
Shape-based Trajectory Clustering

Telmo Pires
telmopires@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2016

Abstract

Automatic trajectory classification has countless applications, ranging from the natural sciences,
such as zoology and meteorology, to urban planning and sports analysis, and has generated great
interest and investigation. The purpose of this work is to propose and test new methods for trajectory
clustering, based on shape, rather than spatial position, as is the case with previous methods. The
proposed approach starts by uniformly resampling the trajectories using splines, and then characterizes
them using the angles of the tangents at the resampled points. Angular data introduces some challenges
for analysis, due to its periodic nature, therefore preventing the direct application of common clustering
techniques. To overcome this problem, three methods are proposed/adapted: a variant of the k-means
algorithm, a mixture model using multivariate Von Mises distributions, which is fitted using the EM
algorithm, and sparse nonnegative matrix factorization. Since the number of clusters is seldom known
a priori, methods for automatic model selection are also introduced. Finally, these techniques are
tested on both real and synthetic data, and the viability of this approach is demonstrated.
Keywords: Unsupervised Learning, Directional Statistics, k-means, NMF, EM Algorithm, Trajectory
Clustering.

1. Introduction
In recent years, an exponential growth in the

amount of available data for analysis has been ex-
perienced in most fields of knowledge. These huge
data quantities, far beyond the scope of manual
analysis, have stimulated a growing interest in au-
tomated methods. Trajectory data is no exception,
thanks to the growing number of tracking devices,
including GPS receivers, RFID tags, tracking cam-
eras, and even cellphone call traces [2]. This has led
to a growing interest in automatic trajectory clus-
tering, as a means to perform activity recognition
and classification. The study of traffic patterns, hu-
man mobility, and even air pollution exposure of
populations [6]; the detection of common behaviors
in meteorological phenomena [7]; animal movement
analysis [3]; automated sports analysis; and auto-
matic surveillance are just a few of the applications
of these techniques.

Besides being influenced by many factors not di-
rectly related to the phenomenon in study, such as
seasonality, in the case of hurricane tracks, trajecto-
ries introduce many challenges by being represented
by a sequence of space-time data points:

1. Differences in the speed of tracked objects
cause misalignments in the trajectories, as il-
lustrated in Figure 1(a). Varying sampling
rates have a similar effect.

2. Similar trajectories may have a different num-
ber of points, as illustrated in 1(b).

3. In some applications, trajectories differing only
in a translation should be treated as being sim-
ilar.

4. Noise and outliers: besides being affected by
noise, trajectories can also have big, but sparse
errors, called outliers.

(a) Objects moving at differ-
ent speeds, leading to mis-
aligned, but similar tracks.

(b) Similar tracks with a dif-
ferent number of points.

Figure 1: Some of the challenges faced with trajec-
tory data.

In this work, a novel approach is introduced
for clustering 2D trajectories, based exclusively on

1

their shapes. This means trajectories are clus-
tered independently of their location and of a global
change of scale.

2. Previous works

Other authors have studied the problem of tra-
jectory clustering. Their approaches can be divided
into two main groups: the distance metric approach
and the model based (generative) approach.

2.1. Distance Metric Approaches

These approaches aim to find (dis)similarity mea-
sures between trajectories, and then cluster them
based on those metrics. One such metric is the Eu-
clidean distance, used in [10, 12]. Methods based
on this metric require trajectories with the same
number of points and uniformly sampled, so a pre-
processing step is needed.

To avoid the need for uniformly sampled trajec-
tories, methods that try to find an optimal align-
ment between time-varying sequences, such as dy-
namic time warping [22] and longest common sub-
sequence [23] have been successfully applied to tra-
jectory clustering.

Another important method is TRACLUS [16].
This method allows sub-trajectory clustering, in-
stead of clustering the trajectories as a whole,
which may be useful in some applications. The
way it works is by partitioning trajectories in
sub-trajectories, and then performing density-based
clustering, using a specially defined metric.

2.2. Model-based Approaches

Model-based methods, on the other hand, at-
tempt to find a model capable of describing the
whole dataset, instead of directly comparing tra-
jectories.

In [11], trajectories are represented as polynomial
functions of time, and the parameters of these func-
tions are modeled as a finite mixture. A similar ap-
proach is used in [24], but trajectories are modeled
using B-splines.

Another common approach to trajectory cluster-
ing models trajectories as vector fields. Some of
these works are [8], in which a variant of k-means
for vector fields was proposed, and [20], where a
mixture of vector fields model allowing transitions
between fields was proposed.

3. Data Pre-processing

Trajectories are usually given as sequences of
points, so a pre-processing step is needed in or-
der to capture their shapes. In our case, shape is
characterized as a sequence of angles: the angles
of the tangents to the trajectory, sampled at uni-
formly spaced points, as illustrated in Figure 2. As
seen below, the sequence of angles is invariant under
changes in location and scale of the trajectory.

