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Abstract—Pairs Trading is one of the most valuable market-
neutral strategies used by hedge funds. It is particularly interest-
ing as it overcomes the arduous process of valuing securities by
focusing on relative pricing. By buying a relatively undervalued
security and selling a relatively overvalued one, a profit can
be made upon the pair’s price convergence. However, with the
growing availability of data, it became increasingly harder to find
rewarding pairs. In this work we address two problems: (i) how
to find profitable pairs while constraining the search space and
(ii) how to avoid long decline periods due to prolonged divergent
pairs. To manage these difficulties, the application of promising
Machine Learning techniques is investigated in detail. We propose
the integration of an Unsupervised Learning algorithm, OPTICS,
to handle problem (i). The results obtained demonstrate the
suggested technique can outperform the common pairs’ search
methods, achieving an average portfolio Sharpe ratio of 3.79, in
comparison to 3.58 and 2.59 obtained by standard approaches.
For problem (ii), we introduce a forecasting-based trading model,
capable of reducing the periods of portfolio decline by 75%. Yet,
this comes at the expense of decreasing overall profitability. The
proposed strategy is tested using an ARMA model, an LSTM and
an LSTM Encoder-Decoder. This work’s results are simulated
during varying periods between January 2009 and December
2018, using 5-minutes price data from a group of 208 commodity-
linked ETFs, and accounting for transaction costs.

Index Terms—Pairs Trading, Market Neutral, Machine Learn-
ing, Deep Learning, Unsupervised Learning

I. INTRODUCTION

Pairs Trading is a popular trading strategy widely used by
hedge funds and investment banks. It is capable of obtaining
profits irrespective of the market direction.

This is accomplished with a two-step procedure. First, a
pair of assets whose prices have historically moved together is
detected. Then, assuming the equilibrium relationship should
persist in the future, the spread between the prices of the
two assets is monitored and in case it deviates from its
historical mean the investor shorts the overvalued asset and
buys the undervalued one. Both positions are closed upon price
convergence.

However, with the growing availability of data, it is be-
coming increasingly harder to find robust pairs. In this work,
we address two problems in specific: (i) how to find profitable
pairs while constraining the search space and (ii) how to avoid
long decline periods due to prolonged divergent pairs.

The remainder of this document is organized as follows: in
section II we introduce the main concepts of Pairs Trading
while describing the associated research work. In section III
we suggest a new pairs selection framework to address the

first problem motivating this research work. In section IV
we propose a new trading model in response to the second
problem on the origin of this work. Next, in section V
we design the simulation environment to test the proposed
approaches, for which the results are presented in section VI.

II. BACKGROUND AND RELATED WORK

Each stage composing a Pairs Trading strategy is described
in detail along with the most relevant related work.

A. Pairs Selection

The pairs selection stage encompasses (i) finding the ap-
propriate candidate pairs and (ii) selecting the most promising
ones.

Starting with (i), the investor should select the securities
of interest (e.g stocks, ETFs, etc) and search for possible
combinations. In the literature, two methodologies are typi-
cally suggested for this stage: performing an exhaustive search
for all possible combinations among the selected securities,
or grouping them by sector, and constrain the combinations
to pairs formed by securities within the same sector. While
the former may find more unusual interesting pairs, the lat-
ter reduces the likelihood of finding spurious relations. For
example, [1, 2] impose no restriction on the universe from
which to select the pairs. Contrarily, some research work, as
[3–5] arranges the securities on category groups and select
pairs within the same group.

Concerning (ii), the investor must define what criteria should
be used to select a pair. The most common approaches are the
distance, correlation, and cointegration approaches.

The distance approach, suggested in [3], selects pairs which
minimize the historic sum of squared distances between the
two assets’ price series. This method is widely used but
according to [6] it is analytically sub optimal. If pi,t is a
realization of the normalized price process Pi = (Pi,t)t∈T
of an asset i, the average sum of squared distances ssdPi,Pj

in the formation period1 of a pair formed by assets i and j is
given by

ssdPi,Pj
=

1

T

T∑
t=1

(pi,t − pj,t)2 . (1)

Thus, an optimal pair would be one that minimizes Eq.(1).
However, this implies a zero spread pair is considered optimal

1The formation period corresponds to the period in which securities are
being analyzed to form potential pairs.



which logically may not be as it would not provide trading
chances.

The application of Pearson correlation as a selection metric
is analyzed in [7]. The authors examine its application on
return series with the same data sample used in [3] and find
that correlation shows better performance, with a reported
monthly average of 1.70% raw returns, almost twice as high
as the one obtained using the distance approach. Nevertheless,
this criteria is not foolproof as two return level correlated
securities might not share an equilibrium relationship, and
divergence reversions cannot be explained theoretically.

