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Abstract — Point clouds represent 3D visual data in a very 

immersive and realistic way, offering to the users a large degree 

of navigation and interaction. For some key use cases, point 

clouds are potentially lighter and easier to acquire than other 

3D representation models, thus offering an alternative with 

lower computational cost. To offer visual realistic and 

immersive experiences, notably the illusion of well-formed 

surfaces, point clouds typically require a large number of points. 

To make its storage and transmission feasible, efficient point 

cloud coding is essential. Recently, deep learning-based point 

cloud coding solutions have proven to be competitive in 

compression performance, excelling in distinct scenarios, 

although struggling to achieve similar results for sparser point 

clouds and lower coding rates. To tackle these limitations, this 

paper proposes a double-deep learning-based approach for 

point cloud coding by integrating a super-resolution tool. The 

main idea consists on converting sparser point clouds into 

denser ones via a down-sampling step performed before coding. 

Since this is a lossy process, a super-resolution step is included 

after decoding to mitigate the point losses and bringing the point 

cloud to the initial resolution. Furthermore, the sampling factor 

can be adaptively selected, thus offering additional flexibility to 

the point cloud characteristics. The proposed double-deep 

coding and super-resolution solution outperforms both the G-

PCC Octree and V-PCC Intra point cloud coding standards 

achieving, respectively, 81.9% and 22.3% rate reduction 

measured as BD-Rate for the PSNR D1 metric.  

Keywords — Deep learning, point cloud coding, point cloud super-

resolution 

I. INTRODUCTION 

It is well recognized that visual data-based applications are 

spreading over all human activity domains, with realism and 

immersion becoming key requirements for these visual 

experiences. Point Clouds (PCs) are recognized as one of the 

most versatile 3D visual representation models. While 

providing a large degree of realism, immersion, interaction, 

and navigation freedom to the user, PCs standout from other 

representation models for being lighter (e.g., compared to 

meshes) as they only contain information regarding the point 

positions and not their connectivity, and easier to capture (e.g., 

compared to light fields). A PC can be defined as an 

unstructured set of 3D points defining the surface of a 3D 

object or scene, thus providing information regarding its 

shape, the so-called PC geometry. However, since this data 

might not be enough to offer realistic and immersive 

experiences, PCs often include additional information, 

notably color/texture, and surface normals. These are the so-

called PC attributes, which sit on top of the PC geometry. PCs 

may show rather different characteristics, namely regarding 

their point density. A PC can be characterized as dense if, for 

a fixed precision, the average distance between points is small, 

or as sparse, if otherwise. Independently of the PC 

characteristics, the large number of points required to create 

the illusion of well-formed and dense surfaces critically asks 

for compression efficient coding solutions, notably to make 

transmission and storage of PCs feasible in practice.  

Point Cloud Coding (PCC) has been an area of intense 

research in recent years. Acknowledging the need for 

interoperability, the MPEG standardization group has recently 

issued two PCC standards [1]: the Geometry-based PCC (G-

PCC) and the Video-based PCC (V-PCC) standards. More 

recently, several Deep Learning (DL) based PC coding 

solutions have been proposed, achieving competitive 

performance. This led the JPEG standardization group to 

launch a Call for Proposals on JPEG Pleno Point Cloud 

Coding with the goal to develop a learning-based PC coding 

standard [2]. Despite the promising results, DL-based PCC 

solutions for geometry fail to achieve the same level of 

compression performance for all types of PCs, commonly 

offering poorer performance for the sparser ones. To 

overcome this problem, PC grid/precision down-sampling 

prior to coding became an interesting approach targeting to 

offer to the codec denser PCs. However, this naturally requires 

performing the corresponding grid up-sampling step after 

decoding, to recover the original PC precision.  

In the literature, PC sampling comes in many flavors. In 

this paper, PC sampling is broadly defined as the set of 

operations able to change the PC resolution/precision or/and 

point density. In this context, two types of sampling operations 

deserve to be more precisely defined: grid sampling refers to 

the operations where the PC’s resolution/precision is modified 

by changing the voxel size; and set sampling refers to the 

operations over the number of points, i.e. point set cardinality. 