Figure 2: Uniformly resampled trajectory and re-
spective tangents. Shape is characterized by the
angles of the tangent vectors w.r.t. the horizontal.

This pre-processing step solves the problem of
trajectories having different lengths and the prob-
lem of misalignment, by assuring all trajectories are
similarly sampled. In this work, the resampling is
performed using cubic splines, fitted separately for
both the x and y coordinates. In order to fit splines,
an independent variable is needed, and it must be
the same for each coordinate. A natural choice is
time, but many datasets only have spatial informa-
tion. In these cases, the independent variable must
be estimated from data, using

τp+1 = τp +

√
(x

(i)
p+1 − x

(i)
p)2 + (y

(i)
p+1 − y

(i)
p)2, (1)

with τ1 = 0, where we assume that the speed is
uniform.

To reduce the influence of noise, we use smoothing
splines, which are fitted by minimizing the cost [5]

p

m∑
i=1

wi(x(τi)−f(τi))
2+(1−p)

∫
(D2f(τ))2dτ, (2)

where p is a parameter that controls the trade-off
between smoothness and accuracy, wi are weights
we set to 1, and D2f(τ) is the second derivative
of function f . Many implementations of these al-
gorithms are readily available, such as the Curve
Fitting toolbox in MATLAB, which was used in this
work.

For a uniform resampling to d points, splines
should be evaluated at:

τi = τ1 +
τm − τ1
d− 1

(i− 1) , i = 1, . . . , d,

where τ1 and τm are the τ ’s calculated according to
Eq. (1).

The angles of the tangents are obtained by

ω(i)
p = atan2(Df (i)y (τp), Df

(i)
x (τp)) , ω(i)

p ∈ [−π, π] ,

2

where atan2(·) is the 4-quadrant inverse tangent

function and Df
(i)
y (τp) and Df

(i)
x (τp) refer to the

first derivatives of the fitted splines, evaluated at
τp. This way, we get a d-dimensional vector ω(i)

describing the trajectory.
Besides being invariant to spatial translation and

scaling, another interesting property of this formu-
lation is that it allows trajectories to be invariant to
rotation with a small modification: by working with
the differences between consecutive angles, instead
of the angles themselves.

3.1. Choosing Parameters p and d
The pre-processing step requires two input pa-

rameters: p and d. For choosing p, no systematic
procedure is available, and so we try several val-
ues until a good one is found. The choice of d, on
the other hand, can be automated. This is done by
finding the smallest number of points that can accu-
rately describe a trajectory, called the characteristic
points, which provides a lower bound for d, as the
characteristic points may not be equally spaced. In
order to fully characterize the trajectories, we use
d approximately 5 times the maximum number of
characteristic points found in the given dataset.

In [16], a method for finding the characteristic
points of a trajectory was proposed, which uses the
minimum description length (MDL) principle. The
idea is to loop though all the points in a trajectory
and to compute, MDLpar(pstart, pcurr), the MDL
cost assuming pstart and pcurr are the only charac-
teristic points in the interval pstart, . . . , pcurr, and
MDLnopar(pstart index, pcurr index), the MDL cost
preserving the original trajectory. If MDLpar ≤
MDLnopar, then choosing pcurr as a characteristic
point makes the MDL cost lower. This procedure
is shown in algorithm 1.

The MDL cost, or MDL length, of a given par-
titioning consists of two components, L(H) and
L(D|H), given by

L(H) =

pari−1∑
j=1

log2(length(pcjpcj+1
)),

L(D|H) =

pari−1∑
j=1

cj+1−1∑
k=cj

[
log2(d⊥(pcjpcj+1

, pkpk+1))

+ log2(dθ(pcjpcj+1 , pkpk+1))
]
,

where pari is the number of characteristic points in
trajectory i, length(·) is the euclidean length of a
segment, papb is the segment defined by points pa
and pb and d⊥ and dθ are the perpendicular and
angular distances, defined as:

d⊥(siei, sjej) =
l2⊥1 + l2⊥2
l⊥1 + l⊥2

Algorithm 1: Approximate Trajectory Parti-
tioning.

Input: A trajectory, as a sequence of points,
p1, . . . , pm

Output: Nc, the number of characteristic points
1 Nc = 1 // Add the starting point

2 start index = 1
3 length = 1
4 while start index+ length ≤ m do
5 curr index = start index+ length
6 costpar = MDLpar(pstart index, pcurr index)
7 costnopar = MDLnopar(pstart index, pcurr index)
8 if costpar > costnopar then

// Partition at the previous point

9 Nc = Nc + 1
10 start index = curr index− 1
11 length = 1

12 else
13 length = length+ 1
14 end

15 end
16 Nc = Nc + 1 // Add the ending point

dθ(siei, sjej) =

{
length(sjej)× sin θ 0 ≤ θ < π/2

length(sjej), π/2 ≤ θ ≤ π

where l⊥1 and l⊥2 are the distances illustrated in
Figure 3.

