

WMTP: Wireless Modular Transport Protocol

A Modular Approach to

Wireless Sensor Network Transport Layer Protocols

Luís David Figueiredo Mascarenhas Moreira Pedrosa

Dissertação para obtenção do Grau de

Mestre em Engenharia de Redes de Comunicação

Júri

Presidente: Prof. José Manuel Rego Lourenço Brázio

Orientador: Prof. Rui Manuel Rodrigues Rocha

Vogais: Prof. Jorge Miguel Sá Silva

 Prof. Rodrigo Seromenho Miragaia Rodrigues

Novembro de 2007

 i

This dissertation is dedicated to my Father, Luís Filipe Pedrosa,

for his constant support throughout my life.

 ii

Acknowledgments

First and foremost, I would like to thank my supervisor, Professor Rui Rocha, for introducing

me to the world of wireless sensor networks. Working with him has been a great honor and it

is needless to say that, without his subtle pressure, vast wisdom, and strong support, this

project would not have become a reality.

I also extend my thanks to the whole GEMS team (Group of Embedded networked Systems

and Heterogeneous Networks) over at LEMe (Laboratory of Excellence in Mobility) for being

excellent soundboards. Not only has their helpful input been an excellent sanity check for

many of the ideas that were bounced around before being put into practice, but their company

has made our work place all the more enjoyable.

Most importantly, I would like to thank my father, Luís Filipe Pedrosa. Not only has his

encouragement and patience helped push me forward during these difficult times, but his

constant support, throughout my life, has made me the person I am today.

Sumário

Esta dissertação propõe um novo protocolo de transporte modular para redes de sensores

sem fios: o WMTP – Wireless Modular Transport Protocol. Este protocolo não só permite a

utilização simultânea de todas as principais funcionalidades que são frequentemente

encontradas nos protocolos de transporte deste tipo de redes, nomeadamente o controlo de

congestão, a justiça na utilização dos recursos da rede, e a fiabilidade, como também o faz

de uma forma modular. Deste modo, a aplicação pode utilizar exactamente as

funcionalidades que são requeridas, sem ter que aceitar as contrapartidas inevitáveis de

quaisquer outras que não o são. Adicionalmente, o WMTP oferece um conjunto único de

funcionalidades menos comuns, como a capacidade de regular o débito da geração dos

dados, o controlo de fluxo, a qualidade de serviço ao nível de transporte e a integração

opcional com descoberta de serviços.

Por outro lado, a utilização desta arquitectura modular permite ao WMTP suportar ambientes

heterogéneos, onde aplicações diferentes, que utilizam funcionalidades diferentes, podem

coexistir, pacificamente, dentro da mesma rede. Adicionalmente, o administrador da rede

pode ainda preparar versões reduzidas do protocolo que não suportam as funcionalidades

que nunca virão a ser utilizadas durante a vida útil da rede, libertando, desta forma, preciosos

recursos computacionais que poderão ser utilizados para outro fins mais úteis.

Palavras-chave

Redes de Sensores sem Fios, Protocolos de Transporte, Modularidade, WMTP

 iii

Abstract

This dissertation proposes a new modular transport layer protocol for wireless sensor

networks (WSNs): WMTP – Wireless Modular Transport Protocol. This protocol not only

allows the simultaneous use of all the main features commonly found in WSN transport

protocols, namely congestion control, fairness, and reliability, but also does so in a modular

fashion. This way, the application layer can choose to use exactly the features that it requires,

without having to deal with the inevitable trade-offs associated with the ones that it doesn’t.

Additionally, WMTP provides its own unique set of uncommon features such as throttling,

flow-control, transport layer quality-of-service, and optional integration with service-discovery.

On the other hand, the use of this specialized modular architecture also allows WMTP to

support heterogeneous environments where different applications, using different features,

coexist peacefully within the same network. Moreover, the network administrator may also

build stripped down versions of the protocol that don’t support the features that will never be

used during the network’s life-time, thus freeing up additional resources to be used for an

otherwise more useful purpose.

Keywords

Wireless Sensor Networks, Transport Layer Protocols, Modularity, WMTP

 iv

Table of Contents

Acknowledgments... ii

Sumário .. ii

Palavras-chave ... ii

Abstract.. iii

Keywords ... iii

Table of Contents .. iv

List of Tables ... viii

List of Figures .. ix

List of Annexes ...x

List of Acronyms ..xi

1 Introduction .. 1

1.1 Motivation and Goals ... 2

1.2 Organization ... 3

1.3 Summary of Contributions.. 4

2 State-of-the-Art of WSN Transport Layer Protocols .. 5

2.1 WSN Transport Protocol Common Functionalities .. 5

2.1.1 Reliability.. 5

2.1.2 Congestion Control .. 7

2.1.3 Fairness ... 9

2.2 WSN Transport Protocol Atypical Functionalities .. 10

2.2.1 Throttling .. 10

2.2.2 Flow Control ... 10

2.2.3 Quality-of-Service .. 11

2.3 Existing WSN Transport Protocols... 12

2.3.1 Adaptive Rate Control (ARC)... 12

2.3.2 Ad-hoc Transport Protocol (ATP) .. 13

2.3.3 Congestion Control and Fairness (CCF) ... 13

2.3.4 Congestion Detection and Avoidance (CODA).. 14

 v

2.3.5 Distributed TCP Cache (DTC) ... 14

2.3.6 Event-to-Sink Reliable Transport (ESRT).. 14

2.3.7 Fusion .. 15

2.3.8 GARUDA.. 16

2.3.9 Priority-Based Congestion Control Protocol (PCCP)... 16

2.3.10 Pump Slowly, Fetch Quickly (PSFQ)... 16

2.3.11 Reliable Bursty Convergecast (RBC) .. 17

2.3.12 Reliable Multi-Segment Transport (RMST) ... 17

2.3.13 Siphon.. 17

2.3.14 Sensor Transmission Control Protocol (STCP)... 18

2.4 Protocol vs. Feature Cross-Reference... 18

2.5 Discussion .. 20

3 WMTP Design and Implementation... 21

3.1 Design Goals and Requirements ... 21

3.2 Application Level Interface ... 25

3.3 System Architecture ... 28

3.3.1 WMTP Core Interfaces .. 29

3.3.1.1 The Traffic Shaper Interface ... 29

3.3.1.2 The Reliable Transmission Hook Interface ... 30

3.3.1.3 The Feature Configuration Handler Interface ... 30

3.3.1.4 The Connection Management Data Handler Interface 30

3.3.1.5 The Local Management Data Handler Interface 30

3.3.1.6 The Connection Scratch Pad Hook Interface.. 31

3.3.1.7 The Packet Scratch Pad Hook Interface... 31

3.3.1.8 The Core Monitor Interface ... 31

3.3.1.9 The Service Specification Data Handler Interface 31

3.3.1.10 The Connection Establishment Handler Interface 32

3.3.1.11 The Multi-Hop Router Interface... 33

3.3.1.12 The Link Layer QoS Indicator Interface .. 33

3.3.2 WMTP Core Functionality .. 33

 vi

3.3.2.1 General Functionality .. 34

3.3.2.2 Message Generation and Parsing Subsystem.. 34

3.3.2.3 Data Forwarding and Delivery Subsystem.. 35

3.3.2.4 Queuing Subsystem.. 35

3.3.2.5 Traffic Shaping Subsystem ... 35

3.3.2.6 Memory Management Subsystem .. 36

3.3.2.7 Configuration Management Subsystem.. 36

3.3.2.8 Service Management Subsystem ... 37

3.3.2.9 Quality-of-Service Reservation Subsystem .. 37

3.3.3 Message Formats .. 42

3.3.4 Feature Implementation ... 42

3.3.4.1 Queue Availability Shaper... 43

3.3.4.2 Throttling ... 43

3.3.4.3 Flow Control .. 43

3.3.4.4 Congestion Control ... 43

3.3.4.5 Fairness... 44

3.3.4.6 WMTP Reliability ... 45

3.3.5 Additional Modules... 47

3.3.5.1 PacketSinkServiceSpecificationHandler ... 47

3.3.5.2 SinkIDServiceSpecificationHandler .. 47

3.3.5.3 TOSMultihopRouter .. 47

3.3.5.4 TagRouter ... 48

3.3.5.5 SourceRoutedConnectionEstablishmentHandler...................................... 48

3.3.5.6 StatisticalQoSIndicator .. 49

3.4 Implementation Considerations.. 49

4 WMTP Test and Evaluation... 51

4.1 Test Scenarios ... 51

4.2 Test Application and Methodology... 52

4.3 Simulation Results.. 53

4.3.1 Base-line Scenario... 54

 vii

4.3.2 Throttling and Flow-control .. 55

4.3.3 Congestion-Control and Fairness .. 57

4.3.4 WMTP Reliability.. 65

4.3.5 Quality-of-Service .. 74

5 Conclusions ... 77

5.1 Future Work.. 78

6 References .. 80

7 Annexes... 82

 viii

List of Tables

Table 2.1: Reliability Protocol Comparison ... 19

Table 2.2: Congestion Control Protocol Comparison .. 19

Table 2.3: Fairness Protocol Comparison ... 19

Table 3.1: WMTP Feature Memory Usage.. 50

 ix

List of Figures

Figure 2.1: ESRT Event Reliability Behavior, as a Function of the Reporting Frequency 15

Figure 3.1: WMTP Protocol Stack ... 23

Figure 3.2: WMTP Application Level Interface .. 25

Figure 3.3: WMTP Core Interfaces.. 28

Figure 3.4: Quality-of-Service Reservation Procedure.. 39

Figure 3.5: Example of the Binary Tree Reservation System in Action 41

Figure 3.6: WMTP Reliability Availability Map Fragmenting Examples................................... 47

Figure 4.1: Common Simulation Scenario Topology... 51

Figure 4.2: Quality-of-Service Simulation Scenario Topology... 52

Figure 4.3: Baseline Simulation Results.. 55

Figure 4.4: Throttling Simulation Results .. 56

Figure 4.5: Flow-control Simulation Results.. 57

Figure 4.6: Congestion-Control Simulation Results .. 58

Figure 4.7: Congestion-Control Simulation Results (Tweaked Version) 60

Figure 4.8: Fairness Simulation Results.. 61

Figure 4.9: Congestion-Control and Fairness Simulation Results .. 62

Figure 4.10: Weighted-Fairness Simulation Results ... 64

Figure 4.11: Congestion-Control and Weighted-Fairness Simulation Results........................ 65

Figure 4.12: WMTP Reliability Simulation Results .. 67

Figure 4.13: WMTP Reliability Operating Under Varying Load Conditions............................. 68

Figure 4.14: WMTP Reliability Simulation Results (Lossy Scenario)...................................... 70

Figure 4.15: WMTP Reliability and Congestion Control Simulation Results 71

Figure 4.16: WMTP Reliability and Fairness Simulation Results .. 72

Figure 4.17: WMTP Reliability, Congestion Control, and Fairness Simulation Results 74

Figure 4.18: Quality-of-Service simulation results... 75

 x

List of Annexes

Annex 1: WMTP Application Interface UML Static Structure Diagram.................................... 82

Annex 2: WMTP Core Interfaces UML Static Structure Diagram.. 83

Annex 3: WMTP Feature Module UML Static Structure Diagram ... 84

Annex 4: WMTP Service Specification Handlers UML Static Structure Diagram 84

Annex 5: WMTP Multi-Hop Routers UML Static Structure Diagram 85

Annex 6: WMTP Data Types UML Static Structure Diagram.. 85

Annex 7: WMTP Message Formats... 85

Annex 8: Congestion Control Message Sequence Chart.. 89

Annex 9: Reliability Message Sequence Chart (Simple Scenario) ... 90

Annex 10: Reliability Message Sequence Chart (with Piggybacking)..................................... 91

Annex 11: Reliability Message Sequence Chart (High Data Rate Scenario).......................... 92

Annex 12: Example Sending Application Source Code .. 93

Annex 13: Example Receiving Application Source Code.. 94

Annex14: Quality-of-Service Reservation Log Excerpt ... 95

 xi

List of Acronyms

AIMD Additive Increase, Multiplicative Decrease

ARC Adaptive Rate Control

ATM Asynchronous Transfer Mode

ATP Ad-hoc Transport Protocol

CCF Congestion Control and Fairness

CODA Congestion Detection and Avoidance

DTC Distributed TCP Cache

ESRT Event-to-Sink Reliable Transport

MAC Medium Access Control

MPLS Multiprotocol Label Switching

PCCP Priority-Based Congestion Control Protocol

PSFQ Pump Slowly, Fetch Quickly

QOS Quality of Service

RBC Reliable Bursty Convergecast

RMST Reliable Multi-Segment Transport

STCP Sensor Transmission Control Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

WMTP Wireless Modular Transport Protocol

WSN Wireless Sensor Network

 xii

 1

1 Introduction

The recent evolution of networking in embedded systems has brought about new challenges

to tackle and new problems to solve. The special needs related to these new kinds of

networks and the paradigms that evolved from them ultimately led to the creation of the

concept of Wireless Sensor Networks (WSNs), as described in [1]. These networks differ from

conventional networks in many key aspects. Generally speaking, these networks are built

upon low cost nodes with restrictive power and processing abilities. These nodes, in turn, are

comprised of the sensing or actuating unit, a microcontroller and a wireless transceiver, thus

extending the node’s functionality beyond mere sensing and enabling the creation of

intelligent data centric networks.

Although traditional network performance issues and challenges also apply, to some extent,

to WSNs, the key performance attribute that is most frequently analyzed and optimized in the

literature is energy efficiency. Since the wireless sensor nodes are frequently battery

powered, the energy consumed during their operation equates directly into the overall

network life-time. While changing the batteries on a common household device may seem

simple enough, for large-scale WSN deployments, it is commonly impractical, more

expensive, or completely impossible to change the batteries after deployment. This ultimately

means that the use of energy efficient network protocols can lead to the need to redeploy the

network with new sensor nodes equipped with fresh batteries after a year, or even longer,

rather than every few months. Aside from the complex, often overseen, considerations and

procedures that a large-scale WSN deployment ultimately entails, which were effectively

assessed in [3] and [20], economic factors and environmental concerns may also come into

play, thus making the energy efficiency performance attribute the most important aspect

behind these new networks, being one of the key factors that can make or break this

technology.

Given this key paradigm shift in what is considered as a performance attribute in WSNs, the

use of traditional network protocols, that have already been tried and proven on typical wire-

line and wireless networks, is generally found to be inefficient or impractical to implement on

WSNs. This has led to the need to develop new network protocols specifically tailored for

these networks, either by developing entirely new concepts from scratch, or by adapting the

already existing protocols to better perform under these special conditions.

Traditionally, research and development efforts were application driven, thus embedding,

within the applications themselves, most of the functionality that would otherwise be offered

by one of the network layers. This would lead to the need to redevelop most of the protocol

stack, from scratch, every time a new application was designed. With the recent surge in

applications that rely on these networks, however, came a demand for new protocols that

could fulfill the needs of, and thus be reused by, a broader range of applications, therefore

 2

relieving the application developers of the additional effort of developing the underlying

network layers.

Focusing specifically on the transport layer, one may find a large variety of protocols that

have already been designed to provide some specific functionality that may be used by a

broad range of applications. A more detailed analysis of some of the available protocols is

available in [25], but, generally speaking, the functionality that these protocols provide can fit

into one of the following categories: reliability, congestion control or fairness.

Reliability is the ability to retransmit lost packets, either locally, or end-to-end, to ensure their

successful delivery. This feature has already been implemented in several protocols such as

ATP ([19]), DTC ([7]), ESRT ([17]), GARUDA ([16]), PSFQ ([22]), RBC ([27]), RMST ([18]),

and STCP ([13]). Congestion control, in turn, is the ability to delay or inhibit packet forwarding

and generation in order to avoid network congestion at bottleneck nodes. This feature also

has its fair share of protocols, namely ARC ([26]), ATP ([19]), CCF ([8]), CODA ([23]), DTC

([7]), ESRT ([17]), Fusion ([11]), PCCP ([24]), Siphon ([21]), and STCP ([13]). Finally, fairness

is the ability to divide network resources in an equitable fashion between all nodes, thus

ensuring that all have an equal share of bandwidth to communicate with the sink node. This

feature has been covered by ARC ([26]), ATP ([19]), CCF ([8]), Fusion ([11]), and PCCP

([24]).

The weakness behind most of these protocols is one all too common in WSNs: most of these

protocols were designed with the needs of a specific application in mind, and are either not

suitable or inefficient for most other purposes. Additionally, most transport protocols designed

for reliability do not offer congestion control and vice-versa. The few protocols that do offer

both of these features ([7, 17, 13]), in turn, come short in performance, when compared to

other protocols that either just implement reliability or just congestion control. Fairness, on the

other hand, is mostly associated with congestion control, but the protocols that follow this path

don’t generally provide any reliability semantics. The one key area, where all of these

protocols come short, is modularity. Each of these protocols provides its own particular

features, or combination thereof, yet none present the application layer with the explicit option

of using whichever features they need, while leaving out the others.

1.1 Motivation and Goals

This dissertation proposes the Wireless Modular Transport Protocol (WMTP), a novel

modular approach to transport layer protocol functionality that not only seamlessly

integrates all of the above mentioned functionalities, but also provides some new features,

not commonly found in this area, such as the support for optionally integrated service

discovery and the ability to provide quality-of-service (QoS). This means that each

application may choose which features it requires and which it doesn’t, and the protocol

will assure that the basic requirements are complied with, without incurring the additional

burden and the efficiency toll associated with any unused functionality. Additionally, WMTP

 3

supports environments with heterogeneous applications. In other words, different

applications, using different features, may coexist in the same network. On the other hand,

the use of this modular architecture also allows the network administrator to build a

stripped down version of WMTP that doesn’t support any features that will never be used

during the network’s life-time, thus freeing up valuable processor and memory resources

on the sensor nodes.

Although, as a generic protocol, WMTP could be implemented on any system, its

reference implementation has been developed on the TinyOS 1.x platform, and has been

primarily tested on Crossbow MICAz sensor nodes ([6]). The Crossbow MICAz is a

commercially available sensor platform that couples an 8-bit AVR RISC microcontroller,

the Atmel ATmega128L ([2]), with an IEEE 802.15.14 Zigbee-ready transceiver, the

Chipconn CC2420 ([5]). The use of these platforms, in itself, is a challenge to overcome,

especially due to the reduced amount of available memory on the MICAz sensor node

(4 kB of SRAM).

TinyOS, in turn, is an open-source operating system initially developed at the University of

California, Berkeley. This operating system was specifically designed to work on

embedded systems with very severe computational constraints, such as those found in

WSNs, and has, since then, become the de facto standard operating system for several

WSN platforms. TinyOS accomplishes its extreme resource economy through the use of

an event-driven, component-based architecture with cooperative process multitasking.