Despite being distinct, these operations are often performed 

together, notably when up-sampling both the precision and the 

number of points, the so-called super-resolution. Naturally, 

these sampling operations may be more or less sophisticated, 

allowing to reach better quality at a complexity cost. 

In this context, this paper proposes a double DL-based PC 

geometry coding solution with adaptive super-resolution 

(2DL-PCC-ASR), capable of exploiting the PC 

characteristics, to achieve competitive rate-distortion (RD) 

performance, notably for PCs with different densities. The 

proposed super-resolution post-processing tool allows to 

increase the reconstructed PC quality at virtually no additional 

rate cost and may be used with any type of geometry coding 

solution. The ‘double-deep’ attribute in 2DL-PCC-ASR refers 

to the approach considered for both the PC geometry codec 

itself and the advanced super-resolution tool. This is the first 

solution of this type in the literature and outperforms both the 

G-PCC Octree and V-PCC Intra PCC standards for a large 

variety of PCs coded at different resolutions and rates. 

This paper is organized as follows: section II reviews some 

related work, namely in PC coding and PC super-resolution. 



 

Section III provides an overview of the proposed architecture 

and DL-based coding model, whereas section IV focuses on 

the review of the DL-based super-resolution approach and 

respective training process. Section V presents the testing 

conditions and discusses obtained results. Finally, Section VI 

presents some final remarks. 

II. RELATED WORK 

This section briefly reviews the most relevant background 
work for the proposed solution, notably regarding both key PC 
geometry coding and PC super-resolution solutions. 

A. Point Cloud Coding 

As mentioned before, two MPEG PCC standards have 

been recently launched [1], G-PCC and V-PCC. G-PCC 

leverages the use of a multi-level-of-detail tree to structure the 

PC geometry, creating a so-called octree. The octree can be 

fully coded to provide lossless compression or pruned for 

lossy compression. As for V-PCC, it targets dynamic PCs and 

relies on available video codecs, e.g., HEVC [3], to code 

selected 2D projections of the 3D geometry and color. This 

approach greatly benefits from the very high compression 

efficiency achieved with conventional video codecs, 

following decades of research and improvements. Despite 

being a PCC standard oriented towards coding dynamic PCs, 

the so-called V-PCC Intra mode allows to code static PCs. 

Given the considerable success of DL-based solutions in 

areas such as computer vision [4] and image coding [5], this 

technology was also brought to PCC. Among the most 

relevant DL-based PC geometry coding solutions in the 

literature, a few deserve to be highlighted. In 2020, Guarda et 

al. proposed the so-called Adaptive Deep Learning-based 

PCC (ADL-PCC) solution [6]. This is a block-based PC 

geometry codec that relies on a double Auto-Encoder (AE) 

architecture. The first AE is used to learn a compact latent 

representation of the PC geometry, thus performing 

compression through dimensionality reduction, whereas the 

second AE - a Variational AE (VAE) - is responsible for 

exploiting the statistical redundancy in the latents for optimal 

rate reduction with arithmetic coding [7]. The ADL-PCC’s 

adaptive behavior is achieved through the parallel assessment 

of multiple DL models for each PC’s block at encoding time, 

where each DL model was trained to fit different block 

densities. The model reaching the smaller RD cost is selected 

for coding and signaled to the decoder in the bitstream. This 

allows ADL-PCC to dynamically adapt to blocks/PCs with 

distinct characteristics while keeping competitive RD 

performance. However, despite showing good compression 

results for rather dense PCs, the performance drops when 

handling sparser PCs, and low rates are often difficult or 

impossible to reach. 

Another relevant PC geometry solution in the literature is 

the so-called Multiscale PC Geometry Coding (M-PCGC) 

proposed by Wang et al. in 2021 [8]. This solution relies on 

two modules – the sampling module and the Inception 

Residual Network [9]; while the first is responsible for 

changing the PC scale to offer multiscale capabilities, the 

second is responsible for extracting meaningful features. 