Figure 3: Definition of distance functions from TR-
ACLUS. Image from [16].

To reduce the influence of noise in the procedure
above, we only apply it to estimate d after having
smoothed the trajectories with the p given by the
user and using d twice the length of a trajectory, to
assure its shape is well captured.

From this point on, whenever we mention trajec-
tories we mean the trajectories after pre-processing,
i.e., the set {ω(1), . . . ,ω(m)}, where each trajectory

ω(i) is a sequence of angles {ω(i)
1 , . . . , ω

(i)
d }.

4. K-means
4.1. Introduction

The k-means algorithm is one of the most famous
clustering techniques [13], despite offering no global
optimality guarantees. In fact, it has been shown
to give arbitrarily bad results in certain conditions.
Arguably, its popularity is due to the fact that it is
a very simple and fast approach to clustering.

3

Given a set of points and the number of de-
sired clusters, k-means stores a set of k centroids,
µ1, . . . ,µk, and alternates between two steps: as-
signment and centroid update.

1. Assignment step: set c(i) := arg min
j
‖x(i) −

µj‖2 for all i, where c(i) = j if the ith input
sample belongs to cluster j. In other words, as-
sign each sample to the closest centroid. Pos-
sible ties are broken by some arbitrary rule.

2. Centroid update step: set µj :=∑m
i=1 1{c(i)=j}x(i)∑m
i=1 1{c(i)=j} for all j, where 1{c(i) = j}

is an indicator function, taking the value 1 if
c(i) = j and 0 otherwise, that is, move each
centroid to the mean of the points assigned to
it.

Originally, k-means was developed to work with
Euclidean distances, although many other versions
have been proposed in the literature. In our case, we
need to adapt it to handle the sequences of angles
that describe each trajectory.

4.2. Measuring Distances
A classical measure of the distance between two

angles is the length of the chord between them, as
illustrated in Figure 4. It can be shown that, if the

Figure 4: Relationship between angular difference
and chord (in red) in a unit circle.

difference between two angles is ∆ω, the length of
the corresponding chord (red line in Fig. 4) is given

by 2 sin
∆ω

2
. Since sin is an odd function, it returns

a negative length if the angular difference is nega-
tive. This is unintended, so we take the squares,(

2 sin
∆ω

2

)2

= 2 (1− cos ∆ω) ∝ 1− cos ∆ω.

The constant “2” is irrelevant and can be dropped,
since this function will only be used to compare
distances. Thus, the final metric is 1−cos ∆ω. The
extension of this expression to d-dimensional data
is trivial:

D2(ω(1),ω(2)) =

d∑
p=1

(
1− cos(ω(1)

p − ω(2)
p)
)
, (3)

where the ω(i)’s are angular vectors and ω
(i)
p is the

pth component of vector i. The notation D2 is used
to indicate this metric is a squared value (of the
chord).

4.3. Updating the Centroids

The arithmetic mean cannot be used for updating
the coordinates of a centroid, as it does not work
well with circular data. In this work, we define the
mean of a sequence of angles {ω(1), . . . , ω(m)} as:

ω̄ = atan2

(
1
m

∑m
i=1 sinω(i)

1
m

∑m
i=1 cosω(i)

)
(4)

The extension of this result to vectorial data is
straightforward: the mean of an angular vector is
the angular mean of each of its coordinates.

4.4. Algorithm Description

Algorithm 2: circular k −means algorithm.

Input: Data set, {ω(1), . . . ,ω(m)}, and number of
clusters, k

Output: Cluster centroids, µ1, . . . ,µk, and
cluster assignments, c(1), . . . , c(m)

1 Initialize k cluster centroids: µ1, . . . ,µk
2 repeat
3 foreach i do

4 Set c(i) := arg min
j

D(ω(i),µj) // Assign

centroids to samples

5 end
6 foreach j do

7 Set µpj = arg

(∑m
i=1 1{c(i)=j}ejω

(i)
p∑m

i=1 1{c(i)=j}

)
for

p = 1, . . . , d // Update each coordinate

of the centroids

8 end

9 until convergence

For the algorithm to be completely described, ini-
tialization and stopping criteria must be specified.
Regarding initialization, k-means++ [1] is used, but
using Eq. (3) instead of the Euclidean distance.
The termination condition is when the assignments
no longer change between consecutive iterations.