This specialized architecture is further supported by a specialized C-like programming

language, with which all TinyOS components must be programmed, called nesC ([9]).

Additionally, TinyOS provides a powerful simulation environment, TOSSIM ([14, 15]),

which enables the simulation of entire WSNs using the same source-code that is used on

real sensors.

1.2 Organization

The remainder of this dissertation is organized into five main chapters. The following

chapter, chapter two, provides an overview of the current state of the art of WSN transport

protocols. This chapter starts by providing an in-depth insight into each transport feature,

followed by a brief outline of each of the most commonly used WSN transport protocols.

Finally, each protocol is cross-referenced with the features that it provides in a series of

condensed tables.

Chapter three, in turn, provides a detailed account on how the WMTP protocol architecture

was designed. Starting off by explaining WMTP’s initial design goals and the requirements

that ultimately derived from them, this chapter provides an insight into the various

alternative solutions that were a part of the initial design phase. Finally, the architecture

that ultimately developed into WMTP will be explained in further detail, followed by some

implementation considerations.

 4

Chapter four provides an objective validation of WMTP’s functionality, as well as an

evaluation of its performance. This validation and evaluation is processed through

simulation, hence this chapter starts by describing the test application and scenarios

developed specifically for this purpose. Once the simulation procedure is made clear, the

simulation results are presented and discussed.

Finally, chapter five draws some final conclusions and lays out the foundation for future

work in this area, followed by chapter six with a list of references.

1.3 Summary of Contributions

This dissertation was partially developed as a contribution to the CRUISE Network of

Excellence IST Project (CReating Ubiquitous Intelligent Sensing Environments), a part of

the Sixth EU Framework Programme for Research and Technological Development (FP6).

As such, the following technical reports have been delivered:

• L. Pedrosa, R. Rocha, R. Neves, “Protocol comparison and new features”,

CRUISE/WP220/IT/032/0.3/13.11.2006: This report provides an insight into the

state of the art of WSN transport protocols and ultimately became a part of the

CRUISE/WP220/D220.1/version 2.0/04.10.2007 milestone.

• L. Pedrosa, R. Rocha, R. Neves, “WMTP – Wireless Modular Transport Protocol”

CRUISE/WP220/IT/046/0.4/07.07.2007: This report contains an initial specification

for WMTP.

Although WMTP’s initial specification has been submitted as a contribution, the latest version

is not, as of yet, publicly available.

 5

2 State-of-the-Art of WSN Transport Layer Protocols

In this section, the current state-of-the art of WSN transport protocols is reviewed in further

detail. After explaining the main transport layer features that are commonly found in the

already existing WSN transport protocols, a list of atypical features will be presented and

further explained. Once this basic foundation is established, each of the main previously

existing WSN transport protocols will be briefly outlined. Next, a list of summarized tables will

be presented, cross-referencing each typical feature with the protocols that implement it.

Finally, some brief conclusions will be drawn.

2.1 WSN Transport Protocol Common Functionalities

2.1.1 Reliability

Reliability can be described as the ability that the network has to ensure the proper

delivery of information to its final destination. In wireless sensor networks reliability can

fit within one of two categories: packet reliability and event reliability. The former

ensures that all packets (or a configurable percentage of them) arrive to their final

destination, while the latter ensures that, at least, the minimum amount of packets

required to correctly detect an event, are safely delivered. Additionally, to provide either

of these reliability semantics, most algorithms are further divided into two main stages:

loss detection and notification and loss recovery. Furthermore, reliability algorithms can

be classified by the nodes that directly intervene in them, being either end-to-end or

hop-by-hop.

The loss detection and notification stage of the reliability algorithm is used to detect

when a packet has been lost and is thus responsible for initiating any action to recover

the loss. In order to perform this task, one of the following methods may be used:

• ACK Feedback: The ACK feedback mechanism is based on the receiver, be it

either the final destination or just one of the hops, explicitly acknowledging the

reception of each packet. Using this mechanism, the sender, be it either the

original source or just the previous hop, detects that a packet has been lost if it

has not been acknowledged by the receiver within a specific time-frame.

• NACK Feedback: NACK feedback, in turn, is based on the receiver explicitly

notifying the sender that it did not receive a packet. Just as before, this receiver

may either be the final destination, or just another hop along the way. Since, in

traditional networks, packets successfully arrive at their destination more often

than not, this mechanism generally implies a smaller protocol overhead on the

network. On the other hand, it also brings a new challenge: if all packets are

lost, the receiver will never be the wiser, and will therefore never notify the

sender.

 6

• IACK Feedback: IACK (Implicit Acknowledge) feedback is a new mechanism

that takes advantage of the promiscuous nature of the radio environment. In

this mechanism, when a network node forwards a packet to the next hop, it

implicitly acknowledges the packets reception to its previous sender. Although

this mechanism presents even less overhead than the NACK mechanism, its

basic assumption, that a node may overhear the packet being forwarded, may

not always be applicable, specially if the underlying link layer protocol works

with multiple non-interfering channels, or is TDMA based.

• Sequence Number Out-of-Order: In this specific mechanism, packets are

tagged with consecutive sequence numbers. The receiving node can then

detect a missing packet when it receives another packet with the sequence

number out of the expected order. Once the loss is detected, a NACK

mechanism may be used to notify the sender.

• Time-Out: The Time-Out loss detection mechanism, like the Sequence Number

Out-of-Order variant, requires the aid of the NACK mechanism to notify the

sender. However, this specific mechanism does not rely on sequence numbers

in messages to detect when one has been lost but, rather, expects that a new

message will be delivered within a certain time-frame, after which, the message

will be considered lost.

Once the loss detection and notification stage has detected that a packet has been lost,

one of the following recovery mechanisms may be used:

• Increase Source Sending Rate: This mechanism is frequently found in the

event reliability semantic. Since individual packets may be lost without

hindering the overall application functionality, the sending node can increase

the total quantity of packets received on the other end by simply increasing the

total number of packets it sends.

• Packet Retransmission: This mechanism, on the other hand, is the general

choice for most packet reliability protocols. On the end-to-end variant, the

original source node retransmits the packet across the entire network, hopefully

reaching the final destination. The hop-by-hop variant, in turn, performs local

retransmissions on each hop and, by doing so, reduces overall protocol

overhead and latency. It is also possible to reach a mid-term solution, where

not all nodes along the path cache the transmitted packets. This intermediate

solution still requires multi-hop retransmissions, but still manages to avoid end-

to-end retransmissions.

 7

2.1.2 Congestion Control

Given the convergent nature of most WSN data forwarding schemes, network

congestion is likely to happen on nodes closer to the sink node. This is especially the

case when these nodes forward data for particularly large networks which need to

convey vast amounts of information in frequent status reports. If this situation is not

taken into account, then congestion will inevitably occur sooner or later, leading to

overloaded radio links, degraded channel utilization and the wasteful transmission of

packets that will eventually be dropped.

Given the general need to maximize network utilization while avoiding the wasteful use

of energy to transmit packets that may be dropped, a general mechanism to control

source rates in a manner that avoids downstream congestion is required. The

algorithms that implement this functionality can be broken down into three stages:

congestion detection, congestion notification, and rate adjustment.

The congestion detection stage oversees the local node’s status and decides if

congestion is either already taking place or likely to take place in the near future, if

nothing else is done to prevent it. This decision may either produce a single binary

congestion notification (CN) bit, a multilevel congestion degree value, or a precise rate

at which each child node that is using the current node as its next hop should send its

packets. In order to provide this functionality, one of the following mechanisms may be

used:

• Packet Sending Success: In this simple mechanism, the success or failure to

send a packet is used to infer congestion. This can be used in a hop-by-hop

basis, where a node establishes its own congestion when it is unable to send a

packet over the next hop, or in an end-to-end basis, similar to the way TCP

works.

• Queue Length: This mechanism relies on the local node’s message queue

occupancy. Once the relative quantity of queued packets surpasses a certain

predefined threshold (e.g. 75%), the node is considered to be congested, and

shall proceed to notify its peers of that fact.

• Packet Service Time: Unlike the queue length mechanism, this specific

mechanism does not rely on the local message queue status, but rather on the

local node having the ability to precisely quantify the maximum data rate at

which it may send packets over the next hop. Provided that this information is

available, the node can limit its own rate and calculate the rate at which its own

children may send packets. This information may then be propagated further

down, effectively limiting the rate of all nodes throughout the network in a way

that may keep congestion under control.

 8

• Ratio of Packet Service Time over Packet Inter-arrival Time: Unlike the packet

service time mechanism, this mechanism does not need to establish the

maximum data rate for the following hop. By simply taking into account the

mean packet service time (the elapsed time from when the packet is delivered

to the link layer up until its last bit is successfully transmitted over the next hop)

and the mean packet inter-arrival time (the elapsed time between consecutive

packet arrivals, be them from the link layer or locally generated), a simple

congestion degree value can be obtained by calculating the ratio of the former

over the latter.

• Channel Loading: In this specific mechanism, the radio channel is constantly

monitored, allowing the node to measure the channel’s relative load, thus

detecting local congestion. Since continuous channel monitoring may entail a

high energy toll, a channel sampling scheme is implemented in practice.

The congestion notification stage, in turn, defines the method used by the parent node

to notify its children of its current congestion status. One of the following mechanisms

may be used to provide this functionality:

• Explicit Congestion Notification: Once the congestion status has been

determined, all of the local node’s children nodes must be notified so they may

take action and prevent further congestion. In explicit congestion notification,

specific protocol management messages are used for this purpose.

• Implicit Congestion Notification: Unlike in the explicit variant, implicit congestion

notification piggybacks the congestion status information on normal data

packets, reducing the overall protocol overhead on the network. On the other

hand, just like the IACK reliability mechanism, implicit congestion notification

assumes that a node may overhear forwarded packets, which may not always

be true.

Finally, the rate adjustment stage defines how children nodes should limit their

transmission rates in order to avoid further congestion at the parent node. In order to

provide this functionality, one of the following mechanisms may be used:

• Stop-and-Start Rate Adjustment: This mechanism invokes a simple principle:

once the parent node notifies its children that it is congested, the children stop

sending packets over the next hop, allowing the parent to free up its queues. If

the children, themselves, get congested, they will continue to apply back

pressure upstream, ultimately reaching the data source and temporary halting

packet generation.

When this method is allied with implicit congestion notification, some special

attention must be paid to the fact that the node may still need to send

 9

messages to its congested parent to be able to effectively notify its own

children of its congestion status.

• Additive Increase, Multiplicative Decrease (AIMD) Rate Adjustment: Unlike

before, this mechanism does not completely stop sending packets when

parents report that they are congested. Instead, an additive increase,

multiplicative decrease scheme is used to regulate the rate at which packets

are sent.

• Exact Rate Adjustment: This specific mechanism relies on the node’s ability to

precisely determine the rate at which it may send packets over the next hop.

Provided that this information is available, the node simply schedules the

sending of its packets using specific timings in order to fulfill that calculated

rate.

2.1.3 Fairness

Given the probabilistic model of packet loss at each hop, be it by the hands of radio link

interference or by congestion, a natural consequence is that sources that require more

hops to arrive to the sink node tend to have a larger probability of packet loss than

those closer to it. This problem ultimately limits the diameter of the network and creates

an imbalance where nodes closer to the sink have an unfair advantage over those

farther away.

To counteract this natural imbalance, some special care is needed in the transport

protocol’s design to guarantee network fairness. Generally, these guarantees are

associated with congestion control protocols and can be divided into two categories:

simple fairness and priority based, or weighted, fairness.

In simple fairness, all traffic sources are considered equal and will receive equal

transmission opportunities. In order to provide this functionality, the following

mechanisms may be used:

• Simple Rate Limiting: This mechanism is, in many ways, similar to the exact

rate adjustment congestion control mechanism, although some additional care

must be taken to provide fairness guarantees. To insure fairness, the local

node must send packets over the next hop at a rate proportional to its parent’s

total upstream rate and the ratio of the number of source nodes served by the

local node over the total number of source nodes served by its parent. This

information may either be explicitly broadcasted by the parent node or can be

inferred by overhearing the parent node’s forwarded traffic.

• Differentiating AIMD Coefficients for Local and Forwarded Traffic: When using

an additive increase, multiplicative decrease rate adjustment congestion

 10

control mechanism, simply using differentiated coefficients for locally generated

traffic and forwarded traffic can supply a certain degree of fairness.

• Traffic Shaping based on Multiple Queues at Each Node: If each node

maintains separate queues for traffic forwarded from each of its children,

simple traffic shaping techniques may be used to guarantee fairness. These

techniques should serve each queue at a rate proportional to the number of

source nodes served by the child associated to the queue.

Priority based fairness, on the other hand, is more flexible and complex, since it allows

each traffic source to have a different priority attributed to it. This being the case, only

some of the previously mentioned mechanisms are extensible to provide this more

advanced functionality:

• Exact Rate Adjustment using Priority Based Scheduling: This mechanism is

designed as an extension of simple rate limiting that takes into account

different priorities for different data sources. Traditionally, the rate at which the

local node sends its traffic over the next hop is calculated based upon the

number of source nodes that are served by the local node and the amount

served by its parent. If, instead of just counting source nodes, a sum of their

relative weights is performed, priority based fairness guarantees may be

achieved.

• Priority Based Traffic Shaping based on Multiple Queues at Each Node: This

mechanism, just like its simple fairness counterpart, requires that each node

maintain a separate queue for traffic forwarded from each of its children. Once

again, simple traffic shaping techniques may be used to guarantee fairness

but, this time, each queue should be served at a rate proportional to the sum of

the priorities of each source node served by the child associated to it, rather

than the number of sources per se.

2.2 WSN Transport Protocol Atypical Functionalities

2.2.1 Throttling

Throttling is a basic functionality that allows the sending node to easily regulate the rate

at which it generates its data, through the transport layer. This feature, albeit quite

simple in nature, may be quite useful, since it relieves the application layer of the

burden of managing its own timers.

2.2.2 Flow Control

Flow control is a functionality that allows the receiving node to regulate the rate at

which the sending node generates its data. In fact, this feature is quite similar to

 11

throttling, with the key difference lying in the fact that it is the receiving node that

specifies the data generation rate, rather than the sending node.

This feature is implemented simply by allowing the receiving node to send feed-back

packets towards the sending node, thus providing the explicit rate at which it should

generate its data. Albeit simple in nature, this functionality is not always trivial to

provide, especially since the basic assumption that it is possible to send data along the

reverse path, from sink to source, is not always true.

Due to the limitations that the routing layer may have, only some of the following flow-

control mechanisms may be applicable:

• Single-Hop Flow-Control: This mechanism works upon the premise that the

receiving node, probably a sink node with an external power source, may use a

stronger radio signal to reach all of the sending nodes within a single hop. The

sending nodes, in turn, may use weaker radio transmissions and a multi-hop

network, thus saving their own energy. By doing this, the routing problem is

completely circumvented, but at the cost of limiting the total size of the network

to the sink’s extended radio range.

• Broadcast Flow-Control: This mechanism, in turn, assumes the existence of a

multi-hop broadcast routing protocol, either based on flooding or through the

use of a more complex multicast-like distribution system. Using this specialized

routing layer, the receiving node may broadcast a sender address and its

explicit rate, across the entire network, in order to configure a specific sending

node. This solution, when used in this particular way, is very inefficient but, in

many cases, it may very well be the only alternative. A more efficient use of this

mechanism may be applied when all sender nodes may be configured to

generate data at the same rate. This being the case, the effort of broadcasting

the configuration data across the entire network will have been put to a good

use.

• Unicast Flow-Control: Finally, this mechanism uses a unicast routing layer, if

one exists, to send the explicit generation rate configuration directly to the

sender node, thus avoiding that the configuration data be forwarded where it is

not needed.

2.2.3 Quality-of-Service

Quality-of-service is a functionality that has a different meaning, depending on the layer

from which it is viewed. According to [4], quality-of-service can be either perceived from

an application standpoint or from a network standpoint. This way, while applications

generally concern themselves with such quality-of-service parameters as network

coverage, exposure to phenomena, measurement errors, and optimum number of

 12

active sensors, the network generally attempts to ensure that local or end-to-end

performance guarantees are met.

This being the case, application quality-of-service is primarily addressed during the

deployment phase, although some network support is also required. Network quality-of-

service, on the other hand, attempts to use prioritization schemes, admission control

and reservation mechanisms to differentiate traffic, thus providing performance

guarantees for some flows, while using “best effort” policies for the others. This can be

seen both at the link layer, where quality-of-service is used to ensure that priority traffic

is sent over the radio within a bounded time frame, as well as the upper layers, where

end-to-end guarantees, such as maximum overall packet delay and minimum

throughput, are pursued.

At the transport layer, the main concerns are related to these last kinds of guarantees.

The main idea behind transport layer quality-of-service is the ability to allow

applications to attempt to reserve network resources for specific network flows. Once

the network asserts that it meets all the conditions necessary to honor the request, it

proceeds to reserving the associated resources, and signaling the application that its

request was completed successfully. Under these new circumstances, the transport

layer must provide a high level of assurance that the application’s performance

requirements will be met, regardless of future traffic conditions. Evidently, given the

unpredictability of the wireless medium, not to mention the possible network topology

changes that may occur in a mobile scenario, these assurance are far from being

considered guarantees, but are rather a form of conditional hope that, while all stays as

is, the previously negotiated conditions will continue to honored.

2.3 Existing WSN Transport Protocols

2.3.1 Adaptive Rate Control (ARC)

The Adaptive Rate Control (ARC) protocol, as described in [26], provides congestion

control and simple fairness semantics. The idea behind the protocol is that when a

node transmits data over to its parent node, it uses the success or failure to send the

data as a congestion detection mechanism. This way, AIMD mechanisms may be used

to regulate the rates at which data is locally generated or forwarded for other nodes.

Additionally, simple fairness is achieved by using different AIMD parameters for local

traffic generation and remote traffic forwarding. By monitoring the traffic that it forwards,

each node establishes how many children nodes it ultimately serves. It then uses this

knowledge to carefully calculate the AIMD parameters for both local traffic generation

and remote traffic forwarding.

 13

2.3.2 Ad-hoc Transport Protocol (ATP)

The Ad-hoc Transport Protocol (ATP), as described in [19], is yet another TCP

alternative, specifically developed for ad-hoc networks. This protocol intends to resolve

several of the key problems that TCP has traditionally suffered over wireless ad-hoc

networks by using a novel approach that not only decouples congestion control from

reliability, but also uses additional feed-back from intermediate forwarding nodes to

calculate precise estimates of the network’s state. These mechanisms, alongside a

three-phase congestion control mechanism, allow ATP to adapt to network conditions

much faster and more accurately than TCP.