At last, the cointegration approach entails selecting pairs
for which the two constituents are found to be cointegrated. If
two securities, Yt and Xt are found to be cointegrated, then
by definition, the series constructed as

St = Yt − βXt, (2)

where β is the cointegration factor, must be stationary. Defin-
ing the spread series in this way is particularly convenient
since under these conditions the spread is expected to be mean-
reverting, meaning that every spread divergence is expected to
be followed by convergence. Hence, this approach finds econo-
metrically more sound equilibrium relationships. The most
cited work in this field is [8], that proposes a set of heuristics
for cointegration based strategies. Furthermore, [9] performs a
comparison study between the cointegration approach and the
distance approach and finds that the cointegration approach
significantly outperforms the distance method.

B. Trading Models

The most common trading model follows from [3], and can
be described as indicated below:

i Calculate the pair’s spread (St = Yt−Xt) mean, µs, and
standard deviation, σs, during the formation period.

ii Define the model thresholds: the threshold that triggers
a long position, αL, the threshold that triggers a short
position, αS , and the exit threshold, αexit, that defines
the level at which a position should be exited.

iii Monitor the evolution of the spread, St, and control if
any threshold is crossed.

iv In case αL is crossed, go long the spread by buying Y and
selling X . If αS is triggered, short the spread by selling
Y and buying X . Exit position when αexit is crossed.

The simplicity of this model is particularly appealing, mo-
tivating its frequent application in the field. Nonetheless, the
entry points defined may not be optimal since no information
concerning the spread subsequent direction is incorporated
in the trading decision. Some efforts have emerged trying
to propose more robust models. Techniques from different
fields, such as stochastic control theory, statistical process
modelling and Machine Learning have been studied. In par-
ticular, the results obtained by Machine Learning approaches
have proved very promising. Dunis et al. [10, 11] explore
the application of Artificial Neural Networks to forecast the
spread change for two famous spreads. Thomaidis et al.
[12] propose an experimental statistical arbitrage system

based on Neural Network Generalized Autoregressive Condi-
tional Heteroskedasticity (GARCH) models for modeling the
mispricing-correction mechanism between relative prices com-
posing a pair. Huck [13], Huck [14] uses RNNs to generate a
one-week ahead forecast, from which the predicted returns are
calculated. Lastly, Krauss et al. [1] analyze the effectiveness
of deep neural networks, gradient-boosted-trees and random
forests in the context of statistical arbitrage using S&P 500
stocks. Apart from this, Machine Learning techniques still
remain fairly unexplored in this field and the results obtained
indicate this is a promising direction for future research.

III. PROPOSED PAIRS SELECTION FRAMEWORK

At this research stage we aim to explore how one investor
may find promising pairs without exposing himself to the
adversities of the common pairs searching techniques. On
the one hand, if the investor limits its search to securities
within the same sector he is less likely to find pairs not yet
being traded in large volumes, leaving a small margin for
profit. But on the other hand, if the investor does not impose
any limitation on the search space, he might have to explore
excessive combinations and possibly find spurious relations.

We intend to reach an equilibrium with the application of
an Unsupervised Learning algorithm, on the expectation that
it will infer meaningful clusters of assets from which to select
the pairs.

A. Dimensionality reduction

The first step towards this direction consists in finding
a compact representation for each asset, starting from its
price series. The application of Principal Component Analysis
(PCA) is proposed. PCA is a statistical procedure that uses an
orthogonal transformation to convert a set of observations of
possibly correlated variables into a set of linearly uncorrelated
variables, the principal components. Each component can be
seen as representing a risk factor. We suggest the application
of PCA in the normalized return series, defined as

Ri,t =
Pi,t − Pi,t−1

Pi,t−1
, (3)

where Pi,t is the price series of a asset i. Using the price series
could result in the detection of spurious correlations due to
underlying time trends. The number of principal components
used defines the number of features for each asset represen-
tation. Considering that an Unsupervised Learning algorithm
will be applied to these data, the number of features should not
be large. High data dimensionality presents a dual problem.
The first being that in the presence of more attributes, the
likelihood of finding irrelevant features increases. Additionally,
there is the problem of the curse of dimensionality, caused
by the exponential increase in volume associated with adding
extra dimensions to the space. According to [15], this effect
starts to be severe for dimensions greater than 15. Taking this
into consideration, the number of PCA dimensions is upper
bounded at this value and is chosen empirically.