4.5. Model Selection

In real-world situations, the number of clusters,
k, is not given, and it is necessary to estimate it.
One common choice used in conjunction with k-
means is the so-called elbow method. This method
involves computing a distortion function for sev-
eral values of k and finding an elbow, that is, a
point after which the rate of decrease is significantly
smaller. The distortion function is just the sum of
the distances of each data sample to the respective

4

centroid. For circular k-means, this is given by

J(ω(1), . . . ,ω(m), c(1), . . . , c(m),µ1, . . . ,µk)

=

m∑
i=1

d∑
p=1

(
1− cos(ω(i)

p − µ
p
c(i)

)
)
.

5. Finite Mixture Models
Given a set of d-dimensional trajectories,

{ω(1), . . . ,ω(m)}, which is to be partitioned into k
clusters, we can model this set as i.i.d. samples of
a finite mixture,

p(ω(i)|θ) =

k∑
j=1

αjp(ω
(i)|z(i) = j,θ),

where the z(i)’s are latent variables, with z(i) = j
meaning the ith trajectory belongs to cluster j.
Each parameter αj = p(z(i) = j) is the mixing
probability, and θ a set of parameters character-
izing the distributions. The likelihood function of
the given set of trajectories can be written as

p(ω(1), . . . ,ω(m)|α,θ) =

m∏
i=1

p(ω(i)|α,θ)

=

m∏
i=1

k∑
j=1

αjp(ω
(i)|z(i) = j,θ). (5)

A popular distribution for modeling circular data
is the Von Mises distribution, making it a natu-
ral choice for our mixture model. This way, the
p(ω(i)|z(i) = j,θ) are Von Mises pdf’s. The pdf of
a multivariate Von Mises is [19]

p(ω;µ,κ,Λ) = T (κ,Λ)−1 exp
(
κT c(ω,µ)

+
1

2
s(ω,µ)TΛ s(ω,µ)

)
, (6)

where

c(ω,µ)T = [cos(ω1 − µ1), . . . , cos(ωd − µd)] ,

s(ω,µ)T = [sin(ω1 − µ1), . . . , sin(ωd − µd)] ,

and T (κ,Λ)−1 is a normalizing constant, which is
unknown in explicit form for d > 2. Parameters
µ and κ are the d-dimensional mean and concen-
tration of the distribution; Λ is a d × d symmetric
matrix (with zeros in the diagonal), where entry
Λij measures the dependence between ωi and ωj .
Matrix Λ can be seen as the analogous to the co-
variance matrix in a Gaussian distribution.

The usual choice for obtaining maximum likeli-
hood (ML) or maximum a posteriori (MAP) es-
timates of the mixture parameters is the EM al-
gorithm, which is an iterative procedure with two
steps [21]:

• E-step: Set w
(i)
j = p(z(i) = j|ω(i);

α,M ,K,L), where M , K, and L are
used in place of {µ1, . . . ,µk}, {κ1, . . . ,κk},
and {Λ1, . . . ,Λk}, respectively.

Using Bayes’ Theorem, the E-step reduces to
computing, for every i and j,

w
(i)
j =

αjp(ω
(i)|z(i) = j;µj ,κj ,Λj)∑k

l=1 αlp(ω
(i)|z(i) = l;µl,κl,Λl)

, (7)

where p(ω(i)|z(i) = j;µj ,κj ,Λj) is a multivari-
ate Von Mises pdf.

• M-step: this step requires maximizing the fol-
lowing function, with respect to the parameters
of the model:∑m

i=1

∑k
j=1 w

(i)
j ln

p(ω(i)|z(i)=j;µj ,κj ,Λj)p(z(i)=j;α)

w
(i)
j

The multivariate Von Mises pdf depends
on T (κj ,Λj), an unknown constant, which
presents a challenge for ML or MAP estima-
tion. To avoid having to use special numeric
procedures, we assume that the components of
the ω(i) vector are independent of the others,
which makes the multivariate Von Mises dis-
tribution equivalent to the product of d (the
number of features) univariate Von Mises dis-
tributions:

p(ω(i)|z(i) = j;µj ,κj ,Λj) =

d∏
p=1

eκ
p
j cos(ω(i)

p −µ
p
j)

2πI0(κpj)
,

(8)

where µpj , κ
p
j , and ω

(i)
p refer to the pth compo-

nent of vectors µj , κj and ω(i), respectively,
and I0 is the modified Bessel function of first
kind and order 0.

Using ML estimation, the update equations for
µql (the qth component of µl), αl and κql are as
follows:

µql = atan2

(∑m
i=1 w

(i)
l sinω

(i)
q∑m

i=1 w
(i)
l cosω

(i)
q

)
, (9)

αl =
1

m

m∑
i=1

w
(i)
l , (10)

κql = A−11

(∑m
i=1 w

(i)
l cos(ω

(i)
q − µql)∑m

i=1 w
(i)
l

)
, (11)

where A1(·) = I1(·)
I0(·) , with I1 and I0 denoting

the modified Bessel functions of the first kind
and orders 1 and 0, respectively.