In order to provide congestion control and simple fairness, the intermediate nodes

along the data’s forward path collaborate to calculate the maximum packet service time

by piggy-backing the highest value amongst them alongside the packet’s data. The

receiver node then uses this information to periodically send packets back along the

reverse path, ultimately providing the sender with an explicit rate. The sender node, in

turn, uses this rate to feed a three-phase congestion-control mechanism that uses

distinct rate progression procedures during the increase, decrease, and maintain

phases.

As for reliability, ATP uses a selective ACK (SACK) mechanism to allow the receiver to

specify exactly which packets it has received and which remain to be received, being

detected as holes in the sequence number’s natural progression. The sender node

then uses this information to retransmit the lost packets, without relying on any

retransmission timeouts.

Overall, ATP outperforms TCP but, ultimately, its mechanisms are not optimized to

minimize energy consumption, but rather to maximize performance at high data rates

and are, thus, not quite tailored for WSNs.

2.3.3 Congestion Control and Fairness (CCF)

The Congestion Control and Fairness (CCF) protocol, as described in [8], is used to

provide congestion control and fairness semantics. To accomplish this, each node

measures the rate at which it can send data and then divides it by the number of

children nodes it serves, thus obtaining the per-node packet rate. This per-node packet

rate is then piggy-backed alongside forwarded data, thus taking advantage of the

broadcast nature of wireless networks to implicitly transmit this data to the node’s

children. If a node overhears its parent’s rate and it is slower than its own, it will apply it

locally, as well as use it in future broadcasts.

Additionally, each node creates individual packet queue for each of its children nodes,

as well as one for its locally generated data. This being the case, the node now uses

 14

the already established per-packet rate, as well as a specialized traffic shaper, to

provide the intended fairness.

2.3.4 Congestion Detection and Avoidance (CODA)

The Congestion Detection and Avoidance (CODA) protocol, as described in [23], is

used to avoid congestion in data flows from sources to sink. To accomplish this, two

detection techniques are employed: a traditional queue occupancy threshold and a

channel loading mechanism.

Once congestion has been detected, using a combination of these methods, CODA

then uses two feed-back mechanisms to recover from it: open-loop backpressure for

light, transient, congestion and closed-loop sink generated ACKs for heavy, long-term,

congestion.

2.3.5 Distributed TCP Cache (DTC)

The Distributed TCP Cache (DTC) protocol, as described in [7], is an extended version

of the traditional TCP protocol that is optimized for energy efficiency. This is

accomplished through the use of local caches, along the connection’s route, that

enable a quicker and more efficient local loss recovery process, instead of relying

solely on TCP’s end-to-end loss recovery mechanisms.

Additionally, DTC uses a network aided process, called flying-start, to provide more

accurate initial round-trip-time estimates to the source node, thus providing a 10% to

25% performance increase over the conservative values that TCP traditionally uses.

2.3.6 Event-to-Sink Reliable Transport (ESRT)

Event-to-Sink Reliable Transport (ESRT), as described in [17], is used to provide event

reliability. Instead of the traditional concept of packet reliability, where individual

packets are retransmitted, in order to assure their safe delivery at the sink, this protocol

defines event reliability as the received packet rate associated to a particular sensing

process. This way, higher event reliability is synonymous with the reception of more

packets, thus providing a more accurate perception of the sensed phenomena.

The true problem that ESRT intends to solve is how to reach the ideal event reliability,

thus providing the right amount of data to produce the required accuracy, while also

avoiding network congestion. If sources generate data too slowly, the required reliability

metric won’t be met, on the other hand, if data is generated too quickly, too much

reliability may occur, or worse, network congestion may lead to dropped packets, thus

lowering the event reliability once again, possibly even below the required threshold.

This concept is illustrated in Figure 2.1.

 15

Figure 2.1: ESRT Event Reliability Behavior, as a F unction of the Reporting Frequency

In order to solve this problem, ESRT uses a flow-control mechanism that assumes the

existence of a single high-powered sink node that can control all of the source nodes

within a single hop. The source nodes, in turn, may have low-power radios, and thus

may use a multi-hop network to reach the sink. Under these circumstances, the sink

calculates the optimal reporting frequency and directly regulates sources.

2.3.7 Fusion

The Fusion protocol, as described in [11], is used to provide congestion control and

simple fairness semantics. In order to provide congestion control, each node detects

congestion by monitoring its packet queue. The node then simply piggybacks a

congestion notification bit alongside its data, thus taking advantage of the broadcast

nature of the wireless medium to broadcast it congestion state to its neighbors. Once

each node knows its parent’s congestion state, it refrains from sending it more than one

packet, thus implementing an open-loop back pressure mechanism. This ability to send

a single packet to a congested parent is specifically allowed, so that the child node may

to still warn its neighbors when it eventually becomes congested.

Fairness, on the other hand, is accomplished through a separate mechanism. The idea

is that each node monitors its own forwarded traffic, as well as that of its parent. Using

this information, the node is able to determine not only the number of source nodes that

it serves, but also the number of source nodes its parent serves. Armed with this

knowledge, the node then uses a token bucket mechanism to regulate the rate at which

it forwards it own data, thus ensuring that it is forwarded at the appropriate fraction of

the rate of its parent.

 16

2.3.8 GARUDA

The GARUDA protocol, as described in [16], is used to reliably send data from sink to

sources. In order to provide this functionality, this protocol starts off by creating a loss

recovery core, during its first packet flood. This core is formed by all nodes with a hop-

count that is a multiple of three, thus approximating a minimum dominating set. Each

core node then piggybacks, alongside its forwarded data, special availability maps (A-

Maps), containing lists of packets that it is holding in local cache. These core nodes are

also responsible for retransmitting any NACKed data packets.

Under these circumstances, each node, whether it belongs to the core or not, detects

packet loss through out-of-order sequence numbers, yet these out-of-order packets are

still forwarded. Once a lost packet is detected, the node may only initiate its recovery

process when it receives an availability map, containing the lost packet, from its

preceding core node.

Additionally, GARUDA circumvents the single-packet loss problem, which is

traditionally associated with NACK based mechanisms, through the use of out-of-band

Wait-for-First-Packet (WFP) pulses, that are assumed to be reliable.

2.3.9 Priority-Based Congestion Control Protocol (P CCP)

The Priority-Based Congestion Control Protocol (PCCP), as described in [24], provides

congestion-control and weighted fairness semantics. In order to provide this

functionality, PCCP uses a novel congestion detection mechanism, based the ratio of

its packets’ service time (the time it takes the link layer to dispatch them) over inter-

arrival time (the time elapsed between consecutive receptions).

Each node then piggybacks this congestion information, together with the number of

nodes it serves and the sum of their weights, alongside its forwarded data, thus taking

advantage of the broadcast nature of the wireless medium to broadcast its status to its

neighbors. Each node then uses its parent’s status information to perform exact rate

adjustments on the rate at which it forwards its data, as well as the rate at which it

generates it.

2.3.10 Pump Slowly, Fetch Quickly (PSFQ)

The Pump Slowly, Fetch Quickly (PSFQ) protocol, as described in [22], is used to

reliably disseminate send large amounts of information across the entire network, being

primarily designed to enhance network retasking or reprogramming. Under these

circumstances, data cache sizes are not relevant, since all nodes must hold all data

segments anyway.

The idea behind this protocol is to flood the network with new segments (pump) slowly,

while recovering from a detected loss (fetch) quickly. These losses are detected

 17

through out-of-order sequence number and recovered using a simple NACK

mechanism. Additionally, nodes do not propagate out-of-order segments to prevent

downstream nodes from initiating a fetch operation.

Finally, when the entire operation is complete, the nodes cooperate to send aggregated

report messages.

2.3.11 Reliable Bursty Convergecast (RBC)

The Reliable Bursty Convergecast (RBC) protocol, as described in [27], is used to

provide reliability semantics for traffic with real-time requirements.

In order to provide this functionality, this protocol uses a novel implicit windowless block

acknowledgement approach that, in conjunction with a specialized prioritization

mechanism, allows new packets to be generated and forwarded, without ever having to

wait for old lost ones to be recovered. Additionally, in some special cases where the

receiving node is able to proactively detect that it did not receive a sent packet, it

accelerates the recovery process through the use of implicit block NACKs.

2.3.12 Reliable Multi-Segment Transport (RMST)

The Reliable Multi-Segment Transport (RMST) protocol, as described in [18], was

designed to run over Directed-Diffusion (see [12] and [10]), specifically to reliably

fragment and reconstruct data sets for sending over reinforced gradients.

This being the case, fragment loss is detected through out-of-order sequence numbers

and time-outs and is notified through a NACK mechanism. Additionally, a special

caching mode may be used, where intermediate nodes may cache fragments and

participate in the recovery process.

2.3.13 Siphon

The Siphon protocol, as described in [21], provides congestion control through the use

of a specialized, high-powered, long-range, secondary radio network.

This way, aside from a single physical sink that collects and consumes the network’s

data, siphon proposes the use of several virtual sinks, laid across the network. These

virtual sinks are equipped with two radio modules, one low-powered and short-ranged

and one high-powered and long-ranged. Although most conventional communications

will go through the low-power radio network, these virtual sinks can use the alternative

high-power radio to divert traffic, thus avoiding congestion on the primary network.

Additionally, two distinct congestion detection methods are used, a node initiated

method and a sink aided, “post-facto”, mechanism. The node associated method uses

a local channel load measurement mechanism, as well as a traditional packet queue

monitoring scheme, to perform an early detection of transient or deep network

 18

congestion situations. The sink aided, “post-facto”, mechanism, in turn, allows the

physical sink to perform a high level assessment of the application data fidelity, thus

forcing the use of the secondary radio network whenever it sees fit.

2.3.14 Sensor Transmission Control Protocol (STCP)

The Sensor Transmission Control Protocol (STCP), as described in [13], is a flexible

protocol that is used to provide both end-to-end reliability and congestion control

functionality.

Within the reliability realm, STCP also provides the option to either use full or partial

reliability semantics, thus allowing the application to specify how many packets, within

a fixed window size, must be reliably delivered. Additionally, if the data is to be

generated continuously at a fixed predictable rate, the receiving node may use a time-

out mechanism to detect a packet’s loss, followed by a NACK packet to initiate its

recovery. For unpredictable, event driven packets, a less efficient alternative ACK

mechanism may be used.

As for congestion-control, STCP uses a simple, end-to-end, closed loop, congestion

detection mechanism, based on packet queue occupancy monitoring. The idea is that,

if an intermediate node detects that it is congested, it sets a congestion notification bit

that is piggybacked along to the receiving node. Once the receiving node receives this

information, it also piggybacks a congestion notification bit, but this time onto one of the

ACK packets that return along the reverse path, thus instructing the source node to

reduce the rate at which it generates its data.

2.4 Protocol vs. Feature Cross-Reference

In this section, each protocol is cross-referenced with the features that it provides, as

well as with the methodology used to implement them. This information is condensed

within three tables, one for reliability, one for congestion control, and one for fairness.

 19

Reliability
Loss Detection and Notification Loss Recovery

Protocol
Category Direction Type

ACK NACK IACK

Sequence
Number
Out-of-
Order

Time
Out

Increase
Source
Sensing

Rate

Packet
Retransmission

ARC
ATP Packet Both End-to-End ● ● ●
CCF
CODA
DTC Packet Both Hop-by-Hop ● ● ● ●

ESRT Event Upstream Event-to-
Sink

 ● ●

Fusion

GARUDA Packet Down-
stream

Hop-by-Hop ● ● ●

PCCP

PSFQ Packet Down-
stream Hop-by-Hop ● ● ● ●

RBC Packet Upstream Hop-by-Hop ● ●
RMST Packet Upstream Hop-by-Hop ● ● ●
Siphon

STCP Event /
Packet

Upstream End-to-End ● ● ● ●

Table 2.1: Reliability Protocol Comparison

Congestion Control

Congestion Detection Congestion
Notification

Rate Adjustment
Protocols

Packet
Sending
Success

Queue
Length

Service
Time

Service Time /
Inter-arrival

Time

Channel
Loading

Explicit Implicit
Stop-
and-
Start

AIMD Exact

ARC Hop-by-Hop ● ●
ATP ● ● ●
CCF ● ● ●
CODA ● ● ● ●
DTC End-to-End ● ●
ESRT ● ● ●
Fusion ● ● ●
GARUDA
PCCP ● ● ●
PSFQ
RBC
RMST
Siphon * End-to-End ● ●
STCP ● ● ●

* – Siphon does not perform any rate adjustment to mitigate congestion but, rather, redirects traffic through “Virtual
Sinks” which use an alternative long-range radio network to reach the “Physical Sink”.

Table 2.2: Congestion Control Protocol Comparison

Fairness

Simple Fairness Priority Based Fairness Protocols
Simple Rate Limiting Differentiating AIMD Coefficients Traffic Shaping Exact Rate Adjustment

ARC ●
ATP ●
CCF ●
CODA
DTC
ESRT
Fusion ●
GARUDA
PCCP ●
PSFQ
RBC
RMST
Siphon
STCP

Table 2.3: Fairness Protocol Comparison

 20

2.5 Discussion

A critical analysis of the previously mentioned protocols and features merely confirms what

had been stated in chapter one: several transport protocols for WSNs have already been

developed, but most of them were specifically designed to solve problems posed a

particular application. This being the case, these protocols excel when used for the

specific application for which they were designed, but are ultimately inadequate for any

other use. Additionally, the few of these protocols that are actually generic in design,

namely ATP ([19]), DTC ([7]), and STCP ([13]), attain their generality at the expense of

performance (at least from a WSN’s point of view). On the other hand, most of these

protocols have been developed isolated from other research areas that are becoming

progressively more popular in the WSN world, such as possible integration with service

discovery mechanisms, or the inclusion of transport layer quality-of-service semantics.

This situation ultimately stresses the need for the development of a new modular approach

to WSN transport layer functionality, a need that ultimately led to the development of

WMTP. This new approach is generic by nature, yet it allows the application to include

exactly the features it requires, while leaving out any others, a simple principle that is not

followed by any of the mentioned protocols. This basic approach not only avoids the

inevitable trade-offs one must concede to when using additional features, but also cuts

down on the use of unnecessary overheads and, thus, will ultimately contribute to saving

energy, therefore extending the network’s useful life-time.

 21

3 WMTP Design and Implementation

In this chapter, the design considerations behind WMTP’s architecture will be further

discussed. To start off with, the initial design goals, as well as the requirements that derived

from them, will be presented, while outlining some of the alternative solutions that were

thought of, during the initial design phase. Then, the interface that WMTP provides to

applications will be explained, followed by a detailed coverage of WMTP’s system

architecture. Finally, some special considerations will be discussed regarding WMTP’s

reference implementation.

3.1 Design Goals and Requirements

As previously mentioned, the basic transport feature categories, namely, congestion-

control, fairness, and reliability, have already been covered by several established and

well proven transport protocols. What these protocols fail to provide is a modular

architecture that enables the optional use of any one of these features, or a combination

thereof, in a manner that is completely transparent to the application.

This is where WMTP comes in. WMTP was born from a proposal to develop an

architecture that could integrate all of these features into a single protocol. Additionally,

several new features were proposed, some simple such as throttling and flow-control,

some not so simple, like quality-of-service. Finally, the ability to easily integrate with

service-discovery systems was also proposed, although the service discovery system, in

itself, would not be a direct part of the WMTP protocol.

The simplest way to do this would be to create a single protocol, using a design based on

principles already implemented by a selection of preexisting protocols, while also

cramming in the new features. This hypothetical protocol would effectively offer all of the

proposed features, but not in a modular fashion, thus forcing the application to apply all of

these features, even when not needed. This rigid design is clearly not practical, as the

utilization of unnecessary features leads to the wasteful use of network resources and

entails inevitable trade-offs that could otherwise be avoided.

Unlike before, a modular architecture would allow the application to choose which features

it would need and which it could dispense, on demand. Ideally, the system would analyze

the application’s requirements and provide a solution that not only complied with them, but

would also do so in the most efficient way possible.

To comply with this additional requirement of modularity, a simple requirement-matching

system could be developed. This system would use a repository of several protocols of

varying complexity, each supplying a list of the features it provides. The system would

simply analyze the applications request and choose the right protocol from the pool,

accordingly. This choice could be optimized to use the simplest protocol that still complies

 22

with the application’s request. Additionally, the system could base its decision not only a

list of required features, but also on a list of optional ones, allowing the application to

further participate in the process. This system, albeit functional, requires that a great effort

be invested into the design and development of a large variety of sub-protocols that would

go into the pool. Not only would the need arise to develop a sub-protocol for each

individual feature, but also for every conceivable combination thereof. Otherwise, the

system would be forced, like before, to apply unneeded features in a wasteful way.

Additionally, the simultaneous use of several of these sub-protocols across the network

could have unforeseen behavior, as it would be unconceivable to predict how each sub-

protocol could interact with all of the others.

Another possible solution could be based on a layered approach. Each feature could be

developed as a stackable sub-layer that would communicate with its upper and lower

layers using a single common interface. Since all feature sub-layers would both use and

provide the same interface to its upper and lower layers, several sub-layers could be

modularly stacked together, on demand, to offer the features that were requested, while

keeping out those that weren’t. Although, on face value, this seems to be a good idea, this

simplistic architecture entails several problems that are not trivial to solve. On one hand,

the order in which the layers are stacked is not irrelevant and, thus, would require further

study. On the other, this solution does not provide any additional mechanisms to isolate

each feature’s functionality from the others, in other words, each feature would have to be

designed to take into account the possible effects of all the others. This not only off-loads

an additional burden onto the feature development effort, but is also close-minded by

nature, since it does not facilitate the design of new, unthought-of, features in the future.

Finally, a different solution was found that not only provides the required modularity but

also does so in a way that both facilitates current feature development and also leaves

room for future work to be done on new or improved features. This solution, the one that

eventually was used in WMTP, is based on the creation of a transport layer framework.

This framework is based on the existence of a central core that, by itself, provides only

minimal functionality. The true features would be developed as additional modules or plug-

ins that would interact with the core through very specific interfaces. These interfaces

would be designed to minimize the possibility of unforeseen interactions between distinct

modules, while also making it clear exactly what kind of interactions are predictable. This

way, each feature module could be developed as a stand-alone feature, and yet, could still

be used in conjunction with others. Additionally, this architecture would interact with the

upper and lower layers using specialized interfaces that would enable additional features,

although this might require the development of specialized “translation” modules or

adaptation layers. Under these circumstances, the core’s true functionality would reside in

coordinating the overall activity, acting as the “glue” between all of the feature modules

and the upper and lower layers, thus providing a coherent and integrated functionality that

is presented to the application in a way that is as transparent as possible.