Unlike ADL-PCC, M-PCGC relies on sparse tensors and 

convolutions to represent and process the PC features, 

respectively, allowing to greatly reduce the memory and 

computation complexity. After three steps of down-sampling 

and feature extraction, an octree encoder is used for final 

coding using an arithmetic encoder. At the decoder side, the 

architecture is mirrored with appropriate up-sampling instead 

of down-sampling modules. Competitive RD performance is 

obtained for a varied range of bitrates, thus showing the 

benefits of using appropriate sampling tools in a coding 

context to adapt to varying PC characteristics. 

B. Point Cloud Super-Resolution 

Most PC up-sampling solutions in the literature can be 

organized in two main categories: optimization-based and 

learning-based. In this paper, the focus is naturally on the 

learning-based solutions as they tend to perform better under 

more demanding circumstances [10]. One of the most relevant 

learning-based super-resolution solutions has been proposed 

by Akhtar et al. in 2020 [11]. This solution is based on a two-

step process where the PC resolution is first increased by 

simply multiplying the points’ coordinates by the up-sampling 

factor, thus performing a basic grid up-sampling, followed by 

a PC geometry densification process using an advanced, 

learning-based set up-sampling solution. For this latter stage, 

the proposed architecture adopts a 3D variation of a 2D 

convolutional model, called U-net [12], used to extract and 

expand PC features to predict the optimal location of the new, 

super-resolved points in the original PC resolution/precision. 

The results obtained show a considerable quality 

improvement over the basic grid up-sampling solution. In 

2022, this solution has been extended into a more powerful 

super-resolution solution capable of dealing with much larger 

and sparser PCs, notably LiDAR PCs [13].  

A promising meta-learning-based advanced set up-

sampling solution, named Meta-PU, has been proposed by Ye 

et al. in 2021 [10]. Meta-learning is the ability of learning to 

learn which, in practice, translates into the use of two 

networks in parallel: the main network, a residual graph 

convolutional network is used for feature extraction and 

processing, while a second fully connected network, the so-

called meta-network, is responsible for adjusting the main 

network’s behavior in real time, by refining some of its 

weights. This approach offers adaptability to varying PC 

densities, allowing to use a single trained DL model for any 

sampling factor while outperforming the state-of-the-art set 

up-sampling solutions, namely PU-GAN [14]. 

III. OVERALL 2DL-PCC-ASR ARCHITECTURE AND DL-

BASED CODING MODEL 

This section will offer an overview of the proposed 2DL-
PCC-ASR solution by presenting the overall PC geometry 
coding and super-resolution pipeline and walkthrough; finally 
the DL coding model will be also addressed.  

A. Architecture and Walkthrough 

The overall 2DL-PCC-ASR architecture is presented in 

Figure 1. The pipeline’s walkthrough proceeds as follows: 

• PC-Level Sampling Factor Selection – This module is 

responsible for estimating the optimal down-sampling factor 

for PCC, e.g. using some point distance-based algorithm. 

• PC Block Partitioning – This module breaks down the 

PC into binary 3D blocks of fixed size where ‘1’ and ‘0’ 

correspond to full and empty voxels, respectively. This is a 

vital step as all the following operations are performed at the 

block level. 



 

• Basic Block Down-sampling – This module reduces the 

input block resolution/precision, thus increasing the voxel size 

by the previously selected sampling factor. This is a basic 

operation as, for each point/voxel, a simple coordinate scaling 

is performed, followed by a rounding operation. This is an 

irreversible and lossy process as some points may be lost, 

especially when dealing with dense blocks, as multiple points 

in the original set may collapse into a single point/voxel in the 

down-sampled set. 

• DL-based Block Encoding – The encoder is responsible 

for representing the binary input block in the most compact 

way for the required trade-off between quality and rate. More 

details will be provided in the next sub-section. 