5

In some cases, it is of interest to restrict κl, in
order to avoid overfitting small datasets. We refer
to this variant as a constrained Von Mises mixture
(VMM), as opposed to the unconstrained (previous)
case. To constrain the concentration parameter, the
components of the κl are forced to be the same, i.e.,
κ1l = κ2l = . . . = κdl = κl, so (11) is replaced by

κl = A−11

(
1

d

d∑
p=1

∑m
i=1 w

(i)
l cos(ω

(i)
p − µpl)∑m

i=1 w
(i)
l

)
. (12)

5.1. Prior on the Concentration Parameter

Due to the asymptotic behavior of the A−11 func-
tion, the estimation of the concentration parameter
is prone to numerical problems. One way to deal
with this is to introduce a prior, limiting its range
of possible values. In this work, the conjugate prior
of the Von Mises distribution is used [9],

p(κ; c,R0) =

{
1
K

eκR0

I0(κ)c
, κ > 0

0 , otherwise,
(13)

where K =
∫∞
0

eκR0

I0(κ)c
is a normalizing constant, and

c > 0 and R0 ≤ c are parameters that control the
shape of the prior. Using this prior, the update rule
for κql is:

κql = A−11

(
1

1+c

[∑m
i=1 w

(i)
l cos(ω(i)

q −µ
q
l)∑m

i=1 w
(i)
l

+R0

])
.

(14)

5.2. Algorithm Description

Algorithm 3: Mixture of Von Mises for trajec-
tory clustering algorithm.

Input: {ω(1), . . . ,ω(m)} and the number of
clusters, k

Output: {µ1, . . . ,µk}, {κ1, . . . ,κk} and α
1 Initialize α, {µ1, . . . ,µk}, {κ1, . . . ,κk}
2 repeat

// E-step

3 foreach i, j do

4 Set w
(i)
j :=

αjp(ω
(i)|z(i)=j;µj ,κj)∑k

j=1 αjp(ω
(i)|z(i)=l;µj ,κj)

5 end
// M-step

6 Update αj with Eq. (10) for j = 1 . . . , k
7 Update µpj with Eq. (9) for j = 1 . . . , k and

p = 1, . . . , d
8 Update κpj with Eq. (11), (12), or (14) for

j = 1 . . . , k and p = 1, . . . , d
9 until convergence condition is satisfied

// Compute cluster assignments

10 foreach i = 1, . . . ,m do

11 c(i) = arg max
j=1,...,k

w
(i)
j

12 end

To completely described the algorithm, an ini-
tialization procedure and a termination condi-
tion are needed. Regarding initialization, we set
αj = 1/k,∀j, that is, we assume all clusters are
equally likely; κj is initialized with the global κ
over all dimensions and all samples; the centroids
are initialized with the results of running k-means
with k-means++ initialization. Regarding termina-
tion, the algorithms are executed until the change
in likelihood is less than a fraction ε = 10−4 of its
current value.

5.3. Model Selection
One advantage of using probabilistic methods is

the ability to use formal approaches for model se-
lection, such as the MDL principle [17].

The MDL cost has two components: the length
of the model, L(H), and the length of data encoded
with the model, L(D|H). In our case, the MDL cost
can be shown to be

MDLcost =

−
m∑
i=1

ln

k∑
j=1

αjp(ω
(i)|z(i) = j,µj ,κj) +

c

2
lnm,

where c is the number of parameters of the model.
For unconstrained VMM’s, c = k × (2d + 1); for
constrained, c = k × (d+ 2).

For selecting the number of clusters, several val-
ues are tried, and the one minimizing the MDL cost
is chosen. To avoid local optima, EM is run several
times for each k, and only the highest likelihood
solution is considered [17].

6. Matrix Factorization
Nonnegative matrix factorization (NMF) is a spe-

cial type of matrix factorization where a nonnega-
tive data matrix, V , is decomposed as the product
of two low-rank matrices, W and H, also nonnega-
tive [15]. One of the reasons for the recent interest
NMF has received is its close relationship with k-
means. In fact, it has been shown that it is equiva-
lent to k-means, with appropriate constraints. Since
in many cases we are interested in factorizing ma-
trices with negative entries, variants such as semi-
NMF have been proposed [4].

Unfortunately, the constraints that make NMF
equivalent to k-means lead to an intractable prob-
lem, thus they must be relaxed. One way to do this
is by using sparse semi-NMF (SSNMF) [18], which
solves the following optimization problem:

min
W,H≥0

[
‖V −WH‖2F + η‖W‖2F + β

m∑
i=1

|hi|2
]
,

(15)
where |hi| is the `1-norm of the ith column of H,
while η and β are tuning parameters: η > 0 controls

6

the size of the elements of W , while β > 0 controls
the trade-off between sparseness and accuracy of
the approximation.