 23

In order to provide the flexibility that WMTP’s modular architecture requires, a specialized

network protocol stack was designed. This unconventional protocol stack, illustrated in

Figure 3.1, partially breaks the traditional layered paradigm that is commonly used in

conventional network protocol stacks, since, contrary to what would be expected, WMTP

does not sit neatly between the application layer and the network layer.

Figure 3.1: WMTP Protocol Stack

As illustrated above, the WMTP core actually resides directly between the application layer

and the link layer. Although the network layer is not directly a part of WMTP, tight

integration with the core functionality is required in order to provide some of the advanced

functionality that WMTP’s modular framework uses.

As for the interface with the application layer, WMTP was designed to meet the needs of

typical WSN applications and thus this interface could not deviate excessively from the

traditional interfaces typically used for this purpose. On the other hand, in order to make

full use of some of WMTP’s features, some extensions had to be employed. While the use

of most of these extensions is not mandatory, the application would not be able to take full

benefit of what WMTP has to offer without them. Although most applications shouldn’t

need to be recoded to use WMTP, some may benefit from a little remodeling, especially if

they want to take full advantage of all the features the protocol can provide.

WMTP’s interface with the link layer, in contrast, is much more traditional. The only

extension that needed to be employed was an additional interface to obtain the layer’s

quality-of-service characteristics. On the other hand, this interface can be implemented by

a dummy module that simply conveys the absence of quality-of-service or, alternatively, a

more elaborated adaptation module that provides statistical assurance levels, based on

the measured characteristics of the preexisting link layer protocol. Additionally, WMTP fully

benefits from the promiscuous nature of the wireless medium by piggybacking any

management information on forwarded traffic. On the other hand, if the link layer does not

provide this feature, WMTP is flexible enough to still manage to operate, albeit not as

efficiently, by using explicit management packets, thereby effectively creating a

transparent graceful degradation mechanism.

As already previously mentioned, the multi-hop network layer needs to be tightly integrated

into the WMTP protocol stack. This approach was followed due to the high level of

collaboration that WMTP pursues with this layer, going beyond the scope of what the

traditional layered approach envisions. Additionally, WMTP needs to manage its own core

queue, which is a job that traditionally would be delegated to the network layer. Amongst

other advantages of using this approach is the ability of the network layer to collaborate

 24

with WMTP to implement connection oriented routing, a service that is a basic requirement

of some of WMTP’s features, namely the quality-of-service feature (which depends on the

pre-reservation of network resources), and the fairness feature (which requires that each

node have a previous context for each connection that passes through it). In order to

provide this service, not only does the network layer have to identify to which connection

does an incoming packet belong to, it also has to collaborate with WMTP to establish the

connection in the first place. Additionally, this cross-layered approach also allows WMTP

to use multiple concurrent network layer implementations with ease.

Although connection oriented routing has its benefits, the initial delay during which the

connection is established, and its context is propagated across the network, can be

undesirable under certain circumstances. An example of a situation where this feature

would be a burden would be a highly mobile scenario, where a node may have to change

routes very frequently, thus leading to the connection being broken and rebuilt. On the

other hand, since connections require that each forwarding node maintain an individual

context, this poses serious scalability problems, especially when large-scale deployments

come into play. To overcome this problem, WMTP also supports connectionless routing

modules which, albeit using the same interfaces as their connection-oriented counterparts,

use a dummy connection establishment process that entails little or no additional delay.

Additionally, in the absence of connections, the use of local memory is not proportional to

the number of nodes that forward their data through the local node, thus also enabling

large-scale deployments.

The connection establishment functionality, in turn, is directly related to the multi-hop

routers in use. This functionality may also be integrated with more advanced naming and

addressing schemes that go beyond WMTP’s scope, or otherwise provide service

discovery semantics. If the underlying router is connection-oriented, then this module will

not only be responsible for discovering the routes to one or more destination nodes that

fulfill the requested connection’s criteria but also to establish and configure the

connection’s context. On the other hand, if the router is connectionless, then this module

may simply be a stub for neighbor or gateway discovery.

Once this basic protocol stack is established, the specific features that characterize WMTP

may be built upon it. Although this framework is designed to be flexible and to facilitate the

implementation of additional features and improvements, the following feature set has

been listed for initial development:

• Throttling: Packet generation is automatically throttled, thus relieving the

application of this task.

• Flow Control: The receiving node may regulate the rate at which the source node

generates its packets;

 25

• Congestion Control: Packet transmission is delayed along the forwarding nodes,

ultimately delaying packet generation, to avoid bottleneck node congestion;

• Fairness: Packet generation along the several sources that share a sink is

throttled in order to divide the available throughput in either an equitable fashion or

providing weighted differentiation;

• Reliability: Packets are automatically retransmitted, when losses are detected, in

order to guarantee the reliable delivery of all packets;

• Quality-of-Service: The application may specify the minimum requirements and/or

the desired values for certain QoS metrics such as end-to-end packet delay and

packet throughput;

Although the WMTP protocol may support all of these features and even allow them to

coexist peacefully on the same network, the user may wish to entirely disable unneeded

features. This allows the partial compilation of only the components that are required for

the provisioning of the remaining features, thus freeing resources that would otherwise be

wasted.

3.2 Application Level Interface

In order to fulfill its purpose, WMTP offers the application developer a specialized interface

that, while still maintaining some similarities with conventional packet dispatching

interfaces, has some special nuances that must be carefully taken into consideration.

Although the complete reference of this interface is provided in Annex 1, the most relevant

commands and events are illustrated in Figure 3.2.

Figure 3.2: WMTP Application Level Interface

 26

The application level interface is divided into three major parts. The connection

management interface, the sending application interface, and the receiving application

interface.

The connection management interface is responsible for all functionality that relates to the

successful establishment of connections between nodes. If a connectionless router is in

use, this functionality may be reduced to a mere stub or, eventually, neighbor and gateway

discovery.

Basically, the application starts off by registering the service that it provides to the network

through the RegisterService command. By doing this, the application is essentially opening

the door to start accepting new inbound connections. This function call is also used to

register any naming, addressing or service discovery conventions that may be used by

other network nodes to find this particular service and connect to this application. Using a

traditional, socket based, analogy, this command resembles the bind system call, as it

associates an identifier that the network can recognize, to the application, the difference

being that the identifying data is a more generic service specification, rather than a port

number. Later on, the service may also be cancelled with the CancelService command,

thus denying any future connections.

At the other end, the initiating application opens a connection with the OpenConnection

command. This function call receives a connection specification that, amongst other

possible options, specifies how the connection is established and routed, how each feature

should operate on this connection, and any quality-of-service requirements that should be

met. As a part of this connection specification, in some cases, a service specification may

be supplied using the same basic format that was used with RegisterService command.

This service specification, when applicable, can be used during the connection

establishment phase to feed a service discovery mechanism and will also be used to

connect to the appropriate remote application.

Once a connection has been successfully established, both ends will be notified through

the ConnectionOpened event. This event also provides a new connection specification that

is unique to the established connection and must be passed on to all further function calls

related to it. Unless the connection specification is specifically configured to do otherwise,

the OpenConnection command may lead to the establishment of multiple connections to

several nodes that fulfill the specified criteria. If this is the case, the connection initiator,

and not just the service provider, must also be prepared to handle multiple connections.

When multiple connections are established, the ConnectionOpened event will be signaled

for each one, providing a different connection specification each time.

Once a connection has been established, some of its parameters may be dynamically

updated. This action is handled through the ReconfigureConnection command.

Accordingly, the ConnectionReconfigured event is used to notify the application that the

 27

remote end has reconfigured the connection and that the new parameters will be effective

immediately.

Finally, either end may terminate a connection, on demand, by using the CloseConnection

command. The ConnectionClosed event is signaled whenever the connection is

terminated by any means other than a local call to CloseConnection, in other words, when

the remote node explicitly terminates the connection, or when it is simply lost due to a

broken wireless network link.

If a connectionless router is in use, the Connection Management interface must still be

used, albeit with some additional peculiarities. This is necessary because WMTP

virtualizes connectionless routing as a special case of connection-oriented routing that

does not establish any initial context across the network. Nonetheless, this pseudo

connection establishment procedure must still be followed so that WMTP may establish

the local context associated with the connectionless data. Under these circumstances, the

receiving application must register a service, using the same methodology followed by a

connection-oriented application that accepts incoming connections. On the other hand, the

sending application must establish a pseudo-connection using the same methodology a

connection-oriented application would, to establish a traditional one. Soon after the

OpenConnection command is called, the ConnectionOpened event will be signaled, thus

providing the connection specification that must be passed on to any future function calls.

The receiving application, in turn, will not be signaled with a ConnectionOpened event,

since, under these circumstances, it is a mere passive listener that can neither send data

back to the sources, nor have any influence on the configuration that is applied to any

incoming packets. As usual, received packets are signaled with the Receive event.

The sending application interface, in turn, is much simpler and maintains a closer

resemblance to traditional packet dispatching interfaces. Like any normal packet

dispatching interface, there is a Send command that may be used to pass new data from

the application layer on to the transport layer. The novel aspect in this interface is the

ClearToSend event. This event is used by WMTP to notify the application when it should

ideally provide its data, if it intends to conform to the restrictions implied by the

connection’s configuration. If all the applications running on each node in the network use

this event to coordinate the rate at it which they generate data, then all the conditions will

be met to provide the guarantees that each feature promises (i.e. avoid bottleneck node

congestion, provide fairness, etc.). If, on the other hand, the application chooses to ignore

this event, a certain amount of local queuing may absorb short bursts, but most features

will probably not be able to guarantee the overall functionality that they were designed for.

The receiving application interface, on the other hand, is the simplest of all the interfaces.

Just like any other packet receiving interface, there is one simple Receive event that is

used to pass received data on to the application.

 28

3.3 System Architecture

As previously explained, WMTP’s functionality is based on the existence of a modular

transport layer framework. In this section, this framework will be further broken down and

explained in full detail. After an initial overview of how the system architecture works, each

individual interface will be thoroughly explained. Then, all of WMTP’s initially developed

features will be systematically viewed, covering not only the basic mechanisms that back

them up, but also the way they interact with the core, using one or more interfaces, in

order to fulfill their ultimate purpose.

WMTP’s basic architecture is composed of a common coordinating core and a collection of

specialized modules that are linked to it using standardized interfaces (see Figure 3.3 and

Annex 2) and that share with it a common set of data types (see Annex 6). These modules

can use these interfaces to either implement a transport layer feature or perform a specific

task that the core explicitly delegates (see Annex 3, Annex 4, and Annex 5). While feature

modules will generally use a combination of the Traffic Shaper, Reliable Transmission

Hook, Feature Configuration, Connection Management Data Handler, Local Management

Data Handler, or Core Monitor interfaces to provide their functionality, the Service

Specification Data Handler, Connection Establishment Data Handler, Multi-Hop Router,

and Link Layer QoS Indicator interfaces were specifically designed to allow the core to

delegate certain functions to external modules.

Figure 3.3: WMTP Core Interfaces

In the case of the Connection Establishment Data Handler and the Multi-Hop Router

interfaces, the delegated tasks actually constitute WMTP’s specialized network layer

interface, used to outsource the specific functionality that belongs to this layer and, thus,

goes beyond WMTP’s scope. The Link Layer QoS Indicator interface, in turn, is the

additional extended link layer interface that WMTP uses to obtain this layer’s quality-of-

 29

service characteristics. The remaining delegation interface, the Service Specification Data

Handler, as will be further explained in the corresponding section below, is used to match

together remote service data (requested interests), with local service specifications

(offered services). Aside from determining if the local node is capable, or not, of accepting

the incoming request, the core also uses this functionality to determine to which local

application the incoming connection should be associated with. The use of external

modules to provide this matching service is a key extension point that enables WMTP to

work with more advanced naming, addressing, or service discovery mechanisms that go

beyond its scope.

Finally, the Connection Scratch Pad Hook and Packet Scratch Pad Hook interfaces are

additional helper interfaces that, albeit not directly used to regulate the core’s behavior in a

way that provides the desired feature’s functionality, provide convenient tools that greatly

simplify the development of feature modules.

3.3.1 WMTP Core Interfaces

3.3.1.1 The Traffic Shaper Interface

As previously mentioned, the traffic shaper interface is specifically designed to be

used by WMTP feature modules. This interface basically allows these modules to

regulate the rate at which packets are forwarded or generated. Although the

interface provides a broader range of commands and events (see Annex 2), its

basic operation is achieved through the use of specialized Start and Stop

commands. These commands, in turn, can either be applied to individual packets, in

which case they regulate when the packet is forwarded, or to connections, thus

regulating packet generation at the application layer, through the ClearToSend

event, as already seen in the sending application interface.

Additionally, multiple modules may use traffic shaping to influence the same packet

or connection, in which case the core manages each module’s state and uses an

AND logic to only forward or generate packets once all relevant modules have

sanctioned the operation.

The intelligent use of this interface is essential to provide many features. For

example, when providing fairness, a traffic shaper may be used to throttle data

generation, thus regulating its throughput. It is important to note that, due to the

AND logic used to check if a connection or packet is clear to send, when multiple

modules use traffic shaping, the resulting rate is limited by the “slowest” module. In

other words, the result rate is approximately the minimum of all the rates specified

by all of the traffic shaping modules.

 30

3.3.1.2 The Reliable Transmission Hook Interface

The reliable transmission hook is a special interface provided specifically for

reliability feature modules. Through a specialized set of commands and events (see

Annex 2), this interface not only provides the means for these modules to tell the

core when a packet must still be cached for future reference, and when it is no

longer of any use, but also to detect repeated packets upon reception.

Unlike the traffic shaper interface, each packet can only be controlled by a single

reliability feature module. In other words, although WMTP may have several

reliability feature modules available, each individual packet may be controlled by at

most one of them.

3.3.1.3 The Feature Configuration Handler Interface

As the name implies, the feature configuration handler interface is also specifically

designed to be used by feature modules. This specific interface is used to allow

each feature module to manage its own configuration, thus providing specialized

commands that not only allow the module to initialize a connection’s configuration

with default values, but also to convert this configuration to and from a format that

may be transported along the network (see Annex 2). This way, the WMTP core

may use this interface to perform a connection’s configuration across the network,

as well as to make sure that individual connectionless packets are also

appropriately configured.

3.3.1.4 The Connection Management Data Handler Inte rface

The connection management data handler interface, also specifically used by

feature modules, allows these modules to piggy-back their own management data,

alongside a packets payload, across the network. This is especially useful to

append packet specific information, such as identifiers or sequence numbers.

This being the case, this interface provides both the means to generate and handle

these headers, as well as to access them from within a currently enqueued packet

(see Annex 2).

3.3.1.5 The Local Management Data Handler Interface

The local management data handler interface, like its connection management data

counterpart, allows feature modules to generate and handle their own management

data. Unlike connection management data, that is piggy-backed alongside a packets

payload across the network, local management data is not associated with any

particular packet and is, thus, repeatedly broadcasted to the local neighborhood.

This particular kind of management data is especially useful to keep the neighboring

nodes up to date on the local node’s status (e.g. whether it is congested, or not).

 31

This being the case, this interface provides the commands and events that allow the

application to generate and handle these headers (see Annex 2). Additionally, the

feature module is signaled when its data is being broadcasted, thus allowing it to

update or delete it own data, immediately after it is broadcasted.

Although local management data is not directly associated with any packets, the

WMTP core does not necessarily have to broadcast it in its own dedicated

messages. If the link layer in use supports radio snooping, then the WMTP core will

automatically piggy-back all management data onto some, otherwise unassociated,

data packet. Since using the radio transmitter is, generally, one of the most

expensive operations that sensor node’s perform, in terms of energy consumption,

the ability to piggy-back local management data along with data packets is a key

factor in saving energy and, thus, extending the network’s overall life-time.

3.3.1.6 The Connection Scratch Pad Hook Interface

The connection scratch pad hook is a special interface that allows multiple feature

modules to maintain independent, per-connection, state variables locally associated

to each open connection, thus relieving the individual feature modules from the

burden of managing their own memory buffers for this purpose.

3.3.1.7 The Packet Scratch Pad Hook Interface

The packet scratch pad hook, like its connection counterpart, relieves the feature

modules of the burden of managing their own state memory. Unlike the connection

scratch pad hook, this interface provides per-packet state management, thus

allowing feature modules to associate their own state variables to each individual

packet.

3.3.1.8 The Core Monitor Interface

The core monitor is a special interface that allows any module to obtain the WMTP

core’s current status, as well as to be notified whenever this status is changed (see

Annex 2). This interface provides the means to monitor registered services, open

connections, and the core queue. Additionally, the monitoring module is notified

whenever a packet is generated, received, sent or dropped from the core queue, as

well as whenever a radio message is received, about to be sent, or when its sending

process has completed.

3.3.1.9 The Service Specification Data Handler Inte rface

Service specification data handlers are the components that match together locally

registered service specifications (locally provided services) with incoming service

data (remote interests). By delegating this functionality to external modules, the

WMTP core maintains its generality by not creating any strong ties to any specific

 32

service discovery architecture. This approach avoids unnecessary cross-layer

dependencies and eases the development of future extensions that may support

more complex or advanced naming, addressing or service discovery systems.

Although this interface provides a broader set of commands (see Annex 2), its main

functionality is centered on verifying if a local service specification matches a remote

interest, as well as generating the data that expresses this interest in remote

services, from an equivalent service specification object.

3.3.1.10 The Connection Establishment Handler Inter face

Although some of WMTP’s features rely on connections, the components that

establish these connections don’t have any strong ties to the core itself. In fact,

when an application requests to open a connection, the request is simply rerouted to

the appropriate connection establishment handling module. This module, in turn,

then uses its own mechanisms to establish the connection as requested.

In order to accomplish this task, this interface provides several commands that the

module may use during the connection establishment phase (see Annex 2). These

commands provide the following functionalities:

• The core extends the functionality that the service specification data

handlers offer it, thus allowing the connection establishment modules to

generate service data representing interests, as well as to find local

services that match remote interests;

• Similarly, the core extends the functionality provided by the feature

configuration handlers, thus giving the connection establishment modules

the ability to manage a connection’s configuration. This way these modules

are provided with the tools that enable them to both generate configuration

data from an already configured connection specification object, as well as

to initialize a new connection with remotely generated configuration data;

• The core itself must also be notified when a connection has been opened,

not only so that it can maintain its own records up to date, but also to notify

any other modules of the fact. This being the case, this interface also

provides a set of commands that are used to notify the WMTP core that a

connection has been established, be it either a locally terminated

connection, or simple one that is forwarded over the local node. The WMTP

core then uses these commands to update its lists of open connections, as

well as to signal any other resulting events.

