very closely and, as such, simulates multiple nodes
arranged according to a specific topology.

Under these conditions, a series of simulations were run to show each individual feature in
action, as well as the most relevant combinations thereof. Since these simulations were
designed solely to show how WMTP’s features operate, in a qualitative manner, each test
case was run only once. Being this the case, the simulated results may only be used as a
comparison between distinct feature combinations or scenarios, since they lack the statistical

relevance required to extrapolate reference performance values.

4.1 Test Scenarios

Given the modular nature of WMTP’s functionality, a common base-line scenario was
created in order to be able to successfully assess each feature’s effectiveness. Using this
common ground, all of WMTP’s features can not only be evaluated by themselves, but

also compared amongst each other.

This kind of comparison amongst different features is especially useful when evaluating
the combined effects of multiple features. This way, the positive or negative effects of any

single feature, or combination of features, on any of the others may be assessed.

The test scenario chosen for this purpose is described in Figure 4.1. In this scenario, there
are a total of six sensor nodes, of which three are source nodes, which generate data, two
are relay nodes, that simply forward the data, and one is a sink node, which consumes the

data.

Sink Node

O Relay Nodes
—>

Source Nodes

Data Path

----  Implicit Link

Figure 4.1: Common Simulation Scenario Topology

This particular scenario was chosen due to the differing distances of the sources from the

sink. This simple difference is enough to create an imbalance that naturally leads to an



unfair advantage for the source nodes closest to the sink. By using this additional
challenge for WMTP’s features to overcome, the use of a larger and more complex
topology would be redundant, since it would only add more nodes under similar conditions.
This being the case, the use of only these six simulated nodes suffices to effectively
validate WMTP’s functionality and evaluate its performance, while also avoiding

excessively cluttering the results.

A special exception was made from this common scenario for the quality-of-service
assessment simulations. Since quality-of-service is supposed to provide assured
performance levels, even in the most unfair of environments, a special scenario was used
for these tests. The scenario chosen for this purpose, illustrated in Figure 4.2, simply
transfers the responsibility of generating data from node 3 to node 1. Under these
conditions, if node 1 operates under no special restrictions, it will generate data at the
highest rate physically possible, thus ensuring that its core queue will always be
completely filled with its own packets. On the other hand, since node 1 is also a forwarding
node for the remaining source nodes, under natural conditions, it will completely prevent

any data from the remaining sources from getting through to the sink.

Sink Node

Relay Nodes

Normal Source Nodes

QoS Enabled Source

Inactive Nodes

Data Path

----  Implicit Link

Figure 4.2: Quality-of-Service Simulation Scenario Topology

Under these exceptionally dire conditions, node 5 will establish a quality-of-service
enabled connection, in hope of being able to overcome the challenge that it is presented
with.

4.2 Test Application and Methodology

In order to produce meaningful results from the test simulations, a special test application
was developed to establish connections and generate data while using the WMTP features
under the above specified scenarios. Additionally, a performance monitoring module was

also developed, in order to measure certain specific metrics, such as the number of data



packets and radio messages generated and received, as well as the minimum core queue
availability during the measured period. This performance monitor module then periodically
dumps and resets its statistical counters every 10 seconds, thus providing the raw data
that is further processed using a traditional spreadsheet application.

With the exception of the base line scenario test-case and the WMTP reliability test-case,
which were tested under varying network load conditions, the remaining tests cases were
designed to show how their respective features operated under pressure. This being the
case, the source nodes in these simulations generate data at the highest rate that they

physically can.

The quality-of-service test case also presents a distinct exception from this rule. Although
the non-quality-of-service enabled nodes, within the test, do also generate data at the
highest rate that they physically can, the quality-of-service enabled node initiates a

throughput constrained connection and thus generates data at a constant packet rate.

4.3 Simulation Results

In this section, the processed simulation results will be presented and briefly discussed.

The following indicators have been used across multiple simulations:

» Generated Packet Rate: As the name suggests, this value represents the average

number of packets each node generated, measured in packets per second;

* Received Packet Rate: This value, as the name also clearly suggests, represents
the average number of packets received at the sink from each source, measured

in packets per second;

* Unreceived Packets: This value, in turn, represents the accumulated number of
packets that have been sent from each source but, for some reason or another,
have not yet reached the sink. It is perfectly normal for this value to be non-zero,
even if all packets are eventually received, as this merely indicates a delay
between the moment the packet was generated and the moment at which it was
received at the sink. True packet losses are indicated by this indicator’'s growth
tendency during relatively long time spans;

e Minimum Queue Availability: This value indicates the lowest queue availability
reached by all nodes in the network. The queue availability can be seen as the
opposite of queue occupancy, and represents the number of packets a node may
still receive before it will be obliged to drop incoming data. This indicator is

specifically useful for evaluating the network’s congestion state.

* Overhead: Finally, this value represents the overall percentage of transmitted
radio messages that were not directly associated to a received packet. Both

explicit management messages and lost data packets contribute to increasing this



ratio. This value is particularly useful to evaluate a feature’s energy efficiency,
since transmitting radio messages is one of the most expensive operations that a

sensor can do.

4.3.1 Base-line Scenario

The base-line scenario is the basic case where all source nodes generate data at the
highest rate that they physically can. Since neither congestion-control, nor fairness is in
use, this scenario shows how the common base-line scenario reacts under natural

conditions.

This scenario should represent the lowest possible level for WMTP’s performance,
since the protocol is making no efforts whatsoever to improve the situation. The use of

any of WMTP’s features should do nothing but improve on this situation.
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Figure 4.3: Baseline Simulation Results

The results clearly show the natural imbalance present in the common base-line
scenario, as Figure 4.3.B indicates that the source node closest to the sink, node 3,
hardly suffers any packet losses, while its peers have nearly half of their packets lost
along the way. Additionally, Figure 4.3.C holds a constant value of zero, indicating a
constant state of severe congestion throughout the network, thus justifying the massive
packet losses suffered by the two source nodes that are not in direct contact with the
sink. These lost packets, in turn, represent a useless waste of energy, thus justifying

the large overhead that can be seen.