• Binarization Optimization – This module is responsible 

for selecting the optimal number of filled voxels to be 

reconstructed at the decoder, which is determined by the 

product between the number of points in the input block and 

an optimization factor. This factor is selected from within a 

given range, by optimizing the reconstruction quality using a 

selected distortion metric. In practice, only the number of 

points to be reconstructed for each block needs to be 

transmitted to the decoder. Since the proposed architecture 

includes two binarization modules, this optimization process 

can either generate a single factor for both binarization 

modules or two distinct factors, one for each binarization step. 

In this paper, the later approach was adopted.  

• DL-based Block Decoding – The decoder is responsible 

for recovering from the coding bitstream a 3D block with the 

probabilities of each voxel being filled. More details on this 

module will be provided in the next sub-section. 

• Binarization – This module is responsible for converting 

the voxels occupancy probabilities into binary values. In this 

case, the so-called optimized Top-K approach is considered 

where the K voxels with largest decoding probabilities are 

filled; in this context,  K is the number of points determined 

by the previously mentioned binary optimization module. This 

approach establishes a strong correlation and fine control 

between the number of points in the original and reconstructed 

blocks. 

• Basic Block Up-sampling – This module restores the 

original block resolution/precision by simply multiplying the 

voxels’ coordinates by the selected sampling factor, thus 

reducing the voxel size. This basic operation inevitably 

produces a sparser block than the original since it does not 

recover the points that were lost during the voxel merging 

process in the down-sampling module. 

• Advanced Block Up-sampling (ABU) – ABU is an 

optional post-processing module performing advanced set up-

sampling, thus increasing the number of points in the block to 

eventually recover the down-sampling losses. This module 

targets at increasing the PC quality at no rate cost. 

• PC Block Merging – Reverts the PC block partitioning 

operation, thus merging all the decoded and super-resolved 

blocks into a single reconstructed PC. 

B. Deep Learning-based Coding Model 

The DL-based coding model is central in the proposed PC 

geometry coding solution. However, it is important to 

highlight that this overall is compatible with any coding 

approach, DL-based or not; for example, one of the MPEG 

PCC codecs may also be used. In this paper, a variation of the 

ADL-PCC codec [6] will be considered for performance 

assessment purposes. 

As ADL-PCC, the adopted DL-based coding model adopts 

an AE for feature extraction and processing, and a VAE to 

characterize the latents statistical properties to be used for 

efficient entropy coding. However, the DL-based coding 

model adopted in this paper follows a more complex AE 

architecture with the convolutional layers for feature 

extraction being complemented with a modified version of the 

well-known Inception Residual Network [9]; moreover, the 

number of filters increases as the network deepens. Due to 

these additions, the number of trainable parameters grows to 

6.6 million, a 2-times increase over the baseline version. 

Additionally, the ADL-PCC approach for PC adaptability 

based on the usage of multiple trained DL coding models in 

parallel has been dropped in favor of the previously described 

optimized binarization solution. It is worth noting that the DL-

based coding models were trained in the same conditions as 

ADL-PCC in [6], namely using the same RD loss function. 

IV. ADVANCED BLOCK UP-SAMPLING SOLUTION  

This section provides an in-depth description of the 

Advanced Block Up-sampling (ABU) module. This module 

consists of two complementary processes: an advanced set up-

sampling performed by the DL-based up-sampling model 

followed by a final binarization process in which the super-

resolved voxels’ filling probabilities are converted into binary 

occupancy values, as described in Section III.A. 

A. DL-based Up-Sampling Architecture 

The DL-based up-sampling module, i.e. the ABU model, 

is based on the up-sampling solution proposed by Akhtar et al. 

in 2021 [11], a variation of the 3D Convolutional U-net [15]. 

Figure 1: 2DL-PCC-ASR architecture including the sampling related (blue), partitioning/merging (yellow), coding (red), 

binarization (green) and advanced up-sampling (purple) modules. 