B. Unsupervised Learning clustering

Having constructed a compact representation for each asset,
a clustering technique may be applied. To decide which algo-
rithm is more appropriate, some problem-specific requisites
are first defined:

– No need to specify the number of clusters in advance.
– No need to group all securities.
– Strict assignment that accounts for outliers.
– No assumptions regarding the clusters’ shape.

The assignment should be strict, otherwise it would increase
the number of combinations when looking for pairs, which is
conflicting with the initial goal. Also, by making the number of
clusters data-driven, we introduce as little bias as possible. In
addition, outliers should not be incorporated in the clusters,
and therefore grouping all assets should not be enforced.
Finally, due to the nonexistence of prior information that
indicates the clusters should be regularly shaped, the selected
algorithm should not adopt this assumption.

Taking into consideration the previously described require-
ments, a density-based clustering algorithm seems an appro-
priate choice. It forms clusters with arbitrary shapes and thus
no gaussianity assumptions need to be adopted. It is naturally
robust to outliers as it does not group every point in the data
set. Furthermore, it requires no specification of the number of
clusters.

The DBSCAN (Density-Based Spatial Clustering of Appli-
cations with Noise) algorithm is the most influential in this
category. Briefly, DBSCAN detects clusters of points based
on their density. To accomplish that, two parameters need to
be defined: ε, which specifies how close points should be to
each other to be considered “neighbors”, and minPts, the
minimum number of points to form a cluster. From these two
parameters, in conjugation with some concepts that we omit
here2, clusters of neighboring points are formed. Points falling
in regions with less than minPts within a circle of radius
ε are classified as outliers, hence not affecting the results. In
spite of the advantages stated so far, DBSCAN still carries one
drawback. The algorithm is appropriate under the assumption
that clusters are evenly dense. However, if regions in space
have different densities, a fixed ε may be well adapted to one
given cluster density but it might be unrealistic for another,
as depicted in Figure 1. It is evident that cluster A, B, and C
could eventually be found using the same ε, but A1 and A2

would not be distinguished.
The OPTICS algorithm proposed in [17] addresses this

problem. OPTICS is based on DBSCAN, with the introduction
of some important concepts that enable a varying ε implemen-
tation. In this enhanced setting, the investor is only required to
specify the parameter minPts, as the algorithm is capable of
detecting the most appropriate ε′ for each cluster3. Therefore,
we propose using OPTICS not just to account for varying
cluster densities but also to facilitate the investor’s task.

2Interested readers may refer to [16].
3This description is very simplified. We suggest the interested readers refer

to [17].

Fig. 1. Clusters with varying density. Adapted from: [17]

C. Pairs selection criteria

Having generated the clusters of assets, it is still necessary
to define a set of rules for selecting the pairs to trade. It is
critical that the pairs’ equilibrium persists. To enforce this, we
propose the unification of methods applied in separate research
work. According to the proposed criteria, a pair is selected if it
complies with the four conditions described next. First, a pair
is only deemed eligible for trading if the two securities forming
the pair are cointegrated. To test this condition, we propose
the application of the Engle-Granger test due to its simplicity.
To protect from the test reliance on the dependent variable,
we propose that the test is run for both possible selections of
the dependent variable, and that the combination generating
the lowest t-statistic is selected. Secondly, to provide more
confidence in the mean-reversion character of the spread, an
extra validation step is suggested. We resort to the concept
of Hurst exponent, H , which quantifies the relative tendency
of a time series either to regress strongly to the mean or to
follow a trend [18]. If H belongs to the range 0–0.5 it indicates
that a time series is mean-reverting. Hence, we require that a
pairs’ spread Hurst exponent is less than 0.5. In third place, we
intend to discard stationary pairs with unsuitable timings. A
mean-reverting spread by itself does not necessarily generate
profits. There must be coherence between the mean-reversion
time and the trading period. The half-life of mean-reversion
is an indicator of how long it takes for a time series to mean-
revert [19]. Therefore, we propose filtering out pairs for which
the half-life takes extreme values: less than one day or more
than one year. Lastly, we suggest enforcing that every spread
crosses its mean at least twelve times per year, enforcing one
trade per month on average.

D. Framework diagram

The three building blocks of the proposed framework have
been described. Figure 2 illustrates how they connect. As
we may observe, the initial state should comprise the price
series for all the possible pairs’ constituents. We assume this
information is available to the investor. Then, by reducing
the data dimensionality, each security may be described not
just by its price series but also by the compact representation
emerging from the application of PCA in the return series
(State 1). Using this simplified representation, the OPTICS
algorithm is capable of organizing the securities into clusters
(State 2). Finally, we may search for pair combinations within
the clusters and select those that verify the rules imposed.