4.3.2 Throttling and Flow-control

Throttling and flow-control are the two most basic features that WMTP has to offer, and
these simulations reflect that. The only difference between the two is which node
decides at what rate the data is generated. While, for throttling, the source nodes set
their own data generation rate, in flow-control, the sink ceases this privilege. For both

cases, a data generation rate of two packets every second was established.
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Figure 4.4: Throttling Simulation Results
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These results clearly show that the throttling feature works as expected, with the further
advantage of using no additional overhead once the connection has been established.
On the other hand, this test is also a useful insight into how the common base-line
scenario operates when not under extreme load conditions. Additionally, Figure 4.4.C
shows that the network is no longer congested thus avoiding the massive packet losses

and overheads from before.
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Figure 4.5: Flow-control Simulation Results

These results, in turn, also confirm that the flow-control feature operates as expected,
since the expected packet generation rate is met and, as before, there are no additional
overheads once the connection has been established.

4.3.3 Congestion-Control and Fairness

The congestion-control and fairness features, like throttling and flow-control, are both
traffic shapers. But, unlike their more basic siblings, these traffic shapers regulate how
data is generated and forwarded based on the network’s current state. The following
simulation results will not only show how each of these features fairs on its own, but

also in combination.
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Figure 4.6: Congestion-Control Simulation Results



These results appear to be a total failure on the congestion-control feature’s behalf, as
congestion is by no means avoided or even mitigated. This is due to the fact that,
although the congestion-control module correctly detects and acts upon the first signs
of congestion (as soon as the queue availability falls below 50%), the link layer protocol
used by the simulator does not send out the congestion warning packet soon enough,
and thus several packets are still received before the nearly congested node is able to
prevent further congestion. This problem could be solved either by using an alternative
MAC layer protocol, as suggested in [11], which would prioritize traffic from congested
nodes, or by tweaking the congestion thresholds and increasing the core queue size to
accommodate these bursts of packets. Unfortunately, the limited memory resources
available on real-world sensor nodes (4 kB on the MICAz platform) limit the core queue
size to the current value of 10 packets when all of WMTP’s features are compiled into

the nodes binary image.

On the other hand, this test only needs the congestion control feature, thus the
additional freed up memory may be used to increase the core queue size up to 22
packets. Under these circumstances, the congestion control module may be tweaked to
detect congestion when the core queue falls beneath 90% availability, and to assert its
absence once the core queue returns above the 95% availability threshold. This

tweaked version was also simulated and the results are presented below.
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Figure 4.7: Congestion-Control Simulation Results (  Tweaked Version)

This time, the results clearly show that the congestion control feature was able to
mitigate congestion, as the values in Figure 4.7.C don’t tend towards zero over time.
Additionally, although the sources generate their data at approximately the same rates,
Figure 4.7.B shows that far fewer packets are lost, especially from the nodes that are

not directly connected to the sink, thus decreasing the associated overhead.

The fairness feature, unlike congestion control, does not operate based on core queue
availability, but rather on the rate at which the core is able to send packets. Although
avoiding congestion is not this feature's primary design goal, it ultimately also

contributes to attaining it.
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Figure 4.8: Fairness Simulation Results

The simulation results show that the fairness feature operates as expected, since, after
an initial period of slight instability, packets are generated, from all three sources, at
approximately the same rate. Additionally, congestion is completely avoided throughout
the network as not once does any node reach the limit of its core queue capacity. This
leads to the loss of much fewer packets (the few that are lost are due to link layer

collisions) and, thus, a much smaller overhead.

The following simulation shows the combined effects of using both congestion-control

and fairness simultaneously.
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Figure 4.9: Congestion-Control and Fairness Simulat



These results indicate that, although congestion is still avoided throughout the network,
the simultaneous use of congestion control and fairness, in this scenario, is redundant
and leads to a conservative packet generation rate. Additionally, the congestion control
feature adds a slight burstiness to the in-network data flows, thus leading to the

occurrence of more packet collisions, as can be seen in Figure 4.9.C.

The following simulation makes use of the weighting capabilities of WMTP’s fairness
feature. While previous simulations set equal weights to all sources, this simulation sets

a weight of one, two, and three to each source, respectively.

Generated Packet Rate

{bj

=
c
o
o
3 s
o 4 o Node 3
3 5. & Node 4
= T o oroo oo og o
Eg-lr_u o I-"“u.,|:||:|.,|:||:|.,|:||:|.,|:||'|., EbNEl
[
|
o
A 1
4 T T T T T T T T T T T T T T T T T T T T T T T T 1T T 111
1020304050 80 7080901011 1213141516 17181920 71 2223 2425 25 272829 20
0D 0000000000 O0OGOOG0O0 00000
Time (s}
Unreceived Packets
40
r
a5 =L
20 /‘_J-“'
_'_”_,.H"—T —‘_4—’
E 25 o —
& 20 3w T AT
w P S o Hode 3
a 15 £l e # Node o
o  a = Node 5
10 ,’-;J_r/_‘_.-r —
= I EE——
5 o A o o o 0=
B = ’,_n—p—r’ u""u"u
oo
I:""|7ﬁ'i"i"F'i‘||||||||||||||||||||||
122456725911 1111 1111 222223222223:
DOOOO0DDDODODL 2245678901223 45672830
000000 DOOO0DOODDOO0O0O0DDODODD
Time is)
Minimum Quele Availability
10 &
5___“ o
2 1—a 0—d—a———8——~a-n
&
= 7 e
L
m &
T s
O
b 4
=
Loz
3
o2
C 1
o TT T T T T T T T T T T T T T T T T T T T T T T T T T T
1020 3040 5060 TOS0 90 1011 12 1314 1516 1718 1920 21 22 23 24 25 26 27 28 29 20
000000000 000000000000

Time (s)



%

Overhead

100 &
0

20

70

L]
0

40

20

20
10+

o o

88, p-oo-o000a 00 080 g8 0 g g0 g-n
T T T 7 7T T T T 17T T T T L

T T T T T T
10202304050 G0 TOB0 30 101112123 141516171815 20 21
oo0 0000000 O0D0

Tirre (s)

Figure 4.10: Weighted-Fairness Simulation Results

Figure 4.10.A clearly shows that the fairness feature correctly complies with the
differentiated weights, as expected, while also still maintaining congestion under
control, since the core queues never reach their limits. Unfortunately, since the nodes
farther away from the sink are the ones with the highest weight, they ultimately

generate more data, thus being also more susceptible to link layer packet collisions.