 

The main differences between the proposed DL-based ABU 

model and the up-sampling model in [11] can be summarized 

as follows: firstly, the adopted U-net model considers dense 

3D convolutions instead of the sparse ones used in [11], since 

the sparse ones are not available in TensorFlow; secondly, the 

number of channels in the input layer has been decreased to 

half, and thus C=16, since this allowed achieving the same 

performance at a lower complexity cost. The proposed 

architecture, presented in Figure 2, is invariant to the sampling 

factor used since basic grid up-sampling is performed before. 

In total, each ABU model includes 7 288 893 weights. 

The ABU model gets as input a basic-up-sampled binary 

block of fixed size, e.g. 64 × 64 × 64 × 1, where the first 

three dimensions correspond to the three spatial block 

dimensions and the fourth to the geometry channel denoting 

the occupancy value assigned to each voxel. The ABU model 

includes the following layers: 

• Input Convolutional Layer (orange) – Responsible for 

converting the input binary block into the latent representation 

space with 16 channels, C =16. 

• Down-Sampling Convolutional Layer (blue) – Since a 

stride of 2 is considered, this layer is responsible for reducing 

the feature map size to half while doubling the number of 

filters; this layer is applied five times on the contracting path, 

the left branch of the U-net. 

• Inception Residual Network (IRN, purple) – This 

module is responsible for feature extraction; see its 

architecture in Figure 2 a). The Inception Residual Blocks 

(IRB) offer a great complexity-performance trade-off since 

although deep they are lightweight, allowing to extract 

meaningful features based on several local neighboring 

contexts with reduced impact on training time. Despite using 

this module several times, the complexity growth is limited as 

the IRBs rely on small size kernels, as shown Figure 2 b). 

Furthermore, the use of these small filters allows to highlight 

the most relevant features on a local scope, hence capable of 

dealing with fine details as desired. Moreover, the use of a skip 

connection allows to pass forward the features extracted in 

previous layers to preserve the global context. This module is 

used between sampling convolutional layers and applied five 

times in each path. 

• Up-Sampling Deconvolutional Layer (green) – 

Symmetrically to the down-sampling layers, these layers are 

responsible for feature up-sampling with a stride of two; this 

layer is applied 5 times on the expanding path, the right branch 

of the U-net. 

• Merging Convolutional Layer (red) – After processing 

the up-sampled features, a merging process occurs to combine 

the information obtained with the up-sampled features and the 

skip-connection; this layer is applied five times in the 

expanding path. 

• Output Convolutional Layer (orange) – This layer uses 

expanded features to predict the probability of each voxel 

being occupied; thus, the output block includes filling 

probabilities and not binary values as the input block. 

Since the output is a probabilities block, the same 

binarization process as described in Section III.A is here 

required to predict the final voxel occupancy. It is important 

to recall that this is an optimized Top-K approach, and the 

optimization factor used may be the same as in the codec itself 

for a faster coding process or distinct for optimal performance.  

B. Training Data, Loss Function and Hyperparameters 

The training process is a fundamental procedure for every 

DL model, hence it should be carefully examined. 

Sampling Factors: For simplicity, the sampling factors 

were narrowed down to powers of two. However, due to the 

complexity of the ABU models, and consequent memory 

restrains verified during the training process, only two models 

were trained, notably for sampling factors 2 and 4. 

Training and Validation Material: 28 PCs were 

selected from the JPEG Common Training and Test 

Conditions (CTTC) PC dataset [16] to form the training data 

and four as validation. Each of these PCs was divided into 

blocks of fixed size, 64×64×64 and 128×128×128 when 

training for sampling factor of 2 and 4, respectively. To 

simulate the super-resolution process, the resolution of each 

Figure 2: (a) DL-based ABU model architecture; (b) IRN layer 

architecture with three Inception Residual Blocks (IRBs) based on 

[11]. For every convolution layer (conv), k represents the kernel 

size, f the number of filters and s the stride. Note that each 

convolutional layer is followed by a ReLU activation function, 

except the last conv layer in (a) which uses a sigmoid activation. 