Fig. 2. Pairs selection diagram.

IV. PROPOSED TRADING MODEL

We proceed to address the second problem this work intends
to explore: handling the long decline periods due to prolonged
divergent pairs.

A. Trading Model

A potential alternative to continuously monitor the spread
and track deviations consists of modeling the spread directly.
This way, a prediction can be made regarding how the spread
will vary in the future and a position is only entered if the
predicted conditions are favourable. By taking advantage of
a time-series forecasting algorithm to predict the spread at
the next time instant, we may calculate the expected spread
percentage change at time t+ 1 as

∆t+1 =
S∗t+1 − St

St
× 100, (4)

where S and S∗ correspond to the real and the predicted
spread, respectively. When the absolute value of the predicted
change is larger than a predefined threshold, a position may
be entered, on the expectation that the spread will suffer an
abrupt movement from which the investor can benefit from.
Assuming the investor is not holding a position yet, the next
position, Pt+1, may be described according to

Pt+1 :


if ∆t+1 ≥ αL, Go long
if ∆t+1 ≤ αS , Go short
otherwise, Wait

. (5)

Once a position is entered, it is maintained while the predicted
spread direction does not change. When it switches, the posi-
tion is exited. This strategy defines the basis of the proposed
trading model. It is still to be described how the thresholds
(αL, αS) should be calculated. A possible approach consists
of framing an optimization problem, and try to find the profit-
maximizing values. However, this approach is rejected due to
its risk of data-snooping and unnecessary added complexity.
We propose a simpler, non-iterative, data-driven approach.
We start by obtaining f(x), the spread percentage change
distribution during the formation period, given that the spread
percentage change at time t is defined as

xt =
St+1 − St

St
× 100.

From f(x), the set of negative percentage changes, f−(x), and
positive percentage changes, f+(x), are considered separately.
Since the proposed model targets abrupt changes but also
requires that they occur frequently enough, looking for the
extreme quantiles seems an adequate solution. Therefore, we
recommend using the top decile and quintile from f+(x)
as candidates for defining αL and the bottom ones, from
f−(x), for defining αS . The quintile-based and decile-based
thresholds are both tested in the validation set and the most
optimistic combination is adopted. Formally,{

αS , αL

}
= argmax

q
Rval(q),

q ∈
[ {

Qf -(x)(0.20), Qf +(x)(0.80)
}

{
Qf -(x)(0.10), Qf +(x)(0.90)

} ] (6)

where Rval is the return obtained in the validation period.
To summarize, the model construction follows the diagram

illustrated in Figure 3. For each pair, the investor starts
by training the forecasting algorithms to predict the spread.
Furthermore, the decile-based and quintile-based thresholds
are collected to integrate the trading model. Having fitted
the forecasting algorithms and obtained the two combinations
for the thresholds (State 1), the model is applied on the
validation set. From the validation performance, the best
threshold combination is selected (State 2). At this point the
model is ready to be applied on unseen data.

Fig. 3. Proposed model construction diagram.

An application example is illustrated in Figure 4. For
the sake of illustration, the forecasting has perfect accuracy,
meaning the positions can be set in optimal conditions.

Fig. 4. Example of the proposed forecasting-based strategy.



B. Applied forecasting algorithms

Forecasting algorithms commonly applied in the litera-
ture can be divided into two major classes: parametric and
non-parametric models. The former assumes that the un-
derlying process can be described using a small number
of parameters. The latter makes no structural assumptions
about the underlying structure of the process. We pro-
pose the application of a benchmark parametric approach,
the autoregressive–moving-average (ARMA), and two non-
parametric models, the Long Short-Term Memory (LSTM) and
the LSTM Encoder-Decoder. This will allow inferring to what
extent the strategy profitability depends on the complexity
of the time-series forecasting algorithm. The justification for
choices adopted are described next.