6.1. Application to Circular Data
Unfortunately, the standard factorization tech-

niques do not directly work with circular data. One
way to deal with this is to convert the angles to unit
vectors, which do not have the problems of circu-
lar data. This can be done by stacking the set of
trajectories, {ω(1), . . . ,ω(m)}, as columns of the Ω
matrix, and use the duality between 2D vectors and
complex numbers. This way, we can define matrix
V as:

V = ejΩ =

 | | |
ejω

(1)

ejω
(2) · · · ejω

(m)

| | |

 ,
where j is the imaginary unit and ejω

(i)

is the com-
plex vector:

ejω
(i)

=
[
ejω

(i)
1 , . . . , ejω

(i)
d

]T
,

where ω
(i)
p is the pth entry of trajectory ω(i). In

this work we use the exponential of a matrix as the
exponential of its entries. It can be shown that fac-
torizing this matrix is approximately equivalent to
minimizing the squares of the chords corresponding
to the differences between angles.

Using this matrix, we may use SSNMF for clus-
tering. One last step can be applied to avoid work-
ing with complex valued matrices: since the real
and imaginary parts of matrix V are treated inde-
pendently, one can get the same results by factor-
izing V ′ instead, where

V ′ =

[
<{ejΩ}
={ejΩ}

]
. (16)

The W matrix will change by a similar transforma-
tion. Since we are only interested in the angles, and
not the vectors themselves, the matrix of the shape
centroids is

W = arg (W ′1 + jW ′2) , (17)

where W ′1 and W ′2 are, respectively, the top and
bottom halves of the W ′ matrix obtained by fac-
torizing V ′. Function arg (·) returns the argument
of each entry of the input matrix. For the purpose
of this work, “The NMF MATLAB Toolbox” was
used [18].

6.2. Algorithm Description
The complete clustering algorithm using SSNMF

is described in Algorithm 4.
The η parameter is set to 0 in our tests, as there

is no interest in constraining the W matrix. For β,
the default value is 0.1.

Algorithm 4: Sparse NMF applied to cluster-
ing of trajectories.

Input: Set of trajectories, {ω(1), . . . ,ω(m)},
number of desired clusters, k and η and β
parameters

Output: Clustering assignments, c(i)’s, and, if
needed, centroid matrix, W

1 Compute V ′ matrix from Eq. (16).
2 Using “The NMF MATLAB Toolbox”, find W ′

and H minimizing Eq. (15).
3 Compute W from Eq. (17). // Compute cluster

assignments

4 foreach i = 1, . . . ,m do

5 c(i) = arg max
j=1,...,k

Hji

6 end

6.3. Model Selection
The MDL principle can not be directly applied

to SSNMF, but other methods can be used. The
elbow method works the same way as for k-means,
but uses a different cost function: J(V ′,W ′, H) =
‖V ′ −W ′H‖2F . The so-called consistency method
works as follows [14]:

1. For each k, compute the consistency matrix:

Ck(i, j) = 1 ⇐⇒ i and j are in the same cluster

2. Repeat the previous step multiple times, and
compute the mean consistency matrix.

3. Finally, compute the consistency of each clus-
tering using:

ρk =
1

n2

m∑
i=1

m∑
j=1

4

(
Ĉk(i, j)− 1

2

)2

, 0 ≤ ρk ≤ 1,

and choose k where ρk drops.

The reasoning behind this choice for k is that, for
the right k, SSNMF should be consistent, but not
for higher k’s. For smaller ones, it may or may not
be so.

7. Results
In this section, k-means, unconstrained and con-

strained VMM’s, and SSNMF are tested and com-
pared, on both synthetic and real datasets.

7.1. Synthetic Datasets
The performance of the proposed algorithms is

analyzed using the following two datasets:

• The roundabout dataset (Figure 5) models a
roundabout where vehicles enter at the bot-
tom and circulate counterclockwise. There are
4 possible exits, and each of these 4 clusters
is composed of 20 noiseless trajectories. The

7

Figure 5: Roundabout synthetic dataset and its 4
clusters.

radius and the center of the roundabout were
randomly generated for each trajectory, mak-
ing their shapes a little different.

• The circles dataset (Figure 6) shows 100 circu-
lar trajectories, in 4 equal size clusters. The
top two clusters correspond to objects circu-
lating counterclockwise, while the bottom two,
to objects circulating clockwise. The radius
and center of each trajectory change between
samples, and each trajectory starts at a ran-
dom orientation in the interval [0, 2π[. To ig-
nore the changes in orientation, we cluster the
differences between angles of the tangents, in-
stead of the angles themselves. This way, there
are two distinguishable clusters in the dataset,
composed by the top and bottom circles.