 

block is reduced using a basic grid down-sampling operation 

followed by the symmetric basic grid up-sampling. Given 

that the down-sampling process is lossy, the basic up-

sampled blocks are not the same as the original blocks. This 

is desirable as the ABU model’s task is to learn how to 

mitigate the down-sampling losses. The basic down- and up-

sampled blocks are used as input training data, and the 

original blocks are set as reference for the training loss. Given 

the coding context in which ABU is here considered, it is only 

natural to have the coding process involved in the training 

dataset. However, the best final RD performance was 

obtained without coding during training, as described above. 

Loss Function: A distortion-only loss function is 

required since there is no coding involved. Therefore, the so-

called Focal Loss (FL) [6] was used. Regarding the 

parameters 𝛾 , expressing the relevance of voxels hard to 

classify, and 𝛼 expressing the imbalance between empty and 

occupied voxels, through experimental testing, 𝛾 = 2  and 

𝛼 = 0.7 were considered appropriate. 

Hyperparameters: The ABU models have been trained 

using ADAM optimizer [17] with learning rate of 10−4, and 

a batch size of 8 and 1 for sampling factors of 2 and 4, 

respectively. Early stopping was used to prevent overfitting, 

assuring that the model generalizes well and is not biased 

towards the training data. A patience of 5 epochs was defined, 

meaning that the training stopped when the validation loss did 

not decrease for 5 consecutive epochs. The models were 

trained for a total of 16 and 44 epochs for sampling factors 2 

and 4, respectively.  

V. PERFORMANCE ASSESSMENT 

This section reports the 2DL-PCC-ASR RD performance, 
namely when considering the proposed ABU super-resolution 
model. All results presented have been obtained under the 
conditions defined in the JPEG CTTC [16]. 

A. Test Dataset, Benchmarks and Performance Metrics 

To obtain meaningful results, the test conditions must be 

carefully defined. 

Test Dataset: In DL-based coding, it is vital that the test 

data is not used for training. Moreover to fully assess the 2DL-

PCC-ASR performance, the test dataset must include PCs 

with distinct characteristics, namely in density. Having this in 

mind, four PCs were selected, notably: Longdress, 

Romanoillamp, RWT130 and Housewithoutroof; the first 

three test PCs are rather dense, the last one is much sparser.  

Benchmarks: As in JPEG CTTC, the benchmarks are the 

MPEG PCC standards – G-PCC Lossless, G-PCC Octree and 

V-PCC Intra, all using their respective reference software 

version 14. Moreover since 2DL-PCC-ASR is an evolution of 

ADL-PCC [6], its RD performance is also considered. 

Performance Metrics: Given the 2DL-PCC-ASR 

compression goals, the RD performance is assessed using the 

point-to-point PSNR D1 and point-to-plane PSNR D2 

geometry quality metrics, as recommended in the JPEG CTTC 

[16], bits per input point (bpp) to measure the rate. 

B. 2DL-PCC-ASR Configurations RD Performance 

This sub-section reports the 2DL-PCC-ASR RD 

performance, notably with and without ABU to clearly show 

its impact on the final RD performance. Figure 3 shows RD 

performance results for multiple 2DL-PCC-ASR 

configurations as well as the convex hull curve corresponding 

to the best set of configurations along the rate. The results 

show that the lower coding rates can only be achieved when 

performing down-sampling, thus showing how critical this 

step is to cover a large range of rates. However, given the lossy 

nature of the basic down-sampling operation, the super-

resolution proves to be indispensable to mitigate the quality 

drops and achieve competitive RD performance. The gains 

obtained with ABU decrease with the rate, notably due to the 

appearance of strong coding artifacts for the lower rate points. 

When considering denser PCs, Figure 3 a) to c), ABU 

gains go from 3 to 10 dB over the basic up-sampling 

configuration, with virtually no impact on rate (only a couple 

of binarization parameters). In opposition, for the sparser PC, 

Figure 3 d) shows that ABU has a similar behavior although 

with smaller gains, improving up to 2 dB over the basic up-

sampling configuration. For this PC, no results are included 

for sampling factor 1 since competitive results are only 

obtained when considering down-sampling, i.e. for sampling 

factors larger than 1.  