Although financial time series are very complex in nature
[20], the ones under analysis are by construction stationary, as
they correspond to the linear combination of cointegrated price
series. Thus it is fair to ask if an ARMA model may succeed
at forecasting this series. This model describes a stationary
stochastic process as the composition of two polynomials, the
autoregression AR(p) and the moving average MA(q), as

Xt = c+ εt +

p∑
i=1

ϕiXt−i +

q∑
i=1

θiεt−i, (7)

where p and q represent the order of the polynomials.
Nevertheless, there is an underlying motivation for applying

more complex models, such as Artificial Neural Networks
(ANN). First, ANNs have been an object of attention in many
different fields, which makes its application in this context an
interesting case study. Furthermore, ANN-based models have
shown very promising results in predicting financial time series
data in general [21]. From the vast amount of existing ANN
configurations, the LSTM architecture is deemed appropriate
due to its capabilities of learning non-linear representations of
the data while memorizing long sequences. LSTMs assume
the existence of a sequential dependency among inputs, and
previous states might affect the decision of the neural network
at a different point in time.

Furthermore, from a trading perspective, it might be particu-
larly beneficial to collect information regarding the prediction
not just of the next instant of a time-series but also of later time
steps. An LSTM Encoder-Decoder architecture is naturally
fitted to such scenarios. This architecture is comprised by two
LSTMs, one for encoding the input sequence into a fixed-
length vector, the encoder, and a second for decoding the
fixed-length vector and outputting the predicted sequence, the
decoder, as illustrated in Figure 5.

In this multi-step forecasting scenario, the trading rules are
adapted by simply calculating the prediction change N times
in advance. Likewise, the thresholds αL and αS should be
calculated with respect to the distribution of the percentage
change between x(t+N) and x(t).

Given the limited computation resources, the neural network
models’ tuning is constrained to a set of most relevant vari-
ables: data sequence length, the number of hidden layers and

Fig. 5. LSTM Encoder-Decoder.

the nodes in each hidden layer. Early-stopping and dropout
are applied as regularization techniques.

V. RESEARCH DESIGN

The research design contemplates two stages, corresponding
to each problem being addressed.

A. Research Stage 1 - Pairs selection

First, we intend to examine how the three different pairs’
search techniques (unrestricted, grouping by category and un-
supervised learning) compare to each other. For this purpose,
the three methodologies are implemented. The proposed pairs
selection rules are also constructed and applied on top of each
search technique. As for the trading setup, since the focus
lies on comparing the search techniques relative to each other,
we do not concern about meticulously optimizing the trading
conditions. Therefore, we apply the standard threshold-based
model proposed in [3], with the parameters specified in Table
I. The spread’s standard deviation, σs, and mean, µs, are
calculated with w.r.t to the entire formation period.

TABLE I
THRESHOLD-BASED MODEL PARAMETERS.

Parameters Values

Long Treshold µs − 2σs

Short Threshold µs + 2σs

Exit Threshold µs

To test the performance of the selected pairs, we implement
three different test portfolios resembling probable trading
scenarios. Portfolio 1 considers all the pairs identified in the
formation period. Portfolio 2 takes advantage of the feedback
collected from running the strategy in the validation set by
selecting only the pairs that had a positive return. Lastly,
Portfolio 3 corresponds to the situation in which the investor
is limited to invest in a fixed number of k pairs. In such case,
we suggest selecting the top-k pairs according to the return
obtained in the validation set. We consider k = 10, as it stands
in between the choices of [3], which uses k = 5 and k = 20.



B. Research Stage 2 - Trading Model

At this stage, we aim to compare the robustness pro-
vided by the standard threshold-based model with the pro-
posed forecasting-based model, simulated using an ARMA,
an LSTM and an LSTM Encoder-Decoder with an output
length of two. We propose to first evaluate the forecasting
performance of each algorithm. As benchmark, a naive base-
line is considered, which simply outputs Yt+1 = Yt. Then, to
evaluate the trading strategy itself, we suggest using the pairs
search technique which proved more appealing according to
the results obtained in the previous research stage. As for the
test portfolio, we consider using Portfolio 2.

C. Dataset

Trading ETFs is considered adequate since they are easy to
trade, as they trade like stocks, and because their dynamics
are expected to change much slower than that of a single
stock. Adding to that, research in the field [7, 22] obtained
more robust mean-reverting time series by using a linear
combination of stocks to form each component of the spread.
We presume using ETFs may be a proxy to accomplish that
more efficiently.

This work fixates a subset of ETFs which track single com-
modities, commodity-linked indexes or companies focused on
exploring a commodity. This reduces the number of possible
pairs, making the strategy computationally more efficient and
leaving space for careful analysis of the selected pairs.

A total of 208 commodity-linked ETFs are available for
trading in January 2019, for which five categories may be
identified based on the ETFs composition (Agriculture, Broad
Market, Energy, Industrial Metals and Precious Metals). This
information is collected from [23].