The following simulation, just as before, adds the use of the congestion-control feature

to weighted-fairness.
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Figure 4.11: Congestion-Control and Weighted-Fairne  ss Simulation Results

Unlike in the previous test case, where congestion control was used with simple
fairness, Figure 4.11.A shows that the congestion control feature doesn’t induce a
conservative response from weighted fairness. On the other hand, Figure 4.11.C shows
a slight decrease in overall congestion, which ultimately leads to a smaller end-to-end
delay. Additionally, the use of congestion control, in this case, led to a slight decrease
on the number of lost packets, thus also slightly decreasing the associated overhead.

The above simulation results indicate that congestion control and fairness features can
coexist peacefully. On the other hand, the simultaneous use of both features generally
adds only a slight improvement to their individual performances, if any at all. This being
the case, it would probably be a wiser decision to include only one of these features,
thus freeing up resources for an otherwise useful purpose. As for comparing each
feature against the other, fairness was shown to also contribute to mitigating
congestion but, on the other hand, congestion control, once adequately tweaked,

allows the nodes to generate their data at a higher, yet unfair, rate.

4.3.4 WMTP Reliability

Unlike the previous features, WMTP reliability goes beyond mere traffic shaping. The
methodology behind WMTP reliability implies retaining cached versions of packets

within the core queue of, not only the source nodes, but also any forwarding nodes



along the way. These cached versions must persist after the packet has been sent in

order to successfully recover from its eventual loss but, on the other hand, this also

implies that the core queues will tend to take longer to free up, leaving the bottleneck

nodes even more vulnerable to congestion. This being the case, it is understandable

that the use of reliability semantics may involve a high performance penalty.

The following simulations assess how WMTP reliability performs as a stand-alone

feature, as well as how the congestion-control and the fairness features affect its

performance. These simulations are useful not only to make sure that WMTP reliability

operates as expected, but also to quantify the performance toll that it entails.
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Figure 4.12: WMTP Reliability Simulation Results

This simulation shows how WMTP reliability works on its own. Since Figure 4.12.B
doesn’t have a growth tendency, it is clear that the feature does, in fact, provide full
packet reliability. On the other hand, the generated packet rate suffered a great fall
when compared to the base-line scenario, achieving approximately a sixth of the base-
line rates. As for Figure 4.12.C, since neither congestion-control, nor fairness was used
in this simulation, the network sustains a constant state of severe congestion, which not
only causes a certain level of burstiness in the generated rates, but also leads to the

severe overheads.

The previous simulation shows how WMTP reliability operates under extreme load,
since each source is generating its data at the highest rate that it physically can. In
order to show how this feature works under a less stressing environment, an additional
simulation was executed where each source also varied the rate at which it throttled its
data generation. This way, each source started off by generating a packet every five
seconds and then reduced this packet period by 250 ms, every 30 seconds, thus
ending up by generating its data at the highest rate it physically could, by the end of

this special 10 minute simulation.
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Figure 4.13: WMTP Reliability Operating Under Varyi ng Load Conditions

Since Figure 4.13.C is initially stable, it is shown that, for lighter loads, the WMTP
reliability feature can operate without congesting the network. This completely stops the
packet generation burstiness, as well as reduces end-to-end delay to a minimum, as
can be seen through Figure 4.13.B.

As for Figure 4.13.D, it is clear that, if packets are generated at too slow a rate, the
network will spend most of its time sending out periodic empty availability maps, thus
leading to an additional increase in protocol overhead. On the other hand, generating
the packets at to high a rate congests the network, also increasing protocol overhead.

This situation leads to the existence of an optimum value that not only assures a better



usage of network resources, but also avoids wasteful idle periods. This rate was
determined, experimentally, to be between a packet every two seconds and one every

second, for this scenario.

Since WMTP reliability is supposed to provide full packet reliability, even in the worst of
conditions, a special simulation was prepared using a reasonable packet generation
rate (one packet every two seconds) with a higher packet loss probability for each radio
link. In the following simulation, approximately 10% of all packets sent are lost, and

thus must be repeated.
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Figure 4.14: WMTP Reliability Simulation Results (L  0ssy Scenario)

Just as before, Figure 4.14.B doesn’t present a growth tendency, thus making it clear
that even under these harsher conditions, WMTP reliability still holds up, albeit with
some additional delay. On the other hand, Figure 4.14.C shows a minor increase in
congestion and there is also a slight increase in the overall protocol overhead, thus
showing that although WMTP reliability does still function, as expected, in a lossy

environment, its performance is still mildly degraded.

The following simulation shows how WMTP reliability is affected when congestion

control is used to regulate packet generation.
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Figure 4.15: WMTP Reliability and Congestion Contro | Simulation Results

Just as before, there is no growth tendency in Figure 4.15.B, thus the use of congestion
control does not interfere with WMTP reliability’s main functionality. On the other hand,
Figure 4.15.C indicates that the general state of congestion is slightly alleviated, thus
showing some improvements on that front. Unfortunately, this slightly improved
congestion state comes at the price of an even lower packet generation rate than in the
unregulated scenario (approximately half of the values attained with just WMTP
reliability). These factors ultimately contribute to a better network resource utilization,

thus slightly cutting down the protocol overhead.