Finally, the convex hull curve shows the set of best 2DL-

PCC-ASR performing configurations, thus selected for 

comparison with the benchmarks in the next sub-section. 

C. Benchmarking RD Performance 

This sub-section aims at comparing the 2DL-PCC-ASR 

and MPEG PCC standards RD performance. In the charts, the 

black vertical line indicates the rate at which G-PCC achieves 

lossless quality; so only the RD points to the left of that line 

are relevant for lossy coding. The results in Figure 4 

demonstrate that the adopted improvements allow the 

proposed 2DL-PCC-ASR to achieve much better RD 

performance than the previous ADL-PCC solution (with 

53.2% rate reduction measured as BD-Rate for PSNR D1). 

The proposed solution largely outperforms G-PCC Octree 

(with 81.9% rate reduction measured as BD-Rate for PSNR 

D1), which typically performs better for sparse PCs, and 

outperforms/equals V-PCC Intra which is based on very 

powerful video coding standards (achieving a 22.3% rate 

reduction measured as BD-Rate for PSNR D1). This occurs 

for PCs with rather different characteristics, namely density.    

The fact that 2DL-PCC-ASR outperforms or is equivalent 

to V-PCC Intra in RD performance is a great achievement for 

2DL-PCC-ASR since V-PCC Intra represents the best of 

conventional PC geometry coding as it relies on powerful 

video coding standards, improved along the last three decades. 

It is relevant to mention that it was not possible to code 

Housewithoutroof with the V-PCC Intra reference software 

since this coding solution is not appropriate for sparse PCs. 

Overall, the RD performance show that the proposed 2DL-

PCC-ASR solution achieves top-notch RD performance 

independently of the PC characteristics. 

VI. FINAL REMARKS AND FUTURE WORK 

This paper proposes a double DL-based approach for PC 

geometry coding and super-resolution in a single pipeline, 

capable of outperforming the state-of-the-art MPEG PCC 

standards.  

The gains obtained with the ABU super-resolution model 

are very significant and can be as high as 10 dB when coding 

dense PCs with high rates. Future work will target the 

extension of this coding pipeline to jointly code geometry and 



 

color. Additionally, a single ABU model will be developed to 

accommodate all sampling factors. 
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              a)                                                           b)                                                            c)                                                            d) 

Figure 3: PSNR D1 RD performance for 2DL-PCC-ASR in multiple configurations, namely for distinct sampling factors (SF) 

and with or without ABU, for all four test PCs: a) Longdress, b) Romanoilamp, c) RWT130, d) Housewithoutroof. 

  

  

  

  

  

  

  

  

  

  

  

            

 
  

 
  
 
  
 
 
 

          

  

  

  

  

  

  

        

 
  

 
  
 
  
 
 
 

          

  

  

  

  

  

  

                 

 
 
 
 
  
 
  
 
 
 

          

  

  

  

  

  

  

  

  

      

 
  

 
  
 
  
 
 
 

          

  

  

  

  

  

  

                 

 
  

 
  
 
  
 
 
 

          

  

  

  

  

  

  

  

  

  

  

  

            

 
  

 
  
 
  
 
 
 

          

  

  

  

  

  

  

  

        

 
  

 
  
 
  
 
 
 

          

  

  

  

  

  

  

  

  

      

 
  

 
  
 
  
 
 
 

          

  
  
  
  
  
  

                 

 
  

 
  
 
  
 
 
 

          

                                                       

           a)                                                            b)                                                            c)                                                            d) 

Figure 4: PSNR D1 and PSNR D2 RD performance comparison between 2DL-PCC-ASR and MPEG standards – G-PCC 

Octree, V-PCC Intra – and ADL-PCC, for all four test PCs: a) Longdress, b) Romanoilamp, c) RWT130, d) Housewithoutroof. 