We considered price series data with 5-min frequency. The
motivation for using intraday data is three-fold. First, with finer
granularity the entry and exit points can be defined with more
precision, providing opportunities for higher profit margins.
Secondly, we may detect intraday mean-reversion patterns that
could not be found otherwise. At last, it provides more data
samples, allowing to train complex forecasting models with
less risk of overfitting.

The periods considered for simulating each research stage
are illustrated in Figure 6. There are essentially two possible
configurations: (i) the 3-year-long formation periods, and (ii)
the 9-year-long formation period. In both cases, the second-to-
last year is used for validating the performance, before running
the strategy on the test set. We define a 1-year-long trading
period, based on the findings of [4], that claim the profitability
can be increased if the initial 6-month trading period proposed
in [3] is extended to 1 year.

Configuration (i) is adopted when using the threshold-based
trading model (described in Table I). A formation period of
three years seems appropriate. Although this period is slightly
longer than what is commonly found in the literature4, we

4[3, 4, 24] use a 1-year-long formation period. [5] makes use of a 3-month
formation period.

decide to proceed on the basis that a longer period may
identify more robust pairs. Configuration (ii) is used for
simulating the forecasting-based trading model, thus providing
more formation data to fit the forecasting algorithms. In this
case, the first 8 years are used for training, as indicated in
Figure 6.

For the first research stage, we propose using three differ-
ent periods to have more statistical evidence on the results
obtained. In the second research stage, this is not conceivable
due to the computational burden of training the forecasting
algorithms. Hence, we consider one period using configuration
(i), and a second period using configuration (ii), to evaluate
how the standard model could have performed in the same test
period.

Fig. 6. Trading periods.

As preprocessing steps, we start by removing all ETFs
with missing values throughout the period being considered.
Then, we remove ETFs that do not verify the minimum
liquidity requisites to ensure the considered transaction costs
associated with bid-ask spread are realistic5. The minimum
liquidity requisites follow the criterion adopted in [3, 25],
which discards all ETFs not traded during at least one day.

D. Trading simulation

Concerning the portfolio construction, we impose that all
pairs are equally weighted in the portfolio, so that the returns
can be obtained dividing the performance by the number of
pairs, with no need to concern about relative weights.

An aspect that follows concerns the capital allocation within
each pair. We consider that the capital resulting from the short
position is immediately applied in the long position. This type
of leverage is adopted by most hedge funds. On this basis, we
construct a framework which ensures that every trade is set
with just $1. This is accomplished by imposing that

max(asset1, asset2) = $1,

where asset1 and asset2 represent the capital invested in each
pair’s constituent, as illustrated in Figure 7. Although the gross
exposure is higher, a $1 dollar initial investment is always
sufficient. As trading progresses, we consider that all the
capital earned by a pair in the trading period is reinvested
in the next trade.

5Trading illiquid ETFs would result in higher bid-ask spreads which could
dramatically impact the profit margins.



Fig. 7. Market position definition.

All the results presented in this work account for transaction
costs. The transaction costs considered are based on estimates
from [25], in which the authors perform an in-depth study
on the impact of transaction costs in Pairs Trading. The
costs comprise three components: commissions (8 bps), market
impact (20 bps) and short-selling constraints (1% per annum).
Besides, commission and market impact costs are adapted to
account for both assets in the pair.

As a trading system can not act instantaneously, there might
be a small deviation in the entry price inherent to the delay of
entering a position. To account for this factor and make sure
the strategy is viable in practice, we assume a conservative
one period (5-min) delay for entering a position.

This work does not comprehend an implementation of a
stop-loss system, under any circumstances. This means a
position is only exited if the pair converges or the trading
period ends.

E. Evaluation metrics

Regarding the trading evaluation, we propose analyzing the
strategy Return on Investment (ROI), Sharpe Ratio (SR) and
the portfolio Maximum Drawdown (MDD).

The ROI is calculated as the net profit divided by the initial
capital, which we enforced to be $1.

The portfolio SR is calculated as

SRyear =
Rport −Rf

σport
× annualization factor, (8)

where Rport represents the daily portfolio returns and Rf the
risk-free rate6. The portfolio volatility, σport, is calculated as

σport =

√√√√ N∑
i=1

N∑
j=1

ωi cov(i, j)ωj , (9)

where wi is the relative weight of asset i in the portfolio.
The annualization factor is set according to the methodology
proposed by Lo [27] (Table 2 in [27]), to prevent imprecise
approximations.

6The average the 3-Month treasury bill rate, taken from [26], during the
corresponding test period and converted to a daily basis for consistency with
the formula.