The following simulation shows how WMTP reliability is affected under the use of

fairness.
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Figure 4.16: WMTP Reliability and Fairness Simulati



Unlike the previous case, where the congestion-control feature was used with WMTP
reliability, Figure 4.16.C shows that the overall state of severe congestion is only very
slightly mitigated. On the other hand, the received packet rates do converge towards a
common rate, without any burstiness, which is approximately the same value that the
nodes farthest away from the sink managed to achieve in the initial scenario, with just
WMTP reliability. This shows that, on one hand, the existence of WMTP reliability does
not affect the fairness feature’s ability to function, and, on the other, that fairness does
not entail a considerable performance penalty on WMTP reliability. Additionally, not
only does Figure 4.16.B not show a growth tendency, but after an initial period of
instability, it decrease to near-zero values, meaning that, although the network nodes
appear to be congested, the delay suffered by packets along their route towards the
sink is minimal. As for the protocol overhead, the use of fairness is shown to regulate
packet generation at a rate that approximates the ideal level that maximizes the

utilization of network resources.

The following simulation shows how all three of these features work simultaneously.
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Figure 4.17: WMTP Reliability, Congestion Control,  and Fairness Simulation Results

This simulation shows that the simultaneous use of WMTP reliability with congestion-
control and fairness manages to pick up some advantages, as well as some of the
disadvantages associated to each individual feature. The congestion-control feature is
successful in mitigating the overall congestion state, as Figure 4.17.C does not tend
towards zero but, as before, it entails a performance penalty, since packet generation
rates are slightly decreased. Additionally, the fairness feature is also shown to work in
this scenario, since packet generation rates still converge towards a common value.
Unfortunately, the overall protocol overhead is not as good as what has already been

achieved in previous scenarios.

4.3.5 Quality-of-Service

As previously mentioned, the quality-of-service feature was simulated under a slightly
different scenario from the other features (see Figure 4.2). This scenario was purposely
selected to be extremely harsh in the absence of quality-of-service, in order to prove

this feature’s worth.

To precisely show the advantages of using this feature, two simulations were created,
one with quality-of-service enabled and one with it disabled. Both simulations use the
special quality-of-service scenario previously described and, in both situations, the
source nodes generate packets at the same rate; in other words, the quality-of-service



disabled sources, nodes 1 and 4, generate packets at the highest rate that they
physically can, and the quality-of-service enabled node, node 5, generates a new
packet every 200 ms. This particular value was determined to be approximately the
highest rate the quality-of-service connection could withstand, while still ensuring its
service levels. If a faster rate were to be requested, then the connection would fail to be

established, as the reservation system would deny the request.

For each simulation, the received packet rate and the unreceived packets are shown
only for the packets that originate from the single source that, in the quality-of-service
enabled simulation, actually uses this feature, node 5. This way, it is easier to assess

the effects directly associated with the use of this feature.
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Figure 4.18: Quality-of-Service Simulation Results

As predicted, in the absence of quality-of-service, node 1, manages to almost entirely
consume all of the network resources. This is clearly visible since, after a short while,
all but a few of node 5's packets are lost. This obviously leads to a linear growth of the

unreceived packets, in Figure 4.18.B.

On the other hand, when quality-of-service is activated, node 5 not only is able to send
its data along the network, but it also manages to sustain its reserved rate with minimal
packet losses (the few packets that are lost are due to MAC layer collisions, since the
neighboring nodes are still generating packets at the highest rate that they physically



can). These simulations clearly demonstrate that the quality-of-service feature does, in
fact, operate as expected, even under the direst of conditions.



5 Conclusions

This dissertation proposes the Wireless Modular Transport Protocol (WMTP), a new transport
layer protocol for WSNs that provides its functionality through the use of a novel modular
architecture. This protocol not only allows the simultaneous use of all of the main features
commonly found in WSN transport protocols, namely congestion control, fairness, and
reliability, but also does so in a modular fashion, thus allowing the application layer to use
exactly the features that it requires without having to deal with the inevitable trade-offs
associated with the ones that it doesn’t. Additionally, WMTP provides its own unique set of
uncommon features such as throttling, flow-control, transport layer quality-of-service, and
optional integration with service-discovery.

The use of this specialized modular architecture also allows WMTP to support environments
with heterogeneous applications, thus allowing different applications to use different features
and still coexist in the same network. Additionally, this also allows the network administrator
to build stripped down versions of WMTP that don’t support the features that will never be
used during the network’s life-time. This way, the additional resources associated with any

unused features may be freed up to be used for an otherwise more useful purpose.

In order to provide all of this functionality, WMTP’s architecture was developed around the
concept of a central core that, in itself, provides very little functionality. This core, in turn,
provides a specialized framework that can then be used by one or more pluggable feature
modules that actually implement the true transport layer functionality. On the other hand, the
core is also used as the central coordinator that communicates with the upper and lower
layers. In order to do this, WMTP uses an unconventional protocol stack that, rather than
sitting in between the network layer and the application layer, as would be expected, it sits
directly above the link layer and uses a specialized interface to communicate with the network

layer.

The application layer interface, in turn, was also designed to support the advanced
functionality that WMTP provides. This interface, aside from exchanging packet data with the
application layer, also provides the tools that it needs to manage WMTP’s features.
Additionally, WMTP uses an efficient event-based approach to regulate application data
generation, thus providing an alternative to the traditional blocking system calls, commonly

found in most protocol stacks.

Once the design phase of this architecture and the development of the reference
implementation were completed, the protocol was evaluated, through simulation, with
TOSSIM. Since WMTP’s reference implementation was developed for the TinyOS platform,
this simulator is able to perform a complete assessment of WMTP’s functionality, while using

the same source code that runs on the sensor nodes.



In order to successfully evaluate how each of WMTP’s features performs, either individually or
in a combined form, a common simulation scenario was designed, thus allowing each
simulation run to be executed under similar conditions. This way, not only can each feature’s
performance be compared to that of the others, but the effect that each feature has when

used in combination with others can also be assessed.