• The core provides the ability to generate dummy keep-alive packets for an

established local connection. These packets, when dispatched, will be

forwarded across the network towards the opposite end of the connection.

 33

• Special commands are provided to interact with the WMTP core quality-of-

service reservation subsystem. This subsystem will be further explained, in

a section of its own, further below.

3.3.1.11 The Multi-Hop Router Interface

As previously mentioned, WMTP uses an unconventional protocol stack that doesn’t

sit upon the network layer, but rather uses it through a specialized interface. The

multi-hop router is the interface used for this purpose.

The WMTP core uses this interface to query connection-oriented and

connectionless routing modules alike, on how to forward its packets. The only

difference between these two kinds of routing modules is whether they supply a

connection specification object, alongside the response, or not.

This command is also used to generate and handle routing headers. This special

kind of header is piggy-backed alongside the packet’s data, in a way similar to

connection management data (see Annex 7) and may contain information (e.g. a

connection identifier or the destination node’s addresses) that will be used by

forwarding nodes as a part of the routing decision process.

Additionally, the core may use different routers for different packets, thus enabling

the coexistence of several different routing schemes within the same network.

3.3.1.12 The Link Layer QoS Indicator Interface

The link layer QoS indicator is the specialized interface that the WMTP core uses to

obtain the link layer’s quality-of-service characteristics, namely the maximum time

the WMTP core should have to wait between dispatching the packet to the link layer

and the packet actually being sent.

Normally, a specialized module should be developed for the link-layer in use, in

order to correctly reflect its behavior, since the absence of such a module will make

the WMTP core assume that the link layer does not provide any quality-of-service

semantics, thus disabling the entire quality-of-service reservation subsystem. On the

other hand, WMTP also provides a special implementation of this module, the

StatisticalQoSIndicator (see Annex 3), that, if used, measures the link layer’s

behavior in real-time and calculates a statistically assured maximum delay.

3.3.2 WMTP Core Functionality

As previously mentioned, the WMTP core is essentially the glue that sticks together all

of the individual modules. Its job is to call upon the appropriate components for each

packet or connection and to aggregate the information from multiple components of the

same kind to make coherent decisions.

 34

In this section, the specific functionalities, that the WMTP core is responsible for, will be

explained in more detail. These functionalities are further categorized into several

subsystems, each explained in its own subsection. These subsystems, in turn, are not

isolated compartments within the WMTP core and are only presented here for the sake

of clarity.

3.3.2.1 General Functionality

This section covers the functionality that is not directly associated with any

subsystem in particular but is still a basic part the WMTP core. To be more specific,

the core must handle the following duties:

• Maintain a list of open connections that feature modules may consult

through their specialized interfaces;

• Signal any associated event handlers whenever any relevant event occurs;

• Implement each command or event specified by the core interfaces, either

by supplying the desired functionality as described in the WMTP

specification, or by providing a dummy response indicating that this

particular functionality is not supported, when the specification explicitly

allows this.

3.3.2.2 Message Generation and Parsing Subsystem

WMTP uses a specialized message format that supports the encapsulation multiple

instances of local management data, as well as multiple data packets, each

containing a routing header as well as multiple instances of connection

management data and the packet’s payload (see Annex 7). This particular

subsystem is responsible for generating and handling these messages, thus

entailing the following functionalities:

• Accept local management data from multiple feature modules and ensure that

it is periodically broadcasted. If the link layer supports radio snooping and there

are data packets ready to be sent out, piggy-back the local management data

alongside the outgoing data packets, otherwise, use a dedicated management

packet;

• Whenever a message is received from the link layer, sequentially parse its

contents by calling the appropriate handling modules, be them local or

connection management data handlers, multi-hop routers or applications;

• Whenever a new packet is generated by an application, call the appropriate

multi-hop router to generate its routing header. Next call all of the individual

connection management data handlers and append any data that they may

generate, alongside the packet’s payload;

 35

• Handle any received connection management data by passing it along to the

appropriate feature modules. Keep a record of the individual management

headers in case the feature module requests it at a later time.

3.3.2.3 Data Forwarding and Delivery Subsystem

This particular subsystem is responsible for ensuring that data packets are sent

across the network ultimately reaching their destination. This requires the following

functionalities:

• Ignore received data packets that are not intended to be forwarded through this

node (i.e. that were received promiscuously);

• Whenever a packet is generated by an application or otherwise received from

another node, use the appropriate multi-hop router to obtain the next hop’s

address. If the specified next hop is the local node, deliver the data to the

appropriate application, otherwise, enqueue the data so it may be forwarded.

3.3.2.4 Queuing Subsystem

The queuing subsystem, in turn, is responsible for holding a limited number of

packets in local cache so that they may be forwarded at a later time. Additionally,

this subsystem also cooperates with reliability modules by only dropping packets

from the core queue when the appropriate module tells it to. This subsystem, thus,

entails the following functionalities:

• Use the appropriate reliability module, when applicable, to detect repeated

packets, and discard them.

• If a packet is configured to use reliability semantics, retain it in the core queue

until the appropriate reliability module indicates that it may be dropped, even if

it is destined for local delivery;

• Send the next packet from the core queue, as soon as the link layer signals

that the previous packet has already been sent;

• When selecting which packet to send next, ignore all packets that have been

marked, by at least one traffic shaping module, as inactive. Of the remaining

packets, choose the one with the highest quality-of-service priority. If there are

several packets with the same priority level or if all the packets don’t have

quality-of-service enabled, choose the oldest packet.

3.3.2.5 Traffic Shaping Subsystem

This particular subsystem is responsible for maintaining the Boolean state of each

traffic shaper, associated to each connection and packet. Each traffic shaper can

control its own state through the StartConnection, StopConnection, StartPacket, and

 36

StopPacket commands, thus leaving the connection or packet in an active or

inactive state, respectively. This way, this subsystem will provide the following

functionalities:

• Maintain the individual active/inactive status of all open connections and

queued packets for each traffic shaping module;

• Whenever a traffic shaping module starts a local connection, infer the global

status using an AND logic and, if the connection changes its global status from

the inactive to the active state, signal the appropriate application with the

ClearToSend event.

3.3.2.6 Memory Management Subsystem

Since dynamic memory is a rare commodity in embedded systems, especially on

the resource constrained ones used in WSNs, the WMTP core must manage its own

memory for all of its dynamic structures. There are two data structures that require

the WMTP core’s direct action as a memory manager, core queue elements, and

connection specifications. This memory management is achieved through the use of

a basic list of idle elements from which a new element may be retrieved and put to

use, on demand. Accordingly, once an old element is no longer needed, it may be

“destroyed” simply by returning it to the list of idle elements.

In the case of the connection specifications, these elements are not only used

internally by the WMTP core, but also by external modules, including applications.

This way, these modules may use the GetNewConnectionSpecification and the

DestroyConnectionSpecification commands to take advantage of the core queue’s

memory management abilities.

Additionally, the WMTP core provides two convenient interfaces that relieve feature

modules of some additional memory management hassles, namely, the connection

and packet scratch pad hooks. Although these interfaces do not require the use of

dynamic data structures, the WMTP core must still maintain individual connection

and packet scratch pads, for each module that uses them, associated to each open

connection or queued packet, respectively.

3.3.2.7 Configuration Management Subsystem

The configuration management subsystem allows the WMTP core to manage the

configuration of each feature module. Albeit most of the work is done by the feature

module, the WMTP core is still responsible for the following functionalities:

• Whenever a connectionless packet is generated, the applicable configuration

data must be appended using a special type of connection management data.

 37

Accordingly, when one of these packets is received, its configuration must be

initialized using said data;

• When a connection establishment handler requests the generation of

connection configuration data, it should be pieced together by sequentially

requesting that each feature module generate its own data;

• When a connection establishment handler requests that a connection be

configured using configuration data, the WMTP core must first initialize the

connection for every feature module. Next, each feature that is specified within

the configuration data should be configured by calling the appropriate feature

module.

3.3.2.8 Service Management Subsystem

Although the WMTP core does not specifically implement a service discovery

system, it does use services to identify how each application is accessible from the

network (in the same way that TCP and UDP use port numbers). This entails the

following functionalities:

• The WMTP core must manage a list of locally registered services;

• When a connection establishment handler requests the generation of service

specification data representing an interest, the WMTP core delegates this task

on to the appropriate service specification data handler;

• Whenever remote service data, representing an interest, is matched against a

registered local service specification, once again, the WMTP core must

delegate the matching operation to the appropriate service specification data

handler;

• When a connection establishment handler requests the first service

specification that matches remote service data, representing and interest, the

WMTP core must successively test each registered service specification until

one that matches is found;

3.3.2.9 Quality-of-Service Reservation Subsystem

As previously mentioned, the WMTP core provides a quality-of-service reservation

system to the connection establishment handling modules. This system extends the

quality-of-service guarantees provided by the link layer, to provide end-to-end

transport layer quality-of-service semantics.

The WMTP core quality-of-service reservation system is based on the idea of

reserving a maximum sending delay for a connection, during its establishment

phase, thus assuring that its packets will never have to wait more than the reserved

delay to be forwarded to the next hop. As new reservations gradually take effect, the

 38

system essentially makes sure that if a single packet from each quality-of-service

enabled connection were to arrive from all of them at once, then each one could be

dispatched within its individual required time frame.

This reservation process associates a simple priority level to the connection. This

priority level, in turn, will be used by the queuing subsystem to prioritize the

connection’s packets, thus assuring that its service levels are met. Additionally,

when quality-of-service resources are reserved for a connection, a single queue

element is also reserved specifically for the connection, thus providing the additional

guarantee that it will not be affected by network congestion.

In order to access this specific system, the connection establishment handling

modules are provided with a specialized interface. Since the end-to-end quality-of-

service reservation process is similar, in many aspects, to a transaction, it is often

desirable to reserve and/or cancel quality-of-service resources prior to actually

opening the connection. In order to provide these reservation semantics the core

quality-of-service reservation system requires that a special procedure be followed

when a quality-of-service enabled connection is being opened. This procedure is

based on the following principles and is illustrated in Figure 3.4:

• The connection establishment handling module may request that the core

reservation system calculate the shortest available delay, above a specified

threshold, that it is willing to dispense, by using the GetQoSShortestDelay

command. The request itself does not reserve any resources and its answer is

only valid during the current context (i.e. until the handler returns). Additionally,

the WMTP core may enact arbitrary policies that limit the minimum delay

calculated by this function. This means that a quality-of-service reservation with

a delay that is smaller than the one calculated by this function may still be

accepted;

• Connections with local delivery do not need to reserve any resources since

they can reach their destination without any delay. In this case, the connection

may be opened directly with the AddLocalConnection command;

• Non-local quality-of-service enabled connections, on the other hand, must first

reserve their associated resources through the ReserveQoSResources

command. Once the quality-of-service resources have been successfully

reserved throughout the entire route, the connection may be opened, using the

AddLocalConnection or AddNonLocalConnection commands, as usual;

• The FreeQoSResources command must only be used to free the resources

associated with unopened connections. The resources of an open connection

are automatically freed when the connection is closed.

 39

Figure 3.4: Quality-of-Service Reservation Procedur e

Based upon this reservation system, the connection establishment handling

modules may provide the following end-to-end quality-of-service metrics:

• Maximum end-to-end delay: The connection establishment handler

sequentially attempts to reserve the shortest available delay on each node

along the connection’s route. These calculated delays are accumulated as

the connection is established and, if, at a certain point, the specified

maximum delay is exceeded, the connection is dropped before the

establishment process finishes, thus guaranteeing that the connection is

only successfully established if the quality-of-service requirements can be

met.

• Maximum and desired generation periods: This quality-of-service metric is

equivalent to the minimum and desired throughputs, but expressed as

packet periods (in milliseconds between packets) rather than in throughputs

(in packets per second). The idea behind this quality-of-service metric is the

Unreserved
Unopened

Reserved
Unopened

Reserved
Opened

Unreserved
Opened

ReserveQoSRe sources AddLocalConnection

FreeQoSResources

AddNonLocalConnection

GetQoSShortestDelay

 40

guarantee that if the connection generates packets at a rate that is lesser

than or equal to what was reserved, than its packets will never be dropped

due to congestion. The use of two parameters, the maximum and the

desired periods, enables the application to establish the hard requirement

that must be met to establish the connection (the maximum generation

period) and a soft preference, which ideally would be what is actually

reserved. In order to provide this quality-of-service metric, the connection

establishment handler sequentially attempts to reserve the shortest

available delay that is larger than the preferred period, on each node along

the connection’s route. If the shortest delay is higher than the maximum

period, then the connection establishment handler attempts to perform the

reservation using the maximum period. If the reservation is ultimately

unsuccessful, the connection is dropped before the establishment process

finishes, thus guaranteeing that the connection is only successfully

established if the quality-of-service requirements can be met.

Although the mechanism used by the WMTP core to manage the quality-of-service

reservations is not standardized, the recommended solution, which was used in the

reference implementation, is based on a binary reservation tree. The idea behind

this mechanism is to represent each reservation as a node on the tree in such a way

that, if a node is reserved, then none of its children nodes may be used for other

reservations. Furthermore, the depth of the node (starting from zero at the tree’s

root), represents the connection’s priority level, as will be used by the core queuing

subsystem. Under these circumstances, a reserved node is guaranteed to be able

to send out its data with a delay of (2n+1)×D, or less, where n is the connection’s

priority and D is the maximum delay reported by the link layer.

In order to prevent a delay constrained connection from tying up the reservation

system and cutting off any future reservations, the WMTP core may also enforce a

minimum level that it is willing to offer. Using this policy, whenever a connection

establishment handler requests the shortest available delay, the core quality-of-

service reservation system will never provide a value below (2n+1)×D, where n is

the minimum level, dictated by the policy, and D is the maximum delay reported by

the link layer. Although this policy does limit the values that are reported by the

GetQoSShortestDelay command, it does not interfere with the reservation process

in itself, thus creating the situation where a quality-of-service reservation with a

delay that is smaller than the one calculated by this function may still be accepted.

An example showing this reservation system in action is illustrated in Figure 3.5.

 41

Figure 3.5: Example of the Binary Tree Reservation System in Action

This particular example illustrates a situation where there are two quality-of-service

reservations. For the sake of clarity, the maximum send delay that is reported by the

link layer is one second. This being the case, the following conclusions may be

drawn:

• The quality-of-service reservation that was made at level 1 is guaranteed to

have priority over all others. This means that, when a packet is received for

this connection, it will be forwarded as soon as the previously sent packet is

complete. This way, the packet will have to wait at most two seconds to be

forwarded, the maximum time it may take to finish the previously sent

packet and the maximum time it will take for it to be sent itself. This value is

smaller than the predicted maximum delay of (2n+1)×D = 3 s.

• The quality-of-service reservation that was made at level 2, on the other

hand, must yield priority to the reservation made at level 1. This means that,

when a packet is received for this connection, it will not only have to wait for

the previously sent packet to finish, but also for the packet associated with

the reservation at level 1, as well as the packet associated with a possible

future reservation made at level 2. This way, the packet will have to wait at

most four seconds to be forwarded, the maximum time it may take to finish

the previously sent packet, the higher priority packet, a possible equal

priority packet, and itself. This value is smaller than the predicted maximum

delay of (2n+1)×D = 5 s.

• The remaining free nodes may support either one reservation at level 2 or

two reservations at level 3. In the former case, as before, the maximum

delay would be five seconds. In the latter, the maximum delay would be

(2n+1)×D = 9 s.

Reserved Node s

Unusable Nodes

Free Node s

Level 0

Level 2

Level 1

Level 3

 42

3.3.3 Message Formats

In order to allow nodes to communicate amongst themselves and properly implement

the above mentioned functionality, a special message format is used in WMTP. In this

section WMTP’s message format will explained but, for a complete specification of all

of the message structures and fields, see Annex 7.

All of WMTP’s messages are based on a single super-structure, the WMTP Message,

which uses a hierarchical approach to encapsulate all of the different kinds of data into

a single unit. Although this is not uncommon in other protocols, there is one key aspect

that differentiates this approach from traditional ones: when a sub-section is included

within a section, the sub-section’s size is not saved within the section itself and may not

be sent anywhere within the packet at all. The idea behind this is that most sections

have either a constant size or a size that can be trivially calculated; in which case,

adding an explicit field with the section’s size is just redundant overhead that may be

used only for validation purposes.

This way, when the WMTP core calls a handler to process a specific section of a

message, instead of passing it a data buffer and its size, it passes a data buffer and

receives the size when the call ends, which, in turn, will be used to locate the beginning

of the next section. This concept is used extensively throughout WMTP’s message

format scheme.

As already mentioned, the WMTP message uses a hierarchical structure. This

relatively complex structure is necessary not only to be able to hold data packets and

headers, but to also be able to piggyback management headers. Having this in mind,

the WMTP packet may be further broken into multiple Local Parts. These parts may

each hold either a local management header or a Connection Local Part, which

contains a data packet alongside any connection specific headers. These Local Parts

are appended sequentially within the WMTP Message, leaving the Connection Local

Parts for last. The Connection Local Part, in turn, may be further broken into a Routing

Header, followed by multiple Connection Parts and, finally, the Data Connection Part,

which holds the actual data payload.

3.3.4 Feature Implementation

Using the previously explained architecture, complete features may be implemented as

additional modules that use multiple interfaces to interact with the WMTP core, in a way

that provides a coherent result. In this section all of WMTP’s initial features will be

presented and further explained.

 43

3.3.4.1 Queue Availability Shaper

The queue availability shaper is not exactly a formal transport layer feature, but

rather a convenient utility. This module prevents the application from generating

packets when the core queue doesn’t have enough room to accept them in the first

place. This may seem like an oxymoron, but, in the absence of this feature, the

application could be led to generate packets at a rate higher than the core queue

could absorb them, thus leading to all surplus packets being dropped immediately

after being generated.

To implement this mechanism the module needs only to use the traffic shaping and

the core monitor interfaces. Whenever a packet is generated, received or dropped

from the core queue, the queue availability shaper uses the core monitoring

interface to check if the core queue still has any space available for an additional

packet and starts or stops all connections that use this feature, accordingly.

3.3.4.2 Throttling

Throttling is one of the simplest of all features that WMTP offers, being basically a

mechanism that allows the application to specify the minimum packet generation

period.