Figure 6: Circles dataset and its 2 clusters. The
two top circles rotate counterclockwise, while the
bottom two rotate clockwise.

• The Noisy dataset (Figure 7(a)) was designed
for testing the effect of noise on the perfor-
mance of the algorithms. This dataset has 4
clusters, with 50 trajectories each, and is cor-
rupted by zero mean Gaussian noise, with a
standard deviation of 1.5 m.

• The Concentration dataset (Figure 7(b)) was

created to illustrate the advantages of proba-
bilistic modeling (VMM’s) over the other tech-
niques. This dataset contains 100 trajectories,
equally distributed between the two clusters,
and was generated by the same mean trajec-
tory, but with different variances (standard de-
viations of 0.5 m and 2 m).

(a) Noisy Tracks synthetic
dataset, with 4 clusters.

(b) Concentration dataset
and its 2 clusters.

Figure 7: Noisy datasets.

For the noiseless and Concentration datasets, no
smoothing was used. For the Noisy dataset, several
possible values for p were tested. In the noiseless
datasets, 50 features were used, and 30 in the other
two. Each of the 4 clustering algorithms was run
on these datasets and given the right number of
clusters. This was repeated 1000 times, and the
percentage of trials the correct clustering was found
is shown in Table 1.

Table 1: Percentage of times the optimal assign-
ment was achieved out of 1000 trials in the synthetic
datasets. The ‘*’ indicate numerical issues.

Dataset k-means unconstrained VMM constrained VMM SSNMF

Roundabout 96.7% 96.7% 96.7% 100.0%

Circles 100.0% 100.0%* 100.0%* 100.0%

Noisy (p = 1) 58.1% 58.4% 58.4% 42.6%

Noisy (p = 0.5) 58.8% 59.0% 59.0% 64.3%

Noisy (p = 0.1) 65.4% 65.4% 65.4% 83.6%

Noisy (p = 0.01) 82.4% 82.4% 82.4% 92.4%

Noisy (p = 1e− 5) 99.1% 99.1% 99.1% 35.7%

Noisy (p = 0) 99.7% 99.7% 99.7% 34.6%

Concentration 0.0% 68.9% 79.4% 0.0%

In both noiseless datasets, the true clusterings
were found most of the time. There were some nu-
merical issues with the circles dataset, as the tra-
jectories are too similar. To avoid this, a prior with
c = −R0 = 5e− 5 was introduced and used in this
and all the following tests. In the Noisy dataset, it
was observed that below a certain level of smooth-
ing, all algorithms performed better with the de-
crease in p. Stronger smoothing led to poorer re-
sults for SSNMF, but better for the other methods.
It is important to note, however, that shape infor-
mation is lost with too much smoothing, so it is not
advised. Overall, the best results were obtained for

8

p = 0.01. In the Concentration dataset, only the
VMM’s were able to find the right clusters, as ex-
pected. It is interesting to note that the constrained
version outperformed the unconstrained one, prob-
ably due to the latter having too many degrees of
freedom for the available dataset.

7.2. Influence of β on SSNMF Results
In the previous tests, the β parameter of SSNMF

was set to 0.1. To determine its effect on the re-
sults, a parametric study was conducted, using the
Noisy dataset. With p = 0.01, β was varied, and
the tests were repeated 100 times. Table 2 summa-
rizes the results. For β ∈ [0.1, 0.5], performance is
approximately constant, thus justifying the choice
of β used. Low and high β’s give poorer results.

Table 2: Percentage of times the optimal assign-
ment was achieved out of 100 trials for various val-
ues for β.
β 0 10−3 0.01 0.1 0.2 0.5 1 2 5 10

Results 1% 32% 92% 94% 92% 91% 82% 63% 61% 63%

7.3. Model Selection on the Synthetic Datasets
In the previous tests, the algorithms were given

the correct number of clusters. Since this is not the
case in real problems, we now evaluate the model
selection criteria. For this, k was varied in the range
1, . . . , 10 and the tests were repeated 20 times for
each k, to avoid local optima, for each dataset and
algorithm. A parametric study of the influence of p
on model selection was also performed. Results are
shown in tables 3 and 4.

In the noiseless datasets, the elbow method (us-
ing k-means and SSNMF) found the right number
of clusters. MDL minimization using an uncon-
strained VMM also found the right k in these cases
and in the Concentration dataset. In the noisy
dataset, only MDL minimization using an uncon-
strained VMM found the true k, except for very
small p’s. This is because too much smoothing
makes local patterns emerge, and also causes higher
likelihoods. The other two criteria, MDL minimiza-
tion using constrained VMM’s and consistency per-
formed poorly. The former performed poorly be-
cause the VMM uses very few parameters, and so
too complex models are not penalized enough. The
latter, on the other hand, performed badly because
SSNMF was consistent even for values of k higher
than the true one.