Using this basic approach, each of WMTP’s features was shown to work as expected when
used individually. Additionally, all of the relevant combinations of features were also put to the
test, in order to assess the existence of any adverse interactions between them. This time,
the simulated results showed that, although the combination of certain features may not bring
a significant benefit over the use of just one of them (e.g. the use of congestion control and
fairness was shown to be redundant, since fairness already mitigated congestion to a certain
extent), no significant adverse interactions were found to occur.

Aside from validating its functionality, the simulated tests were also used to evaluate WMTP’s
performance. Since WMTP was developed for WSNs, this performance assessment not only
encompasses the usual throughput and/or delay metrics, but also takes into account energy
consumption aspects. Since transmitting data over the radio is one of the operations that
consumes more energy on wireless sensor nodes (see [3] for reference values), a basic
protocol overhead metric was used to measure each feature’s energy efficiency. This
overhead value is calculated as the percentage of packets that are transmitted over the radio
but aren't directly associated with the successful arrival of a data packet at its destination.
This being the case, the overhead metric not only takes into account the wasteful use of
explicit management packets or unnecessary retransmissions, but also any lost data packets

that never reach their destination.

Using these basic performance attributes, most of WMTP’s features were shown to perform
their functionality in an adequate manner, while also avoiding too much additional overhead.
The main exception to this was WMTP reliability. Since the use of reliability semantics
involves holding data packets within the core queue of each node along the data’s path, until
the reliability module is sure that they won't be needed, the use of this feature generally
comes with a severe performance penalty. The simulated results show that, although the use
of additional features alongside reliability (e.g. fairness), may mitigate this effect, WMTP

reliability will always entail a relatively large performance toll.

5.1 Future Work

Since WMTP uses a modular architecture, it is, by nature, easily extensible to provide new
features. On the other hand, WMTP provides a set of specialized interfaces that may be
used by external modules to provide additional functionality that is not directly associated
to the transport layer, such as integrated service discovery or the use of advanced routing

techniques. All of these factors contribute to the creation of a series of open issues and



future work suggestions that may be further explored. The following open issues are but
some the ones that come to mind for further development:

«  WMTP provides the option to integrate with service discovery, but the system that
ultimately supplies this functionality is not a part of WMTP itself. The design and
implementation of such a system for use through the WMTP architecture, or the
integration of an already preexisting one, would be a considerable enhancement

that is well worth the effort;

» Although WMTP already integrates with TinyOS’s current routing layer, as well as
provides its own source routed variant for connection oriented data, the
development of additional routing modules to integrate WMTP with other, more

advanced, routing systems would also be an interesting research effort to follow;

* While WMTP uses a conventional interface to exchange packets with the link
layer, a specialized interface is used to obtain its quality-of-service characteristics.
Since the link layer currently used by TinyOS doesn't provide quality-of-service
semantics, these characteristics are currently inferred statistically. This being the
case, it would be interesting to integrate WMTP with a true quality-of-service
enabled link layer and to evaluate how its transport layer quality-of-service model

would perform under these conditions;

* Even though the WMTP reference implementation was developed solely for
TinyOS, nothing prevents that alternative implementations be developed for
different platforms. One such platform where this would be particularly useful
would be the computer to which the sink node is connected. Once a computer
based WMTP implementation is developed, traditional applications could interact
with the WSN directly, thus benefiting from all of the WMTP’s functionality;

» Although extensive simulations have already been run to evaluate WMTP, further
testing is needed to assess whether or not WMTP would actually perform similarly

when used in real-word sensor networks;

* While several tests have been executed to show how WMTP’s features perform,
an additional effort would have to be made to compare WMTP’s implementation of
each individual feature with that of other existing protocols that also provide the

same feature.

Although the further improvement of WMTP provides several open issues for future
development, one must not forget that this protocol was designed to be used by
applications. This being the case, WMTP also creates the opportunity to development all
new WSN applications that can benefit from its advanced functionality. Under these

circumstances, the possibilities are only limited by ones own imagination.
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7 Annexes

Annex 1: WMTP Application Interface UML Static Stru  cture

ainterfaces

Application Connection Management
+command RegisierService(in 55 | SeniceSpecification_t) - byle
+eommand CancelService(in 55 - Service Specification_f) | hyte
+oommand GetiNewConnectionSpecificationfout Connection Specification : ConneclionSpecification_t)  byle
+eommand DestroyConnectionspecification(in ConnectionSpecification * ConnectionSpeacification_t) @ byte
+command OpenConnaction(in G5 : ConnectionSpecification_t)  byta
+event ConmectionOpened|in ConneclionSpecification : ConneclionSpecification )
+command ReconfigureConnection{in ConnectionSpecificalion - ConnectionSpecification_f) : byte

Diagram

+event ConnectionReconfigured(in ConnectionSpacification ; ConnectionSpecification_t)
+eommand CloseConnectionfin ConneclionSpecification : ConnectionSpacification_f) @ byt
+avant ConnactionClosad(in ConnectionSpecification : ConnactionSpocification t)

winterfaces
Receiving Application Interface

WMTP Core

+avant Recaive(in ConnectionSpecification : ConnaclionSpecification_t, in Datalength - byfe, in Data : sfring)

L3

interfaces
Sending Application Interface

+event ClearToSend(in ConneclionSpecificalion : ConnectionSpecification_f) : byte
+eommand [sClearToSend(in ConneclionSpecification | ConnectionSpecification_f) | bool

+command Send(in ConneclionSpecification - ConnaclionSpecification_{, in Datalength - byte, in Data © string) : byte—




Annex 2: WMTP Core Interfaces UML Static Structure  Diagram
winterfacer winterfaces
Traffic Shaper Reliable Transmission Hook
+avant NewFackg!{m Packet : QmueEIemsrrr f: byrs +avent SendingPacket{in Packet : QueveElament _t. oul DropPacket : bool) : byte
+ovant Packet +event DeliveringPacketjin Packet : QueueElement_t, out DropPacket - bool) * byfe
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[+evant ConnectionReconfigurad(in Ci fonSpacification : Cy ionS) tion_t) : byte
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GetC
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Connection Management Data Handler
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Local Management Data Handler