To implement this mechanism the module needs only to use the traffic shaping and

the connection scratch pad hook interfaces. Whenever the connection generates a

new packet the throttling module basically stops the connection and sets a wake-up

timer to restart it, after the specified period. The WMTP core will eventually use the

ClearToSend event to generate the next packet. The connection scratch pad hook

interface is used merely for the convenience of storing each connections individual

wake-up time.

3.3.4.3 Flow Control

The flow control feature, in turn, is a simple mechanism where the receiving node

may regulate the rate at which the sending node generates data. This functionality is

achieved in exactly the same way as was done with the throttling feature, except

that the desired generation period is configured by the remote application, rather

then the local one.

3.3.4.4 Congestion Control

Congestion control is a feature that delays packet forwarding in order to avoid

congestion on bottleneck nodes. As these packets accumulate across upstream

nodes, the sources will eventually be affected, thus regulating packet generation as

well.

 44

This feature is implemented using the local management data handler, the traffic

shaper, and the core monitor interfaces. Each node determines its own congestion

status by using the core monitor interface to analyze its local queue availability, thus

creating a Boolean congestion notification bit. In order to decide whether the nodes

is congested or not, two distinct thresholds are used, a minimum queue availability,

under which the node will be considered as congested, and a maximum queue

availability, over which it will cease to be considered as so. In between these two

thresholds, the node retains its last state, thus creating a memory effect.

Once this congestion status is established, this information is shared with all local

neighbors through the use of local management data. Furthermore, each of the local

neighbor’s congestion state is cached in a local neighbor table. This way, the traffic

shaping interface may be used to stop packets that will be forwarded over to a

congested node and restart them when the node is ready. Additionally, whenever

the local node changes its congestion state, all local connections are stopped or

started, accordingly, thus regulating the rate at which the application generates

packets.

A message sequence diagram, illustrating this feature in action, may be seen in

Annex 8.

3.3.4.5 Fairness

The fairness feature, in turn, allows all connections that are transmitting to a

common sink to share the available network resources, either in an equitable

fashion, or using a weighted differentiation algorithm.

To provide this feature the module must use the local management data handler;

the traffic shaper, the connection scratch pad hook, and the core monitor interfaces.

The basic idea is that the module measures how much time passes between

packets being dropped, thus determining the local period. This local period is then

smoothed out with an exponentially weighted moving average and multiplied by the

sum of the weights of all open connections that go through the node and use

fairness, resulting in what is called the normalized local period.

Additionally, each node broadcasts a normalized period and the address of the

limiting node. More specifically, each node starts by broadcasting its own local

normalized period, setting itself as the limiting node. As this information is shared

amongst neighbors, each node remembers the highest remote normalized period it

has heard of recently and that wasn’t limited by itself, as well as the address of the

limiting node. If its own local normalized period is greater than or equal to the

cached remote version, the node continues to broadcast its own version, while still

setting itself as the limiting node. If, on the other hand, the remote normalized period

is greater, the node will broadcast the remote version, while setting the remote

 45

address as the limiting node. What this does, in practice, is implement a distributed

algorithm that determines which node has the highest normalized period and what

its value is, while also avoiding the creation of dependency loops within the network.

Now that each node knows the value of the highest normalized period of the entire

network, it uses this value to determine the packet generation period of each of its

local connections by dividing this normalized period with the connection’s own

weight. Once this packet period is determined it is slightly boosted using a

multiplicative factor (80% in the reference implementation), and the connection is

throttled through the use of a mechanism identical to the one used in the throttling

feature.

This boosting mechanism is used to help the fairness feature react faster to

occasional changes in the network’s characteristics. If it were not used, the fairness

feature would still effectively and quickly react to a radio link slow-down but, on the

other hand, it would have a very slow reaction if the link were to speed-up.

All of the above mentioned functionality is further replicated to provide multi-sink

fairness. In other words, each state variable is instantiated for each registered sink,

a distinct local period is measured for each sink, and the local management data is

used to broadcast multiple [normalized period, limiting node address] pairs. This

way, several fairness enabled sinks can operate independently across the network.

Additionally, the core monitor interface is used to detect when a Sink ID service is

registered, thus creating an identified sink to which sources may route their data.

3.3.4.6 WMTP Reliability

WMTP reliability is a feature that enables packet retransmission in case of loss, thus

providing an additional level of assurance that a packet will reach its destination.

This feature uses a link level reliability mechanism in which a packet is only

retransmitted over the local link where it was lost, instead of an end-to-end solution,

where lost packets are only repeated at the source nodes.

This feature is implemented through the use of the local and connection

management data handler interfaces, as well as the reliable transmission hook, the

traffic shaper, and the packet scratch pad hook interfaces.

The connection management data handler is used to associate a simple identifier to

each data packet that uses this feature. The local management data handler, on the

other hand, is used to broadcast an availability map (A-Map), in other words, a list of

the identifiers of each packet that uses this feature, currently held in the local queue.

Now that this feature has a way of identifying its individual packets and of telling its

neighbors which packets it currently has in its core queue, it uses the reliable

transmission hook interface to hold these packets until it is certain that they won’t be

 46

needed any longer. This way, a packet is considered droppable when the next hop

has already announced having received it and the previous hop no longer

announces that it is retaining it. Naturally, the sending node needs only to wait for

the former condition and the receiving node, the latter. Additionally, this specific per-

packet state is easily maintained through the packet scratch pad hook interface.

On the other hand, this feature must also make sure that a packet is only

retransmitted if some benefit may come from it. In other words, the packet must not

be retransmitted if the next hop has already acknowledged it and it should only be

retransmitted after a certain amount of time has elapsed, thus giving the next node

enough time to broadcast its availability map. This waiting period is implemented

through the use of the traffic shaper interface, by stopping the packet as soon as it

is transmitted and only restarting it after its time out timer has expired. Once again,

the packet scratch pad is used to manage these per-packet timers. Some simple

examples showing this mechanism in action are provided in Annex 9, Annex 10, and

Annex 11.

A special note must be made as for the availability map’s format. Since each

packets identifier is relatively large (32 bits in the reference implementation), and

since the core queue may have several packets with WMTP reliability, the

availability map may become quite large, which may pose a problem, especially

since the maximum packet size on WSNs tends to be quite small (29 bytes, by

default, in TinyOS). In order to circumvent this problem, the availability map must be

segmented into several local management data messages, each with a relatively

small size (12 bytes in the reference implementation). This segmentation, in itself,

also poses a problem of its own. Since not only the presence of a packet in the

availability map, but also its absence, conveys information, the use of segmented

availability maps no longer transmits this information atomically, and thus could

generate confusion as to whether a packet is absent or if it is present but just not

included in this fragment. To work around this problem, WMTP reliability builds its

availability maps by using a special packet sorting algorithm that clearly conveys the

absence of a packet, as well as its presence. This is done by ordering the

availability map’s packet ids in an ascending order and by adding special dummy

packet ids to represent the list’s beginning and end. Once the availability map is

arranged in this fashion, it may be fragmented and sent out in multiple pieces, so

long as the last packet id from one fragment is included as the first packet id in the

next one. Since the packet ids are ordered, the absence of one may be detected as

either the presence of two consecutive packet ids, one smaller the absent one, and

one larger, or as the indication that the first packet id is larger than the absent one,

or that the last one is smaller. Some examples of how availability maps may be

fragmented, using this algorithm, are illustrated in Figure 3.6.

 47

Figure 3.6: WMTP Reliability Availability Map Fragm enting Examples

3.3.5 Additional Modules

Aside from the core and the feature modules, WMTP also provides an additional set of

modules that provide other kinds of functionality. In this section these additional module

will be individually presented and explained.

3.3.5.1 PacketSinkServiceSpecificationHandler

This module uses the service specification data handler interface to manage the

Packet Sink service specification type. This type of service specification is used to

describe a generic catch-all sink. In other words, a Packet Sink interest will always

match a registered Packet Sink service.

3.3.5.2 SinkIDServiceSpecificationHandler

This module also uses the service specification data handler interface but, this time,

to manage the Sink ID service specification type. This type of service specification is

used to describe the identified sinks that are used with the fairness feature, by using

a seven bit sink identifier. This being the case, a Sink ID interest only matches a

registered Sink ID service if they have the same identifiers.

3.3.5.3 TOSMultihopRouter

This module, unlike the previous two, is a routing module. In other words, it provides

the Multi-Hop Router interface for the WMTP core. This routing module uses

TinyOS’s native routing layer to provide a simple connectionless router that can be

used with WMTP. Once the data reaches the sink node (defined as node 0 by

TinyOS) the TOSMultihopRouter module searches for a local Packet Sink service

and delivers the data to the associated application.

1 43 52

1 2 2 3 4 4 5

1 2

1 2 2 1 1 2

1

1

Dummy Packet ID

 48

3.3.5.4 TagRouter

This module, just like the previous one, is a routing module and, thus, provides the

Multi-Hop Router interface for the WMTP core, but, unlike the TOSMultihopRouter

module, this routing module provides connection oriented routing.

This router works by associating to each data packet a routing header that contains

a simple eight bit tag. This tag is then used to identify which connection the packet

is associated to, as well as the address of the packet’s next hop. Additionally, this

tag is translated, over every hop, in a manner similar to what is done in ATM and

MPLS technologies.

In order to provide this functionality, this module requires an external Connection

Establishment Handling module that adds the local context with the tag

associations. This being the case, this module also provides an additional

specialized interface that can be used by Connection Establishment Handling

modules to manage this local context. Although this interface has additional

commands and events (see Annex 5), its main functionality is provided through the

AddTagAssociation command. This command creates a new tag association, which

maps the previous hop address and previous tag to the next hop address and next

tag, while also associating a connection specification object. Additionally, this tag

association may be used in bidirectional connections, as the translation mechanism

is bilateral.

3.3.5.5 SourceRoutedConnectionEstablishmentHandler

This module, in turn, is used to establish source routed connections. In other words,

it uses the connection establishment handler interface, provided by the WMTP core,

as well as the specialized interface provided by the TagRouter module, to establish

a connection’s context across the network. Additionally, this module uses a source

routing mechanism that allows the application to dictate exactly which route the

connection should follow.

In order to establish these connections, this module uses local management data to

send out connection initiation messages (see Annex 7). These messages, in turn,

not only contain the information required to establish the tag routing context

between neighboring nodes, but also a list of all of the remaining hops required to

reach the packet’s destination, as well as the configuration data that is used to

establish the connection’s context, the service specification data that expresses an

interest that must be matched at the destination node, and, finally, any quality-of-

service parameters that are used to reserve these kinds of connections. Once it is in

the possession of all of this information, this module simply uses the previously

mentioned functionality that the WMTP core and the TagRouter module provide.

 49

3.3.5.6 StatisticalQoSIndicator

This module, unlike the previous ones, provides statistically inferred quality-of-

service characteristics of a link layer, through the Link Layer QoS Indicator interface.

This is particularly useful when the existing link layer does not explicitly support

quality-of-service, or when its true characteristics are, otherwise, unknown.

In order to provide this functionality, this module uses the Core Monitor interface to

establish how much time elapses from when each packet is passed to the link layer

and when the packet is completely sent. Once in the possession of these individual

measurements, the module then performs a simple statistical analysis that

calculates a maximum expected delay that is larger than the observed delays

approximately 95% of the times.

Since a complex statistical analysis, based on a confidence interval, would require

more memory and processor resources than is considered reasonable for an

embedded sensor node, an alternative method was used, based on exponentially

weighted moving averages. This way, the maximum expected delay is calculated

using the following methodology:

• An average delay is calculated by smoothing out individual delay

measurements with an exponentially weighted moving average that

attributes 5% to new values;

• After the average delay is updated, a current deviation is calculated as the

absolute value of the difference between the current delay value and the

average;

• An average deviation is calculated by smoothing out individual deviation

values with an exponentially weighted moving average that attributes 5% to

new values;

• Finally, the maximum expected delay is calculated as the average delay

plus three times the average deviation.

Simulations have shown that this maximum delay estimator provides a relatively

stable value that is greater than or equal the individual delay measurements,

approximately 95% of the time.

3.4 Implementation Considerations

Concurrently with WMTP’s design, a reference implementation was also developed. This

parallel effort not only served the purpose of demonstrating that such an implementation

was conceivable but, in the end, also produced a complete and functional system that

could be used to validate the protocols functionality, as well as to evaluate its

performance.

 50

This reference implementation was developed for the TinyOS platform and, thus, benefits

from its modular component based architecture. Under these circumstances, each of

WMTP’s modules was cleanly mapped into an individual TinyOS component that could be

easily included or excluded from the compiled binary through the simple manipulation of a

configuration file. Using this approach, it is easy to quantify exactly how much program

and data memory is used by each feature. This way Table 3.1 shows the actual values

that apply to the MICAz platform.

Table 3.1: WMTP Feature Memory Usage

An additional advantage of the TinyOS platform is that the same source code that

implements WMTP on real sensor nodes can also be run through the TOSSIM simulator.

This way, the simulation process is actually running a complete implementation of the

WMTP protocol, rather than a basic model that emulates its functionality. On the other

hand, this also provides a very convenient development environment, since the simulated

application can be further debugged through the use of traditional toolkits like the GNU

debugger.

Although the TOSSIM simulation environment mimics very closely real-world sensor

networks, there is one key aspect where it fails to emulate a sensor node’s true behavior.

Since TOSSIM is an event based simulator it cannot quantify the time the real embedded

processor would take to execute a certain portion of code. This way, although the

reference implementation is guaranteed to compile and fit within the limited memory

restrictions found on these nodes, it is yet to be asserted whether or not their limited

processing capabilities impose any significant restrictions on WMTP’s functionality.

 51

4 WMTP Test and Evaluation

To assess WMTP’s effectiveness, a special test application was developed to work with

WMTP while being simulated under the TOSSIM environment. This simulator was built to

reproduce real-life WSN conditions very closely and, as such, simulates multiple nodes

arranged according to a specific topology.

Under these conditions, a series of simulations were run to show each individual feature in

action, as well as the most relevant combinations thereof. Since these simulations were

designed solely to show how WMTP’s features operate, in a qualitative manner, each test

case was run only once. Being this the case, the simulated results may only be used as a

comparison between distinct feature combinations or scenarios, since they lack the statistical

relevance required to extrapolate reference performance values.

4.1 Test Scenarios

Given the modular nature of WMTP’s functionality, a common base-line scenario was

created in order to be able to successfully assess each feature’s effectiveness. Using this

common ground, all of WMTP’s features can not only be evaluated by themselves, but

also compared amongst each other.

This kind of comparison amongst different features is especially useful when evaluating

the combined effects of multiple features. This way, the positive or negative effects of any

single feature, or combination of features, on any of the others may be assessed.

The test scenario chosen for this purpose is described in Figure 4.1. In this scenario, there

are a total of six sensor nodes, of which three are source nodes, which generate data, two

are relay nodes, that simply forward the data, and one is a sink node, which consumes the

data.

Figure 4.1: Common Simulation Scenario Topology

This particular scenario was chosen due to the differing distances of the sources from the

sink. This simple difference is enough to create an imbalance that naturally leads to an

Sink Node

Relay Nodes

Source Nodes

Data Path

Implicit Link

0 1 2

3 4 5

 52

unfair advantage for the source nodes closest to the sink. By using this additional

challenge for WMTP’s features to overcome, the use of a larger and more complex

topology would be redundant, since it would only add more nodes under similar conditions.

This being the case, the use of only these six simulated nodes suffices to effectively

validate WMTP’s functionality and evaluate its performance, while also avoiding

excessively cluttering the results.

A special exception was made from this common scenario for the quality-of-service

assessment simulations. Since quality-of-service is supposed to provide assured

performance levels, even in the most unfair of environments, a special scenario was used

for these tests. The scenario chosen for this purpose, illustrated in Figure 4.2, simply

transfers the responsibility of generating data from node 3 to node 1. Under these

conditions, if node 1 operates under no special restrictions, it will generate data at the

highest rate physically possible, thus ensuring that its core queue will always be

completely filled with its own packets. On the other hand, since node 1 is also a forwarding

node for the remaining source nodes, under natural conditions, it will completely prevent

any data from the remaining sources from getting through to the sink.

Figure 4.2: Quality-of-Service Simulation Scenario Topology

Under these exceptionally dire conditions, node 5 will establish a quality-of-service

enabled connection, in hope of being able to overcome the challenge that it is presented

with.

4.2 Test Application and Methodology

In order to produce meaningful results from the test simulations, a special test application

was developed to establish connections and generate data while using the WMTP features

under the above specified scenarios. Additionally, a performance monitoring module was

also developed, in order to measure certain specific metrics, such as the number of data

Sink Node

Relay Nodes

Normal Source Nodes

Data Path

Implicit Link

Inactive Nodes

QoS Enabled Source

0 1 2

3 4 5

 53

packets and radio messages generated and received, as well as the minimum core queue

availability during the measured period. This performance monitor module then periodically

dumps and resets its statistical counters every 10 seconds, thus providing the raw data

that is further processed using a traditional spreadsheet application.

With the exception of the base line scenario test-case and the WMTP reliability test-case,

which were tested under varying network load conditions, the remaining tests cases were

designed to show how their respective features operated under pressure. This being the

case, the source nodes in these simulations generate data at the highest rate that they

physically can.

The quality-of-service test case also presents a distinct exception from this rule. Although

the non-quality-of-service enabled nodes, within the test, do also generate data at the

highest rate that they physically can, the quality-of-service enabled node initiates a

throughput constrained connection and thus generates data at a constant packet rate.

4.3 Simulation Results

In this section, the processed simulation results will be presented and briefly discussed.

The following indicators have been used across multiple simulations:

• Generated Packet Rate: As the name suggests, this value represents the average

number of packets each node generated, measured in packets per second;

• Received Packet Rate: This value, as the name also clearly suggests, represents

the average number of packets received at the sink from each source, measured

in packets per second;

• Unreceived Packets: This value, in turn, represents the accumulated number of

packets that have been sent from each source but, for some reason or another,

have not yet reached the sink. It is perfectly normal for this value to be non-zero,

even if all packets are eventually received, as this merely indicates a delay

between the moment the packet was generated and the moment at which it was

received at the sink. True packet losses are indicated by this indicator’s growth

tendency during relatively long time spans;

• Minimum Queue Availability: This value indicates the lowest queue availability

reached by all nodes in the network. The queue availability can be seen as the

opposite of queue occupancy, and represents the number of packets a node may

still receive before it will be obliged to drop incoming data. This indicator is

specifically useful for evaluating the network’s congestion state.

• Overhead: Finally, this value represents the overall percentage of transmitted

radio messages that were not directly associated to a received packet. Both

explicit management messages and lost data packets contribute to increasing this

 54

ratio. This value is particularly useful to evaluate a feature’s energy efficiency,

since transmitting radio messages is one of the most expensive operations that a

sensor can do.