F. Implementation environment

All the code developed in this work is built from scratch
using Python. Some libraries are particularly useful. First,
sci-kit learn proves helpful in the implementation of PCA
and the OPTICS algorithm. Second, statsmodels provides an
already implemented version of the ADF test, useful for
testing cointegration. Last, we make use of Keras to build
the proposed neural networks. The code is publicly available
in [28].

Concerning the running environment, most of the simulation
code is run on a local CPU, except for the training of
the LSTM models. They involve a huge amount of matrix
multiplications which result in long processing times. These
operations are massively sped up by taking advantage of the
parallelization capabilities of a GPU.

VI. RESULTS

The results obtained at each research stage are presented
next.

A. Analysis of the pairs selection framework

We start by presenting some relevant statistics in Table II
concerning the number of pairs found for the three different
pairs search techniques being compared at this stage.

TABLE II
SELECTED PAIRS USING DIFFERENT SEARCH METHODS.

As expected, when no restrictions are imposed in the search
space, a larger set of ETFs emerges and consequently more
pairs are selected. Contrarily, when grouping ETFs in five
partitions (according to the categories described in section
V-C) there is a reduction in the number of possible pair
combinations. This is not more evident due to the underlying
unbalance across the categories considered. Because energy
linked ETFs represent close to half of all ETFs, the combi-
nations within this sector are still vast. Lastly, the number of
possible pair combinations when using OPTICS is remarkably
lower. Although the number of clusters is higher than when
grouping by category, their smaller size results in fewer
combinations. We proceed to analyze in more detail the results
obtained with this algorithm.

The results concerning the OPTICS application are obtained
using five principal components to describe the data. We
empirically verified that up to the 15-dimensions boundary



(motivated in section III-A) the results are not significantly
affected. We adopt 5 dimensions since we find more adequate
to settle the ETFs’ representation in a lower dimension pro-
vided that there is no evidence favoring higher dimensions.

To validate the clusters formed and get an insight into their
composition we examine the results obtained in the period
of Jan 2014 to Dec 20177. To represent the clusters in a 2-
D setting, the data must be reduced from 5 dimensions. We
consider the application of t-SNE [29] for this purpose. Figure
8 illustrates the clusters formed. The ETFs not clustered are
represented by the smaller circles, which were not labeled to
facilitate the visualization.

Fig. 8. Application of t-SNE to the clusters generated by OPTICS.

In order to evaluate the integrity of the clusters, we propose
analyzing the composing price series. Therefore, we select two
clusters and represent the logarithm of the price series8 of
each ETF. Figure 9(a) illustrates a cluster in which the ETFs
identified do not just belong to the same category but are
also part of the same segment, the Equity US: MLPs. This
evinces that the OPTICS approach is capable of detecting
a specific segment just from the time series data. Figure
9(b) demonstrates the OPTICS clustering capabilities extend
beyond selecting ETFs within the same segment, as we may
observe ETFs from distinct categories, such as Agriculture
(CGW, FIW, PHO, and PIO), Industrial Metals (LIT and
REMX) and Energy (YMLI). There is a visible relation among
the identified price series, even though they do not all belong
to the same category.

7This period is chosen arbitrarily because an extensive analysis covering
all periods does not fit this report.

8The price series illustrated result from subtracting the mean of the original
price series, to facilitate the visualization.

(a) Normalized prices in Cluster 1.

(b) Normalized prices in Cluster 2.

Fig. 9. Price series composition of some clusters.

We confirm the generated clusters display a tendency to
group subsets of ETFs from the same category while not
impeding clusters containing ETFs from different ones.

With respect to the trading performance, Table III unveils
the test results obtained with each clustering type using the
three different portfolios introduced in section V-A. To aggre-
gate the information in a more concise way, the average over
all years and portfolios is described on the rightmost column.
Note also that the three evaluation metrics described in section
V-E are accentuated, to differentiate from the remaining, less
critical, descriptive statistics. We can confirm the profitability
in all the environments tested, which corroborates the idea that
the pairs selection rules are robust.

Comparing the different clustering techniques, if an investor
is focused on obtaining the highest ROI, regardless of the in-
curred risk, performing no clustering is particularly appealing.

But when risk is taken into the equation, the OPTICS based
strategy proves more auspicious. It is capable of generating the
highest average portfolio Sharpe ratio of 3.79, in comparison
with 3.58 obtained when performing no clustering or 2.59
when grouping by category. Also, it shows more consistency
w.r.t the portion of profitable pairs in the portfolio, with an
average of 86% profitable pairs, against 80% when grouping
by category and 79% when performing no clustering at all.
At last, it achieves more steady portfolio drawdowns, with the
lowest average MDD. It is capable of mantaining the MDD
values within an acceptable range even when the other two
techniques display considerable deviations, as in 2017.