Link Layer Data Interface Link Layer QoS Indicator
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+event RecaiveDatafin Data * string, in DataSize * sbyls)
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[+event HeaderBroadcasted() ; byle
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winterface»
‘Connection Scratch Pad Hook
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Packet Scratch Pad Hook
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+event ConnectionOpenediin Connec : Comn 1t} byte
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+command GetCoreQueve() | LinkedLists_LinkedList_
+event i u'. Facket ; Q t i) : byte
+evant Re in Packet * Q) 1) byte
+event Daf in Packet © Q) t 1) * byta
event s.endmgpackerrm Packet : OueueErement 8 - byte
+event Dropping, i Packet : L §)  byte
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+event SendingWMTPMsg() : byte
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ainterfaces
Service Specification Data Handler
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Annex 3: WMTP Feature Module UML Static Structure D  iagram

Feature Configuration Handler
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Annex 4: WMTP Service Specification Handlers UML St atic Structure Diagram
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Annex 5: WMTP Multi-Hop Routers UML Static Structur

Connection Establishment Handler o—}—[TOS Multihop Routing Module
Mutti-Hop Router  0—<—

Connection Establishment Handler Q—q;sonlcn Routed Connection Establishment Handler

Local Management Data Handler o—<h—

Muli-Hog Router o—<]—|

e Diagram

TagRouter

AT, Jatin(in P ushor, in P Tag : byle, in usher, in NexiTag : Byle, in Cor *Cor Tin meOut - ulong, in Usage Time0ul - ulong) ; byle|
tecommand GetNewTag(in Address : ushart, out Tag : byte) : byte

Drop’ C : C 1)1 byle
+avent iat Con C ion_t) : byte
event TimedOut(in C: [t 1) byte
+event Tagy D C Con 11): byte

Annex 6: WMTP Data Types UML Static Structure Diagr am

wl W
LinkedLists_LinkedList_t

1 alypes

wlypes wtypee wtypee whypes TagRouter
LinkedLists_Element_t  K}—— QueueElement_t PacketScratchPad_t| WMTPReliability FOutgoingTag : byte|

previous : LinkedLists_Elerment_t
next : LinkedLists_Element_t

MextHag © ushort
TrafficShaperState : string 10
NumConnectionParts - byle
-ConnectionParts : string
[ConnectionLocalPartSize : byte

-PrevHap : ushart

-NumMTimesSent : byte
-TimeOutTime : ulong
-NextHopAcked : bool

-PrevHopDropped : bool

L

wtypen

fConnectionLocalPart : sting

HRouterType @ byte

a1 -RouterData - string
] |
wlyper wtypen alypen 4‘
o1 B, o PMhSpeciflcmim_l—r.‘ ConnectionSpecification_t =
NumHops : byle —D PathType : byte -lsLocal - bool TOSMultiHop
Hops © ushort PathData : string HsConnactionOriented : baol 1
-lsTemporary
1 =Application|D : byte
1 ~TrafficShaperState : string
utypes wiypes -QoSPriorty : byte wtypen
ServiceSpecification_t TOSMultiHop HaoSReservedQueueElement : QueueElement_t| ’ QOSSpecification_t
-ApplicationlD : byte HhdaxDelay : ushart
Connectionless : bool “kypen . HhaxPeriod : ushort
ConnactionOriented : bool T 1 1 |PreferradPeriod : ushort
ServiceType : byte FWakeUpTime : ulong|
ServiceData : string " styper gt 1
— wlypen «typen wtypes
. AvailabilityHandler ] il Specification_t > Raliability
‘% AL‘ LAclive : bool -ReliabilityHandler|D - byte| 1 1
wtypes wlypes 1 1 1
PacketSink VajSmk:}D[ ypan 1 1 Typen
-Value | byte i A
i P = T. g IWMTPReliability
FlowControl Fairness Period : ushort
WakeUpTime : ulong| FWakeUpTime : ulong] 1 '— 1 1
I wlypen alypen wlypes
FlowControl [CongestionControl Faimess
LocalPeriod : ushort Active : bool FSinklD : byte
eriod - ushort] FWeight : byte

Annex 7: WMTP Message Formats

TOS_Msg

| Field:] Address | Type| Group| Data L ength

Data CRCJ

| Size (Bytes): 2 1 1 1

<Data Lengthz

2 |

This is TinyOS's native message format. Any messages sent over the radio must be created

through this structure.

WMTP_Msg

Field:] Src Addr

Local Part 1 Data

L ocal Part 0 Type | Local Part 0 Data

Local Part 1 Type

[ -
-

2 1 ¢

Size (Bytes):

*

1




This is the basic message structure that WMTP uses to convey all of its information. This
includes local and connection management data as well as router data and the data
payloads. The WMTP_Msg is, in essence, a collection of Local Parts. This being the case, the
following Local Parts are defined:

e WMTP_LocalPart_CongCtrl

e WMTP_LocalPart_Fairness

e WMTP_LocalPart_Reliability

e WMTP_LocalPart_SrcRoutedConn

e WMTP_LocalPart_Conn

| WMTP_LocalPart_CongCtrl

| Field:] Reserved| Congestion Notification Bit
| Size (Bits):] ~7 1

This structure holds the congestion control local management headers.

| WMTP_LocalPart_Fairness
| Field:] Last Sink | Sink ID| Normalized Period | Limiting Node | {. )
| Size (Bits):] 1 7 16 16 ()

This structure holds the fairness local management headers. Basically, this pattern is

repeated for each sink, with the last one containing the Last Sink flag set.

WMTP_LocalPart_Reliability
| Field:] Originating Address | Last Packet | Packet ID|{..)
| Size (Bytes): 16 1 15 {..)

This structure holds the WMTP reliability local management headers. Basically, this pattern is
repeated for each packet within the availability map, with the last one containing the Last
Packet flag set. Each packet is identified by the address of the node that generated it and an

incremental 15 bit identifier.