4.3.1 Base-line Scenario

The base-line scenario is the basic case where all source nodes generate data at the

highest rate that they physically can. Since neither congestion-control, nor fairness is in

use, this scenario shows how the common base-line scenario reacts under natural

conditions.

This scenario should represent the lowest possible level for WMTP’s performance,

since the protocol is making no efforts whatsoever to improve the situation. The use of

any of WMTP’s features should do nothing but improve on this situation.

A.

B.

 55

C.

D.

Figure 4.3: Baseline Simulation Results

The results clearly show the natural imbalance present in the common base-line

scenario, as Figure 4.3.B indicates that the source node closest to the sink, node 3,

hardly suffers any packet losses, while its peers have nearly half of their packets lost

along the way. Additionally, Figure 4.3.C holds a constant value of zero, indicating a

constant state of severe congestion throughout the network, thus justifying the massive

packet losses suffered by the two source nodes that are not in direct contact with the

sink. These lost packets, in turn, represent a useless waste of energy, thus justifying

the large overhead that can be seen.

4.3.2 Throttling and Flow-control

Throttling and flow-control are the two most basic features that WMTP has to offer, and

these simulations reflect that. The only difference between the two is which node

decides at what rate the data is generated. While, for throttling, the source nodes set

their own data generation rate, in flow-control, the sink ceases this privilege. For both

cases, a data generation rate of two packets every second was established.

 56

A.

B.

C.

D.

Figure 4.4: Throttling Simulation Results

 57

These results clearly show that the throttling feature works as expected, with the further

advantage of using no additional overhead once the connection has been established.

On the other hand, this test is also a useful insight into how the common base-line

scenario operates when not under extreme load conditions. Additionally, Figure 4.4.C

shows that the network is no longer congested thus avoiding the massive packet losses

and overheads from before.

A.

B.

Figure 4.5: Flow-control Simulation Results

These results, in turn, also confirm that the flow-control feature operates as expected,

since the expected packet generation rate is met and, as before, there are no additional

overheads once the connection has been established.

4.3.3 Congestion-Control and Fairness

The congestion-control and fairness features, like throttling and flow-control, are both

traffic shapers. But, unlike their more basic siblings, these traffic shapers regulate how

data is generated and forwarded based on the network’s current state. The following

simulation results will not only show how each of these features fairs on its own, but

also in combination.

 58

A.

B.

C.

D.

Figure 4.6: Congestion-Control Simulation Results

 59

These results appear to be a total failure on the congestion-control feature’s behalf, as

congestion is by no means avoided or even mitigated. This is due to the fact that,

although the congestion-control module correctly detects and acts upon the first signs

of congestion (as soon as the queue availability falls below 50%), the link layer protocol

used by the simulator does not send out the congestion warning packet soon enough,

and thus several packets are still received before the nearly congested node is able to

prevent further congestion. This problem could be solved either by using an alternative

MAC layer protocol, as suggested in [11], which would prioritize traffic from congested

nodes, or by tweaking the congestion thresholds and increasing the core queue size to

accommodate these bursts of packets. Unfortunately, the limited memory resources

available on real-world sensor nodes (4 kB on the MICAz platform) limit the core queue

size to the current value of 10 packets when all of WMTP’s features are compiled into

the nodes binary image.

On the other hand, this test only needs the congestion control feature, thus the

additional freed up memory may be used to increase the core queue size up to 22

packets. Under these circumstances, the congestion control module may be tweaked to

detect congestion when the core queue falls beneath 90% availability, and to assert its

absence once the core queue returns above the 95% availability threshold. This

tweaked version was also simulated and the results are presented below.

A.

B.

 60

C.

D.

Figure 4.7: Congestion-Control Simulation Results (Tweaked Version)

This time, the results clearly show that the congestion control feature was able to

mitigate congestion, as the values in Figure 4.7.C don’t tend towards zero over time.

Additionally, although the sources generate their data at approximately the same rates,

Figure 4.7.B shows that far fewer packets are lost, especially from the nodes that are

not directly connected to the sink, thus decreasing the associated overhead.

The fairness feature, unlike congestion control, does not operate based on core queue

availability, but rather on the rate at which the core is able to send packets. Although

avoiding congestion is not this feature’s primary design goal, it ultimately also

contributes to attaining it.

A.

 61

B.

C.

D.

Figure 4.8: Fairness Simulation Results

The simulation results show that the fairness feature operates as expected, since, after

an initial period of slight instability, packets are generated, from all three sources, at

approximately the same rate. Additionally, congestion is completely avoided throughout

the network as not once does any node reach the limit of its core queue capacity. This

leads to the loss of much fewer packets (the few that are lost are due to link layer

collisions) and, thus, a much smaller overhead.

The following simulation shows the combined effects of using both congestion-control

and fairness simultaneously.

 62

A.

B.

C.

D.

Figure 4.9: Congestion-Control and Fairness Simulat ion Results

 63

These results indicate that, although congestion is still avoided throughout the network,

the simultaneous use of congestion control and fairness, in this scenario, is redundant

and leads to a conservative packet generation rate. Additionally, the congestion control

feature adds a slight burstiness to the in-network data flows, thus leading to the

occurrence of more packet collisions, as can be seen in Figure 4.9.C.

The following simulation makes use of the weighting capabilities of WMTP’s fairness

feature. While previous simulations set equal weights to all sources, this simulation sets

a weight of one, two, and three to each source, respectively.

A.

B.

C.

 64

D.

Figure 4.10: Weighted-Fairness Simulation Results

Figure 4.10.A clearly shows that the fairness feature correctly complies with the

differentiated weights, as expected, while also still maintaining congestion under

control, since the core queues never reach their limits. Unfortunately, since the nodes

farther away from the sink are the ones with the highest weight, they ultimately

generate more data, thus being also more susceptible to link layer packet collisions.

The following simulation, just as before, adds the use of the congestion-control feature

to weighted-fairness.

A.

B.

 65

C.

D.

Figure 4.11: Congestion-Control and Weighted-Fairne ss Simulation Results

Unlike in the previous test case, where congestion control was used with simple

fairness, Figure 4.11.A shows that the congestion control feature doesn’t induce a

conservative response from weighted fairness. On the other hand, Figure 4.11.C shows

a slight decrease in overall congestion, which ultimately leads to a smaller end-to-end

delay. Additionally, the use of congestion control, in this case, led to a slight decrease

on the number of lost packets, thus also slightly decreasing the associated overhead.

The above simulation results indicate that congestion control and fairness features can

coexist peacefully. On the other hand, the simultaneous use of both features generally

adds only a slight improvement to their individual performances, if any at all. This being

the case, it would probably be a wiser decision to include only one of these features,

thus freeing up resources for an otherwise useful purpose. As for comparing each

feature against the other, fairness was shown to also contribute to mitigating

congestion but, on the other hand, congestion control, once adequately tweaked,

allows the nodes to generate their data at a higher, yet unfair, rate.

4.3.4 WMTP Reliability

Unlike the previous features, WMTP reliability goes beyond mere traffic shaping. The

methodology behind WMTP reliability implies retaining cached versions of packets

within the core queue of, not only the source nodes, but also any forwarding nodes

 66

along the way. These cached versions must persist after the packet has been sent in

order to successfully recover from its eventual loss but, on the other hand, this also

implies that the core queues will tend to take longer to free up, leaving the bottleneck

nodes even more vulnerable to congestion. This being the case, it is understandable

that the use of reliability semantics may involve a high performance penalty.

The following simulations assess how WMTP reliability performs as a stand-alone

feature, as well as how the congestion-control and the fairness features affect its

performance. These simulations are useful not only to make sure that WMTP reliability

operates as expected, but also to quantify the performance toll that it entails.

A.

B.

C.

 67

D.

Figure 4.12: WMTP Reliability Simulation Results

This simulation shows how WMTP reliability works on its own. Since Figure 4.12.B

doesn’t have a growth tendency, it is clear that the feature does, in fact, provide full

packet reliability. On the other hand, the generated packet rate suffered a great fall

when compared to the base-line scenario, achieving approximately a sixth of the base-

line rates. As for Figure 4.12.C, since neither congestion-control, nor fairness was used

in this simulation, the network sustains a constant state of severe congestion, which not

only causes a certain level of burstiness in the generated rates, but also leads to the

severe overheads.

The previous simulation shows how WMTP reliability operates under extreme load,

since each source is generating its data at the highest rate that it physically can. In

order to show how this feature works under a less stressing environment, an additional

simulation was executed where each source also varied the rate at which it throttled its

data generation. This way, each source started off by generating a packet every five

seconds and then reduced this packet period by 250 ms, every 30 seconds, thus

ending up by generating its data at the highest rate it physically could, by the end of

this special 10 minute simulation.

A.

 68

B.

C.

D.

Figure 4.13: WMTP Reliability Operating Under Varyi ng Load Conditions

Since Figure 4.13.C is initially stable, it is shown that, for lighter loads, the WMTP

reliability feature can operate without congesting the network. This completely stops the

packet generation burstiness, as well as reduces end-to-end delay to a minimum, as

can be seen through Figure 4.13.B.

As for Figure 4.13.D, it is clear that, if packets are generated at too slow a rate, the

network will spend most of its time sending out periodic empty availability maps, thus

leading to an additional increase in protocol overhead. On the other hand, generating

the packets at to high a rate congests the network, also increasing protocol overhead.

This situation leads to the existence of an optimum value that not only assures a better

 69

usage of network resources, but also avoids wasteful idle periods. This rate was

determined, experimentally, to be between a packet every two seconds and one every

second, for this scenario.

Since WMTP reliability is supposed to provide full packet reliability, even in the worst of

conditions, a special simulation was prepared using a reasonable packet generation

rate (one packet every two seconds) with a higher packet loss probability for each radio

link. In the following simulation, approximately 10% of all packets sent are lost, and

thus must be repeated.

A.

B.

C.

 70

D.

Figure 4.14: WMTP Reliability Simulation Results (L ossy Scenario)

Just as before, Figure 4.14.B doesn’t present a growth tendency, thus making it clear

that even under these harsher conditions, WMTP reliability still holds up, albeit with

some additional delay. On the other hand, Figure 4.14.C shows a minor increase in

congestion and there is also a slight increase in the overall protocol overhead, thus

showing that although WMTP reliability does still function, as expected, in a lossy

environment, its performance is still mildly degraded.

The following simulation shows how WMTP reliability is affected when congestion

control is used to regulate packet generation.

A.

B.

 71

C.

D.

Figure 4.15: WMTP Reliability and Congestion Contro l Simulation Results

Just as before, there is no growth tendency in Figure 4.15.B, thus the use of congestion

control does not interfere with WMTP reliability’s main functionality. On the other hand,

Figure 4.15.C indicates that the general state of congestion is slightly alleviated, thus

showing some improvements on that front. Unfortunately, this slightly improved

congestion state comes at the price of an even lower packet generation rate than in the

unregulated scenario (approximately half of the values attained with just WMTP

reliability). These factors ultimately contribute to a better network resource utilization,

thus slightly cutting down the protocol overhead.

The following simulation shows how WMTP reliability is affected under the use of

fairness.

 72

A.

B.

C.

D.

Figure 4.16: WMTP Reliability and Fairness Simulati on Results

 73

Unlike the previous case, where the congestion-control feature was used with WMTP

reliability, Figure 4.16.C shows that the overall state of severe congestion is only very

slightly mitigated. On the other hand, the received packet rates do converge towards a

common rate, without any burstiness, which is approximately the same value that the

nodes farthest away from the sink managed to achieve in the initial scenario, with just

WMTP reliability. This shows that, on one hand, the existence of WMTP reliability does

not affect the fairness feature’s ability to function, and, on the other, that fairness does

not entail a considerable performance penalty on WMTP reliability. Additionally, not

only does Figure 4.16.B not show a growth tendency, but after an initial period of

instability, it decrease to near-zero values, meaning that, although the network nodes

appear to be congested, the delay suffered by packets along their route towards the

sink is minimal. As for the protocol overhead, the use of fairness is shown to regulate

packet generation at a rate that approximates the ideal level that maximizes the

utilization of network resources.

The following simulation shows how all three of these features work simultaneously.

A.

B.

 74

C.

D.

Figure 4.17: WMTP Reliability, Congestion Control, and Fairness Simulation Results

This simulation shows that the simultaneous use of WMTP reliability with congestion-

control and fairness manages to pick up some advantages, as well as some of the

disadvantages associated to each individual feature. The congestion-control feature is

successful in mitigating the overall congestion state, as Figure 4.17.C does not tend

towards zero but, as before, it entails a performance penalty, since packet generation

rates are slightly decreased. Additionally, the fairness feature is also shown to work in

this scenario, since packet generation rates still converge towards a common value.

Unfortunately, the overall protocol overhead is not as good as what has already been

achieved in previous scenarios.

4.3.5 Quality-of-Service

As previously mentioned, the quality-of-service feature was simulated under a slightly

different scenario from the other features (see Figure 4.2). This scenario was purposely

selected to be extremely harsh in the absence of quality-of-service, in order to prove

this feature’s worth.

To precisely show the advantages of using this feature, two simulations were created,

one with quality-of-service enabled and one with it disabled. Both simulations use the

special quality-of-service scenario previously described and, in both situations, the

source nodes generate packets at the same rate; in other words, the quality-of-service

 75

disabled sources, nodes 1 and 4, generate packets at the highest rate that they

physically can, and the quality-of-service enabled node, node 5, generates a new

packet every 200 ms. This particular value was determined to be approximately the

highest rate the quality-of-service connection could withstand, while still ensuring its

service levels. If a faster rate were to be requested, then the connection would fail to be

established, as the reservation system would deny the request.

For each simulation, the received packet rate and the unreceived packets are shown

only for the packets that originate from the single source that, in the quality-of-service

enabled simulation, actually uses this feature, node 5. This way, it is easier to assess

the effects directly associated with the use of this feature.

A.

B.

Figure 4.18: Quality-of-Service Simulation Results

As predicted, in the absence of quality-of-service, node 1, manages to almost entirely

consume all of the network resources. This is clearly visible since, after a short while,

all but a few of node 5’s packets are lost. This obviously leads to a linear growth of the

unreceived packets, in Figure 4.18.B.

On the other hand, when quality-of-service is activated, node 5 not only is able to send

its data along the network, but it also manages to sustain its reserved rate with minimal

packet losses (the few packets that are lost are due to MAC layer collisions, since the

neighboring nodes are still generating packets at the highest rate that they physically

 76

can). These simulations clearly demonstrate that the quality-of-service feature does, in

fact, operate as expected, even under the direst of conditions.

 77

5 Conclusions

This dissertation proposes the Wireless Modular Transport Protocol (WMTP), a new transport

layer protocol for WSNs that provides its functionality through the use of a novel modular

architecture. This protocol not only allows the simultaneous use of all of the main features

commonly found in WSN transport protocols, namely congestion control, fairness, and

reliability, but also does so in a modular fashion, thus allowing the application layer to use

exactly the features that it requires without having to deal with the inevitable trade-offs

associated with the ones that it doesn’t. Additionally, WMTP provides its own unique set of

uncommon features such as throttling, flow-control, transport layer quality-of-service, and

optional integration with service-discovery.

The use of this specialized modular architecture also allows WMTP to support environments

with heterogeneous applications, thus allowing different applications to use different features

and still coexist in the same network. Additionally, this also allows the network administrator

to build stripped down versions of WMTP that don’t support the features that will never be

used during the network’s life-time. This way, the additional resources associated with any

unused features may be freed up to be used for an otherwise more useful purpose.

In order to provide all of this functionality, WMTP’s architecture was developed around the

concept of a central core that, in itself, provides very little functionality. This core, in turn,

provides a specialized framework that can then be used by one or more pluggable feature

modules that actually implement the true transport layer functionality. On the other hand, the

core is also used as the central coordinator that communicates with the upper and lower

layers. In order to do this, WMTP uses an unconventional protocol stack that, rather than

sitting in between the network layer and the application layer, as would be expected, it sits

directly above the link layer and uses a specialized interface to communicate with the network

layer.

The application layer interface, in turn, was also designed to support the advanced

functionality that WMTP provides. This interface, aside from exchanging packet data with the

application layer, also provides the tools that it needs to manage WMTP’s features.

Additionally, WMTP uses an efficient event-based approach to regulate application data

generation, thus providing an alternative to the traditional blocking system calls, commonly

found in most protocol stacks.

Once the design phase of this architecture and the development of the reference

implementation were completed, the protocol was evaluated, through simulation, with

TOSSIM. Since WMTP’s reference implementation was developed for the TinyOS platform,

this simulator is able to perform a complete assessment of WMTP’s functionality, while using

the same source code that runs on the sensor nodes.

 78

In order to successfully evaluate how each of WMTP’s features performs, either individually or

in a combined form, a common simulation scenario was designed, thus allowing each

simulation run to be executed under similar conditions. This way, not only can each feature’s

performance be compared to that of the others, but the effect that each feature has when

used in combination with others can also be assessed.

Using this basic approach, each of WMTP’s features was shown to work as expected when

used individually. Additionally, all of the relevant combinations of features were also put to the

test, in order to assess the existence of any adverse interactions between them. This time,

the simulated results showed that, although the combination of certain features may not bring

a significant benefit over the use of just one of them (e.g. the use of congestion control and

fairness was shown to be redundant, since fairness already mitigated congestion to a certain

extent), no significant adverse interactions were found to occur.

Aside from validating its functionality, the simulated tests were also used to evaluate WMTP’s

performance. Since WMTP was developed for WSNs, this performance assessment not only

encompasses the usual throughput and/or delay metrics, but also takes into account energy

consumption aspects. Since transmitting data over the radio is one of the operations that

consumes more energy on wireless sensor nodes (see [3] for reference values), a basic

protocol overhead metric was used to measure each feature’s energy efficiency. This

overhead value is calculated as the percentage of packets that are transmitted over the radio

but aren’t directly associated with the successful arrival of a data packet at its destination.

This being the case, the overhead metric not only takes into account the wasteful use of

explicit management packets or unnecessary retransmissions, but also any lost data packets

that never reach their destination.

Using these basic performance attributes, most of WMTP’s features were shown to perform

their functionality in an adequate manner, while also avoiding too much additional overhead.

The main exception to this was WMTP reliability. Since the use of reliability semantics

involves holding data packets within the core queue of each node along the data’s path, until

the reliability module is sure that they won’t be needed, the use of this feature generally

comes with a severe performance penalty. The simulated results show that, although the use

of additional features alongside reliability (e.g. fairness), may mitigate this effect, WMTP

reliability will always entail a relatively large performance toll.