TABLE III
TRADING PERFORMANCE FOR EACH PAIRS SEARCH TECHNIQUE.

B. Evaluation of the forecasting-based model

We start by selecting pairs using the OPTICS clustering,
due to its demonstrated ability. On these conditions, we find
5 pairs during the formation period of Jan 2009 to Dec
2017 and 19 pairs during Jan 2015 to Dec 2017 (periods
defined in Figure 6). Not surprisingly, the number of pairs
found for the former period is greatly reduced as the active
cointegrated ETFs throughout this interval are more scarce.
But since training the Deep Learning forecasting models is
computationally very expensive, having fewer pairs is actually
convenient. The corresponding five spreads are illustrated in
Figure 10. The spreads look indeed stationary. There is an
evident difference in their volatility, which further supports
the importance of enforcing data-driven trading thresholds.

Fig. 10. Pairs identified in Jan 2009-Dec 2017.

Each spread in Figure 10 is fitted by the forecasting al-
gorithms. The forecasting score is obtained by averaging the
mean-square error (MSE) over the five spreads.

A total of 31 forecasting model architectures are imple-
mented in this work to find the one with the most trading
potential, meaning 155 models are trained (31 architectures
× 5 spreads). We experiment increasingly complex configu-
rations until signs of overfitting are evident. The forecasting
performance obtained for the best configurations is described
in Table IV.

TABLE IV
FORECASTING RESULTS COMPARISON.

We may verify that all the implemented models are capable
of outperforming the naive implementation during the valida-
tion period. Curiously, we note that the LSTM-based models
do not manage to surpass the ARMA model, at least w.r.t
to the chosen metrics. Also, the results obtained in the test
set indicate signs of overfitting besides the efforts taken in
that regard, as the LSTM-based models are no longer superior
to the naive performance. The incapability of the LSTM-
based models to outperform the simpler approaches is in
accordance with the findings of [30], which asserts that time-
series problems found in the literature are often conceptually
simpler than many tasks already solved by LSTMs and more
often than not they all relevant information about the next
event is conveyed by a few recent events. We suspect this is the
case in this work. At last, we analyze the performance obtained
by the integration of the previous algorithms in the proposed
trading model scheme. Based on the validation records, the
quintile-based thresholds are used with ARMA and the decile-
based with the LSTMs. The test results in these conditions are
illustrated in Table V.

TABLE V
TRADING RESULTS COMPARISON USING A 8-YEAR-LONG FORMATION

PERIOD.

The results indicate that if robustness is evaluated by the
number of days the portfolio value does not decline (accentu-
ated in Table V), then the proposed trading model does provide



an improvement. The forecasting-based models display a total
of 2 (LSTM), 11 (ARMA) and 22 (LSTM Encoder-Decoder)
days of portfolio decline, in comparison with 87 days obtained
when using the standard model. This finding suggests the
forecasting-based model is capable of defining more precise
entry points, and hence reduce the number of unprofitable
days. However, that comes at the expense of a reduction in
both portfolio SR and ROI, questioning the benefits provided
by the proposed model after all. We suspect the long required
formation period is also responsible for this profitability de-
cline. Therefore we proceed to analyze the standard trading
model in the 3-year-long period.

TABLE VI
TRADING RESULTS FOR STANDARD TRADING MODEL USING A

3-YEAR-LONG FORMATION PERIOD.

By comparison, the performance in the 10-year-long period
seems greatly affected by the long required duration, sug-
gesting the less satisfactory returns emerge not simply from
the trading model itself, but also due to the underlying time
settings. Following this line of reasoning, if the forecasting-
based models’ performance increases in the same proportion
as the standard trading model when reducing the formation
period, the results obtained could be much more satisfactory.

VII. CONCLUSIONS

We explored how Pairs Trading could be enhanced with the
integration of Machine Learning. First, we proposed a new
approach to search for pairs based on the application of the
OPTICS algorithm followed by a robust pairs selection crite-
ria. The strategy achieved better risk-adjusted returns when
using this method. Secondly, we introduced a forecasting-
based model aiming to reduce decline periods associated with
untimely market positions and prolonged divergent pairs. We
demonstrated the proposed model is capable of reducing the
average decline period in more than 75% although that comes
at the expense of declining profitability. In addition, this work
also contributes with empirical evidence of the suitability of
ETFs traded in a 5-minutes setting in the context of Pairs
Trading.
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