WMTP_LocalPart_SrcRoutedConn

Field:] Next Hop | Next Tag| QoS Max Delay | QoS Max Period | QoS Preferred Period | QoS Accurnulated Delay
Size EBﬂes]: 2 4 2 1 — 2

Field:] Mum Hops Hops Configuration Data | Sarvice Specification Data
Size (Bytes): 1 [Mum Hops x 2] - *

This structure is used to establish source routed connections. The Configuration Data and
Service Specification Data fields have a variable length, since they contain a

WMTP_ConnPart_Config and a WMTP_SvcSpec, respectively.

WMTP_Locaﬁ’art_Conn

Field:] Router Type| Router Data] Connection Part O Type | Connection Part 0 Data .
Size (Bytes): 1 * 1 * { )

-
l—




This structure holds all of the data that is associated to a data packet, including router data,
connection management data, and the packet payload itself. Basically this message is built by
appending multiple Connection Parts, after the router data, with the last Connection Part
being a WMTP_ConnPart Data, WMTP_ConnPart_Close, or WMTP_ConnPart_Last

structure. This being the case, the following routing headers are defined:
«  WMTP_RouterData_Tag
Additionally, the following Connection Parts are defined:
«  WMTP_ConnPart_Reliability
e  WMTP_ConnPart_Data
e  WMTP_ConnPart_Close
e  WMTP_ConnPart_Last
e WMTP_ConnPart_Config

The WMTP_ConnPart_Close and WMTP_ConnPart_Last structures are special in that they
have zero length. In other words, they are used solely as place markers and don’t hold any
additional data.

WMTP_ SvcSpec
| Field:} Type| Service Specification Data
| Size (Bytes):| 1 *

This structure holds service specification data, representing an interest.

WMTP_SvcSpec_SinkID
| Field:] Reserved Sink 1D
| Size (Bits): 1 7

This structure holds the sink ID service specification.

WMTPEFlouterDaia_Tag
| Field: Tag
| Size (Bits): 8

This structure holds the routing data used by the tag router.

WMTP_ConnPart_Reliability

Field:] Originating Address Packet 1D Reserved
Size (Bytes): 16 15 1

This structure holds the WMTP reliability connection management headers.



WMTP_ConnPart_Data |
Field:| Data Payload Size | Data Payload|
Size (Bytes): 1 * |

This structure holds a packet’s payload.

WMTP_ConnPart_Config

| Field:] Configuration Part 0 Type | Configuration Part 0 Data {.)
| Size (Bytes): 1 * (.)

This structure holds the configuration data for connections or individual packets. Basically,

this pattern is repeated for each Configuration Part, with the last one being a
WMTP_ConfPart_Last structure. This being the case, the following Configuration Parts are
defined:

e WMTP_ConfPart_QueueAvailabilityShaper
«  WMTP_ConfPart_Throttling

e  WMTP_ConfPart_FlowCitrl

e WMTP_ConfPart_CongCitrl

e  WMTP_ConfPart_Fairness

e WMTP_ConfPart WMTPReliability

e  WMTP_ConfPart_Last

The WMTP_ConfPart_QueueAvailabilityShaper, WMTP_ConfPart_Throttling,
WMTP_ConfPart_CongCtrl, WMTP_ConfPart_ WMTPReliability, and WMTP_ConfPart_Last
structures are special in that they have zero length. In other words, they are used solely as

place markers and don't hold any additional data.

WMTP_ ConfPart_FlowCtrl
Field: Period

Size (Bits): 16

This structure holds the flow control configuration.

WMTPECnanaﬂEFairness
| Field:] Reserved Sink 1D Weight
| Size (Bits): 1 7 8

This structure holds the fairness configuration.



Annex 8: Congestion Control Message Sequence Chart
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Annex 9: Reliability Message Sequence Chart (Simple  Scenario)
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Annex 10: Reliability Message Sequence Chart (with

:

Piggybacking)
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Annex 11: Reliability Message Sequence Chart (High

Data Rate Scenario)
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Annex 12: Example Sending Application Source Code

i ncl udes WMIP;

nodul e Sendi ngAppl i cati onM {
provi des {

interface StdControl;

}

uses {
interface StdControl as WMIPControl ;
i nterface WMIPConnecti onManager ;
i nterface WMIPSendMsg;

}

} inplenmentation {
command result_t StdControl.init() {

}

return call WMIPControl .init();

command result_t StdControl.start() {

}

WMIPConnect i onSpeci fication_t *CS;
if ( call WMIPControl.start() != SUCCESS )
return FAIL;
if ( call WMIPConnecti onManager. Get NewConnecti onSpeci fi cati on(
&CS )
I'= SUCCESS )
return FAIL;
CS- >Pat hSpeci fi cati on. Pat hType = WMIP_PATHTYPE_TOSMULTI HOP;
CS- >Feat ureSpeci fi cati on. QueueAvai | abi | i t yShaper. Active = TRUE;
CS- >Feat ureSpeci fication. Throttling. Period = 1000;
return call WMIPConnecti onManager. OpenConnection( CS );

command result_t StdControl.stop() {

}

return call WMIPControl . stop();

event result_t WMIPConnecti onManager. Connecti onOpened(

}

WMIPConnect i onSpeci fication_t *CS ) {

stati ¢ WMIPPayl oad_t Payl oad,;

/1 Fill in first outgoing nessage.

return call WMIPSendMsg. Send( CS, 0, &Payload );

event result_t WMIPConnecti onManager. Connecti onReconfi gured(

}

WMIPConnect i onSpeci fication_t *Q dCS,
WMIPConnect i onSpeci fication_t *NewCS ) {
return SUCCESS;

event result_t WMIPConnecti onManager. Connecti onCl osed(

}

WMIPConnect i onSpeci fication_t *CS ) {
return SUCCESS;

event result_t WMIPSendMsg. Cl ear ToSend(

WMIPConnect i onSpeci fication_t *CS ) {

stati c WMIPPayl oad_t Payl oad;