5.1 Future Work

Since WMTP uses a modular architecture, it is, by nature, easily extensible to provide new

features. On the other hand, WMTP provides a set of specialized interfaces that may be

used by external modules to provide additional functionality that is not directly associated

to the transport layer, such as integrated service discovery or the use of advanced routing

techniques. All of these factors contribute to the creation of a series of open issues and

 79

future work suggestions that may be further explored. The following open issues are but

some the ones that come to mind for further development:

• WMTP provides the option to integrate with service discovery, but the system that

ultimately supplies this functionality is not a part of WMTP itself. The design and

implementation of such a system for use through the WMTP architecture, or the

integration of an already preexisting one, would be a considerable enhancement

that is well worth the effort;

• Although WMTP already integrates with TinyOS’s current routing layer, as well as

provides its own source routed variant for connection oriented data, the

development of additional routing modules to integrate WMTP with other, more

advanced, routing systems would also be an interesting research effort to follow;

• While WMTP uses a conventional interface to exchange packets with the link

layer, a specialized interface is used to obtain its quality-of-service characteristics.

Since the link layer currently used by TinyOS doesn’t provide quality-of-service

semantics, these characteristics are currently inferred statistically. This being the

case, it would be interesting to integrate WMTP with a true quality-of-service

enabled link layer and to evaluate how its transport layer quality-of-service model

would perform under these conditions;

• Even though the WMTP reference implementation was developed solely for

TinyOS, nothing prevents that alternative implementations be developed for

different platforms. One such platform where this would be particularly useful

would be the computer to which the sink node is connected. Once a computer

based WMTP implementation is developed, traditional applications could interact

with the WSN directly, thus benefiting from all of the WMTP’s functionality;

• Although extensive simulations have already been run to evaluate WMTP, further

testing is needed to assess whether or not WMTP would actually perform similarly

when used in real-word sensor networks;

• While several tests have been executed to show how WMTP’s features perform,

an additional effort would have to be made to compare WMTP’s implementation of

each individual feature with that of other existing protocols that also provide the

same feature.

Although the further improvement of WMTP provides several open issues for future

development, one must not forget that this protocol was designed to be used by

applications. This being the case, WMTP also creates the opportunity to development all

new WSN applications that can benefit from its advanced functionality. Under these

circumstances, the possibilities are only limited by ones own imagination.

 80

6 References

1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “Wireless Sensor Networks:

A Survey”, Computer Networks, 38(4): 393-422, March, 2002.

2. Atmel Corporation, “ATmega128(L) Datasheet”, Document Number

Rev. 2467P-AVR-08/07.

3. T. Camilo, P. Melo, A. Rodrigues, L. Pedrosa, J. S. Silva, R. Neves, R. Rocha, F.

Boavida; "Wireless Sensor Network Deployment: an Experimental Approach", Book

Chapter, forthcoming in "Handbook of Wireless Mesh and Sensor Networking",

McGraw-Hill International, New York

4. D. Chen, P. K. Varshney, “QoS Support in Wireless Sensor Networks: A Survey”, in

proceedings of the International Conference on Wireless Networks (ICWN '04), June,

2004.

5. Chipcon AS, “Chipcon AS SmartRF® CC2420 Preliminary Datasheet (rev 1.2)”, June,

2004.

6. Crossbow Technology, Inc., “MICAz Datasheet”, Document Part Number

6020-0060-04 Rev. A.

7. A. Dunkels, “Distributed TCP Caching for Wireless Sensor Networks”, in proceedings of

3rd Annual Mediterranean Ad Hoc Net., June, 2004.

8. C. Ee, R. Bajcsy, “Congestion Control and Fairness for Many-to-One Routing in Sensor

Networks”, in proceedings of ACM Sensys ’04, November, 2004.

9. D. Gay, P. Levis, D. Culler, E. Brewer, “nesC 1.1 Language Reference Manual”, May,

2003.

10. J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, D. Ganesan,

“Building Efficient Wireless Sensor Networks with Low-Level Naming”, in proceedings

of the Eighteenth ACM Symposium on Operating Systems Principles, October, 2001.

11. B. Hull, K. Jamieson, H. Balakrishnan, “Mitigating Congestion in Wireless Sensor

Networks”, in proceedings of ACM Sensys ’04, November, 2004.

12. C. Intanagonwiwat, R. Govindan, D. Estrin, “Directed Diffusion: A Scalable and Robust

Communication Paradigm for Sensor Networks”, in proceedings of the Sixth Annual

International Conference on Mobile Computing and Networking, August, 2000.

13. Y. Iyer, S. Gandham, S. Venkatesan, “STCP: A Generic Transport Layer Protocol for

Wireless Sensor Networks” in proceedings of IEEE ICCCN, October, 2005.

14. P. Levis, N. Lee, “TOSSIM: A Simulator for TinyOS Networks”, September, 2003.

 81

15. P. Levis, N. Lee, M. Welsh, D. Culler, “TOSSIM: Accurate and Scalable Simulation of

Entire TinyOS Applications”, in proceedings of the 1st international Conference on

Embedded Networked Sensor Systems, November, 2003.

16. S. Park, “A Scalable Approach for Reliable Downstream Data Delivery in Wireless

Sensor Networks”, in proceedings of ACM MobiHoc ’04, May, 2004.

17. Y. Sankarasubramaniam, O. B. Akan, I. Akyildiz, “ESRT: Event-to-Sink Reliable

Transport in Wireless Sensor Networks”, in proceedings of ACM Mobihoc’03, June,

2003.

18. F. Stann, J. Heidemann, “RMST: Reliable Data Transport in Sensor Networks”, in

proceedings of IEEE SNPA ’03, May, 2003.

19. K. Sundaresan, V. Anantharaman, H. Hsieh, R. Sivakumar, “ATP: A Reliable Transport

Protocol for Ad-hoc Networks”, in proceedings of 4th ACM International Symposium on

Mobile Ad-hoc Networking & Computing, 2003.

20. A. Tanenbaum, C. Gamage, and B. Crispo, “Taking Sensor Networks from the Lab to

the Jungle”, In IEEE Computer, Volume 39, Issue 8, Aug. 2006 Page(s): 98-100.

21. C. Wan, “Siphon: Overload Traffic Management Using Multi-Radio Virtual Sinks in

Sensor Networks”, in proceedings of ACM SenSys ’05, November, 2005.

22. C. Wan, A. Campbell, “PSFQ: A Reliable Transport Protocol for Wireless Sensor

Networks”, in proceedings of ACM WSNA ’02, September, 2002.

23. C. Wan, S. Eisenman, A. Campbell, “CODA: Congestion Detection and Avoidance in

Sensor Networks”, in proceedings of ACM Sensys ’03, November, 2003.

24. C. Wang, “Priority-Based Congestion Control in Wireless Sensor Networks”, in

proceedings of IEEE International Conference on Sensor Networks, Ubiquitous, and

Trustworthy Computing, June 2006.

25. C. Wang, K. Sohraby, B. Li, M. Daneshmand, Y. Hu, “A Survey of Transport Protocols

for Wireless Sensor Networks”, IEEE Network, 20(3): 34-40, June 2006.

26. A. Woo, D. Culler, “A Transmission Control Scheme for Media Access in Sensor

Networks”, in proceedings of ACM Mobicom ’01, July, 2001.

27. H. Zhang, “Reliable Bursty Convergecast in Wireless Sensor Networks”, in proceedings

of ACM Mobihoc ’05, May, 2005.

 82

7 Annexes

Annex 1: WMTP Application Interface UML Static Stru cture Diagram

 83

Annex 2: WMTP Core Interfaces UML Static Structure Diagram

 84

Annex 3: WMTP Feature Module UML Static Structure D iagram

Annex 4: WMTP Service Specification Handlers UML St atic Structure Diagram

 85

Annex 5: WMTP Multi-Hop Routers UML Static Structur e Diagram

Annex 6: WMTP Data Types UML Static Structure Diagr am

Annex 7: WMTP Message Formats

This is TinyOS's native message format. Any messages sent over the radio must be created

through this structure.

 86

This is the basic message structure that WMTP uses to convey all of its information. This

includes local and connection management data as well as router data and the data

payloads. The WMTP_Msg is, in essence, a collection of Local Parts. This being the case, the

following Local Parts are defined:

• WMTP_LocalPart_CongCtrl

• WMTP_LocalPart_Fairness

• WMTP_LocalPart_Reliability

• WMTP_LocalPart_SrcRoutedConn

• WMTP_LocalPart_Conn

This structure holds the congestion control local management headers.

This structure holds the fairness local management headers. Basically, this pattern is

repeated for each sink, with the last one containing the Last Sink flag set.

This structure holds the WMTP reliability local management headers. Basically, this pattern is

repeated for each packet within the availability map, with the last one containing the Last

Packet flag set. Each packet is identified by the address of the node that generated it and an

incremental 15 bit identifier.

This structure is used to establish source routed connections. The Configuration Data and

Service Specification Data fields have a variable length, since they contain a

WMTP_ConnPart_Config and a WMTP_SvcSpec, respectively.

 87

This structure holds all of the data that is associated to a data packet, including router data,

connection management data, and the packet payload itself. Basically this message is built by

appending multiple Connection Parts, after the router data, with the last Connection Part

being a WMTP_ConnPart_Data, WMTP_ConnPart_Close, or WMTP_ConnPart_Last

structure. This being the case, the following routing headers are defined:

• WMTP_RouterData_Tag

Additionally, the following Connection Parts are defined:

• WMTP_ConnPart_Reliability

• WMTP_ConnPart_Data

• WMTP_ConnPart_Close

• WMTP_ConnPart_Last

• WMTP_ConnPart_Config

The WMTP_ConnPart_Close and WMTP_ConnPart_Last structures are special in that they

have zero length. In other words, they are used solely as place markers and don’t hold any

additional data.

This structure holds service specification data, representing an interest.

This structure holds the sink ID service specification.

This structure holds the routing data used by the tag router.

This structure holds the WMTP reliability connection management headers.

 88

This structure holds a packet’s payload.

This structure holds the configuration data for connections or individual packets. Basically,

this pattern is repeated for each Configuration Part, with the last one being a

WMTP_ConfPart_Last structure. This being the case, the following Configuration Parts are

defined:

• WMTP_ConfPart_QueueAvailabilityShaper

• WMTP_ConfPart_Throttling

• WMTP_ConfPart_FlowCtrl

• WMTP_ConfPart_CongCtrl

• WMTP_ConfPart_Fairness

• WMTP_ConfPart_WMTPReliability

• WMTP_ConfPart_Last

The WMTP_ConfPart_QueueAvailabilityShaper, WMTP_ConfPart_Throttling,

WMTP_ConfPart_CongCtrl, WMTP_ConfPart_WMTPReliability, and WMTP_ConfPart_Last

structures are special in that they have zero length. In other words, they are used solely as

place markers and don’t hold any additional data.

This structure holds the flow control configuration.

This structure holds the fairness configuration.

 89

Annex 8: Congestion Control Message Sequence Chart

 90

Annex 9: Reliability Message Sequence Chart (Simple Scenario)

 91

Annex 10: Reliability Message Sequence Chart (with Piggybacking)

 92

Annex 11: Reliability Message Sequence Chart (High Data Rate Scenario)

 93

Annex 12: Example Sending Application Source Code

includes WMTP;

module SendingApplicationM {
 provides {
 interface StdControl;
 }
 uses {
 interface StdControl as WMTPControl;
 interface WMTPConnectionManager;
 interface WMTPSendMsg;
 }
} implementation {
 command result_t StdControl.init() {
 return call WMTPControl.init();
 }

 command result_t StdControl.start() {
 WMTPConnectionSpecification_t *CS;
 if (call WMTPControl.start() != SUCCESS)
 return FAIL;
 if (call WMTPConnectionManager.GetNewConnectionSpecification(
 &CS)
 != SUCCESS)
 return FAIL;
 CS->PathSpecification.PathType = WMTP_PATHTYPE_TOSMULTIHOP;
 CS->FeatureSpecification.QueueAvailabilityShaper.Active = TRUE;
 CS->FeatureSpecification.Throttling.Period = 1000;
 return call WMTPConnectionManager.OpenConnection(CS);
 }

 command result_t StdControl.stop() {
 return call WMTPControl.stop();
 }

 event result_t WMTPConnectionManager.ConnectionOpened(
 WMTPConnectionSpecification_t *CS) {
 static WMTPPayload_t Payload;
 // Fill in first outgoing message.
 return call WMTPSendMsg.Send(CS, 0, &Payload);
 }

 event result_t WMTPConnectionManager.ConnectionReconfigured(
 WMTPConnectionSpecification_t *OldCS,
 WMTPConnectionSpecification_t *NewCS) {
 return SUCCESS;
 }
 event result_t WMTPConnectionManager.ConnectionClosed(
 WMTPConnectionSpecification_t *CS) {
 return SUCCESS;
 }

 event result_t WMTPSendMsg.ClearToSend(
 WMTPConnectionSpecification_t *CS) {
 static WMTPPayload_t Payload;
 // Fill in outgoing message.
 return call WMTPSendMsg.Send(CS, 0, &Payload);
 }
}

 94

Annex 13: Example Receiving Application Source Code

includes WMTP;

module ReceivingApplicationM {
 provides {
 interface StdControl;
 }
 uses {
 interface StdControl as WMTPControl;
 interface WMTPConnectionManager;
 interface WMTPReceiveMsg;
 }
} implementation {
 command result_t StdControl.init() {
 return call WMTPControl.init();
 }

 command result_t StdControl.start() {
 static WMTPServiceSpecification_t SS;
 if (call WMTPControl.start() != SUCCESS)
 return FAIL;
 SS.Connectionless = TRUE;
 SS.ConnectionOriented = FALSE;
 SS.ServiceType = WMTP_SERVICETYPE_PACKETSINK;
 return call WMTPConnectionManager.RegisterService(&SS);
 }

 command result_t StdControl.stop() {
 return call WMTPControl.stop();
 }

 event result_t WMTPConnectionManager.ConnectionOpened(
 WMTPConnectionSpecification_t *CS) {
 return SUCCESS;
 }

 event result_t WMTPConnectionManager.ConnectionReconfigured(
 WMTPConnectionSpecification_t *OldCS,
 WMTPConnectionSpecification_t *NewCS) {
 return SUCCESS;
 }
 event result_t WMTPConnectionManager.ConnectionClosed(
 WMTPConnectionSpecification_t *CS) {
 return SUCCESS;
 }

 event WMTPPayload_t *WMTPReceiveMsg.Receive(
 WMTPConnectionSpecification_t *CS,
 uint8_t Length,
 WMTPPayload_t *Msg) {
 // Handle received messages.
 return Msg;
 }
}

 95

Annex14: Quality-of-Service Reservation Log Excerpt

(...)
5: WMTPSourceRoutedConnectionEstablishmentHandlerM: Opening connection

for application 0.
5: WMTPCoreM: Calculating QoS shortest delay for connection

establishment handler 0 (Max Send Delay = 91).
5: WMTPCoreM: The requested minimum delay of 200 maps into a level of 0

but policy dictates a level of 2.
5: WMTPCoreM: Shortest available delay is at level 2 (delay = 455).
5: WMTPSourceRoutedConnectionEstablishmentHandlerM: QoS reservation

delay: 200.
(...)
5: WMTPCoreM: Reserving QoS resources for connection establishment

handler 0 (Max Send Delay = 91).
5: WMTPCoreM: The requested delay of 200 maps into a level of 0.
5: WMTPCoreM: Made a reservation at level 0, slot 0.
(...)
2: WMTPSourceRoutedConnectionEstablishmentHandlerM: Opening new non-

local connection.
2: WMTPCoreM: Calculating QoS shortest delay for connection

establishment handler 0 (Max Send Delay = 83).
2: WMTPCoreM: The requested minimum delay of 200 maps into a level of 0

but policy dictates a level of 2.
2: WMTPCoreM: Shortest available delay is at level 2 (delay = 415).
(...)
2: WMTPSourceRoutedConnectionEstablishmentHandlerM: QoS reservation

delay: 200; Accumulated delay: 400.
(...)
2: WMTPCoreM: Reserving QoS resources for connection establishment

handler 0 (Max Send Delay = 83).
2: WMTPCoreM: The requested delay of 200 maps into a level of 0.
2: WMTPCoreM: Made a reservation at level 0, slot 0.
(...)
1: WMTPSourceRoutedConnectionEstablishmentHandlerM: Opening new non-

local connection.
1: WMTPCoreM: Calculating QoS shortest delay for connection

establishment handler 0 (Max Send Delay = 81).
1: WMTPCoreM: The requested minimum delay of 200 maps into a level of 0

but policy dictates a level of 2.
1: WMTPCoreM: Shortest available delay is at level 2 (delay = 405).
(...)
1: WMTPSourceRoutedConnectionEstablishmentHandlerM: QoS reservation

delay: 200; Accumulated delay: 600.
(...)
1: WMTPCoreM: Reserving QoS resources for connection establishment

handler 0 (Max Send Delay = 81).
1: WMTPCoreM: The requested delay of 200 maps into a level of 0.
1: WMTPCoreM: Made a reservation at level 0, slot 0.
(...)
0: WMTPSourceRoutedConnectionEstablishmentHandlerM: Opening new local

connection.
0: WMTPSourceRoutedConnectionEstablishmentHandlerM: Sending keep-alive

to confirm connection.
(...)
4: WMTPSourceRoutedConnectionEstablishmentHandlerM: Opening connection

for application 0.
4: WMTPCoreM: Calculating QoS shortest delay for connection

establishment handler 0 (Max Send Delay = 73).

 96

4: WMTPCoreM: The requested minimum delay of 200 maps into a level of 0
but policy dictates a level of 2.

4: WMTPCoreM: Shortest available delay is at level 2 (delay = 365).
4: WMTPSourceRoutedConnectionEstablishmentHandlerM: QoS reservation

delay: 200.
(...)
4: WMTPCoreM: Reserving QoS resources for connection establishment

handler 0 (Max Send Delay = 73).
4: WMTPCoreM: The requested delay of 200 maps into a level of 0.
4: WMTPCoreM: Made a reservation at level 0, slot 0.
(...)
1: WMTPSourceRoutedConnectionEstablishmentHandlerM: Opening new non-

local connection.
1: WMTPCoreM: Calculating QoS shortest delay for connection

establishment handler 0 (Max Send Delay = 70).
1: WMTPCoreM: The requested minimum delay of 200 maps into a level of 0

but policy dictates a level of 2.
1: WMTPCoreM: No available slots left.
(...)
1: WMTPSourceRoutedConnectionEstablishmentHandlerM: Failed to open

connection.
(...)
4: WMTPCoreM: Freeing QoS resources for connection establishment handler

0.
(...)