/1 Fill in outgoing nessage.

return call WMIPSendMsg. Send( CS, 0, &Payload );



Annex 13: Example Receiving Application Source Code
i ncl udes WMIP;
nodul e Recei vi ngAppl i cati onM {

provi des {
interface StdControl;

}

uses {
interface StdControl as WMIPControl ;
i nterface WMIPConnecti onManager ;
i nterface WMIPRecei veMsg;

}

} inplenmentation {
command result_t StdControl.init() {
return call WMIPControl .init();

}

command result_t StdControl.start() {
stati c WMIPSer vi ceSpeci fication_t SS;
if ( call WMIPControl.start() != SUCCESS )
return FAIL;
SS. Connecti onl ess = TRUE;
SS. Connecti onOri ented = FALSE;
SS. Servi ceType = WMIP_SERVI CETYPE_PACKETSI NK;
return call WMIPConnecti onManager. Regi ster Service( &SS );

}

command result_t StdControl.stop() {
return call WMIPControl .stop();

}

event result_t WMIPConnecti onManager. Connecti onOpened(
WMIPConnecti onSpecification_t *CS ) {
return SUCCESS;

}

event result_t WMIPConnecti onManager. Connecti onReconfi gured(
WMIPConnect i onSpeci fication_t *Q dCS,
WMIPConnecti onSpeci fication_t *NewCS ) {
return SUCCESS;

}

event result_t WMIPConnecti onManager. Connecti onCl osed(
WMIPConnect i onSpeci fication_t *CS ) {
return SUCCESS;

}

event WMIPPayl oad_t *WMIPRecei veMsg. Recei ve(
WMIPConnect i onSpeci fication_t *CS,
uint8_t Length,
WMIPPayl oad_t *Msg ) {
/'l Handl e recei ved nessages.
return Msg;
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Annex14: Quality-of-Service Reservation Log Excerpt

WMIPSour ceRout edConnect i onEst abl i shnent Handl erM  Openi ng connecti on
for application O.

WMIPCoreM Cal cul ati ng QoS shortest delay for connection

establ i shment handler 0 (Max Send Delay = 91).

WMIPCoreM The requested m ni num del ay of 200 maps into a level of 0O
but policy dictates a level of 2.

WMIPCoreM Shortest available delay is at level 2 (delay = 455).
WMTPSour ceRout edConnect i onEst abl i shnment Handl erM QoS reservati on

del ay: 200.

WMIPCoreM Reserving QS resources for connection establishnment

handl er 0 (Max Send Delay = 91).
WMIPCoreM The requested delay of 200 maps into a |level of O.
WMIPCoreM Made a reservation at |evel 0, slot O.

WMIPSour ceRout edConnect i onEst abl i shment Handl er M Openi ng new non-

| ocal connecti on.

WMIPCoreM Cal cul ati ng QoS shortest delay for connection

est abl i shnent handler 0 (Max Send Del ay = 83).

WMIPCoreM The requested mi ni nrum del ay of 200 naps into a |level of O
but policy dictates a |evel of 2.

WMIPCoreM Shortest available delay is at level 2 (delay = 415).

WMIPSour ceRout edConnect i onEst abl i shment Handl erM QoS reservation
del ay: 200; Accumul ated del ay: 400.

WMIPCoreM Reserving QoS resources for connection establishment

handl er 0 (Max Send Del ay = 83).
WMIPCoreM The requested delay of 200 nmaps into a | evel of O.
WMIPCoreM WMade a reservation at |evel 0, slot O.

WMIPSour ceRout edConnect i onEst abl i shnent Handl erM  Openi ng new non-

| ocal connecti on.

WMIPCoreM Cal cul ati ng QoS shortest delay for connection

est abl i shnent handler 0 (Max Send Delay = 81).

WMIPCoreM The requested m ni num del ay of 200 maps into a level of O
but policy dictates a |evel of 2.

WMIPCoreM Shortest available delay is at level 2 (delay = 405).

WMTPSour ceRout edConnect i onEst abl i shnment Handl erM QoS reservati on
del ay: 200; Accunul ated del ay: 600.

WMIPCoreM Reserving QS resources for connection establishnment

handl er 0 (Max Send Delay = 81).
WMIPCoreM The requested delay of 200 naps into a | evel of O.
WMIPCoreM Made a reservation at |evel 0, slot O.

WMIPSour ceRout edConnect i onEst abl i shment Handl er M Openi ng new | ocal
connecti on.

WMIPSour ceRout edConnect i onEst abl i shnment Handl erM  Sendi ng keep-alive
to confirm connection.

WMIPSour ceRout edConnect i onEst abl i shnent Handl erM  Openi ng connecti on
for application O.

WMIPCoreM Cal cul ati ng QoS shortest delay for connection

establ i shment handler 0 (Max Send Delay = 73).
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WMIPCoreM The requested m ni num del ay of 200 maps into a level of O
but policy dictates a level of 2.

WMIPCoreM Shortest available delay is at level 2 (delay = 365).
WMTPSour ceRout edConnect i onEst abl i shnment Handl erM QoS reservati on

del ay: 200.

WMIPCoreM Reserving QoS resources for connection establishnment

handl er 0 (Max Send Delay = 73).
WMIPCoreM The requested delay of 200 maps into a | evel of O.
WMIPCoreM Made a reservation at level 0, slot O.

WMIPSour ceRout edConnect i onEst abl i shnent Handl erM  Openi ng new non-

| ocal connecti on.

WMIPCoreM Cal cul ati ng QoS shortest delay for connection

est abl i shnent handler 0 (Max Send Delay = 70).

WMIPCoreM The requested mi ni nrum del ay of 200 naps into a |level of O
but policy dictates a |evel of 2.

VWMIPCoreM No avail able slots left.

WMIPSour ceRout edConnect i onEst abl i shment Handl erM Fail ed to open
connecti on.

WMIPCor eM Freei ng QoS resources for connection establishment handl er

)

0.