7.4. Real Datasets
The campus dataset is shown in Fig. 8, and is

composed of 134 trajectories. Since the number of
clusters is unknown, the methods for model selec-
tion were executed 20 times for each k between 1
and 20. By trial-and-error, we set p = 0.001 and

Table 3: Results of automatic model selection cri-
teria.

Method Roundabout Circles Concentration

Unconstrained VMM 4 2 4

Constrained VMM 10 2 5

k-means 4 2 –

SSNMF (elbow/consistency) 4/5 2/3 –/–

Table 4: Influence of p on model selection in the
noisy tracks dataset. The true number of clusters
is 4 and the ‘*’ indicates no clear k could be chosen.

Algorithm p = 1 p = 0.5 p = 0.1 p = 0.01 p = 10−5 p = 0

Unconstrained VMM 4 4 4 4 9 7

Constrained VMM 7 5 5 7 10 10

k-means 4 4/5* 4/5* 4/5* 4 4

SSNMF (elbow method) 3 3 3 3/4* 4 2

SSNMF (consistency) 3 3 3 3 2 2

(a) 7 of the 14 clusters found
in the IST Campus dataset.

(b) The other 7 clusters.

Figure 8: The 14 clusters found in IST Campus
dataset. They are separated over 2 plots for facility
of visualization.

100 features were used.

Only the MDL minimization using the uncon-
strained VMM, which found the 14 clusters shown
in Fig. 8, gave meaningful results. For having
few parameters, MDL minimization with the con-
strained VMM chooses the biggest k tested. Using
the elbow method, on the other hand, no elbow was
found for k-means, and only a “weak” elbow was
found at k = 3 using SSNMF, but it gives meaning-
less clusters. SSNMF was highly consistent for all
k’s, and the only sharp decrease happened at k = 4,
which gives poor clusters.

The staircase dataset is shown in Fig. 9. It shows
a series of people going up and down the stairs,
tracked from two different views, totaling 90 differ-
ent trajectories. By trial an error, p = 0.01 was
found, and 50 features were used. The number of
clusters was varied from 1 to 12 and the tests were
repeated 20 times, to avoid bad local optima. In
this case, all methods except MDL minimization us-
ing the constrained VMM found 4 clusters, shown
in Fig. 9. This criteria failed for not penalizing
enough more complex models.

9

(a) 2 clusters of people going
down the stairs.

(b) The other 2 clusters, with
people going up the stairs.

Figure 9: Clusters found in the Staircase dataset.

8. Conclusions

In this work, we have presented a novel approach
to trajectory clustering, based on shape, and 3 al-
gorithms were developed for this purposed. These
methods were then tested on both synthetic and
real datasets. In both cases, all algorithms could
find good cluster assignments when given the de-
sired number of clusters. With model selection, the
results differed much between techniques. Over-
all, the best method was MDL minimization using
unconstrained VMM’s, which found good clusters
most of the time.

Possible future work includes an extension of this
methodology to 3-dimensional trajectories and an
adaptation of this methodology to clustering parts
of trajectories, for example.

References
[1] D. Arthur and S. Vassilvitskii. K-means++: The Ad-

vantages of Careful Seeding. In Proceedings of the Eigh-
teenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’07, pages 1027–1035, Philadelphia,
PA, USA, 2007. Society for Industrial and Applied
Mathematics.

[2] R. A. Becker, R. Caceres, K. Hanson, J. M. Loh, S. Ur-
banek, A. Varshavsky, and C. Volinsky. Route Clas-
sification Using Cellular Handoff Patterns. In Proceed-
ings of the 13th International Conference on Ubiquitous
Computing, UbiComp ’11, pages 123–132, New York,
NY, USA, 2011. ACM.

[3] D. Brillinger, H. K. Preisler, A. A. Ager, and J. G.
Kie. An exploratory data analysis (EDA) of paths of
moving animals. In Journal of Statistical Planning and
Inference, pages 43–63, May 2004.

[4] A. Caner Türkmen. A Review of Nonnegative Matrix
Factorization Methods for Clustering. ArXiv e-prints,
July 2015.

[5] C. De Boor. A Practical Guide to Splines. Applied
Mathematical Sciences. Springer, Berlin, 2001.

[6] M. Demirbas, C. Rudra, A. Rudra, and M. A. Bayir.
iMAP: Indirect measurement of air pollution with cell-
phones. In Pervasive Computing and Communications,
2009. PerCom 2009. IEEE International Conference
on, pages 1–6, March 2009.

[7] J. B. Elsner. Tracking Hurricanes. Bulletin of the Amer-
ican Meteorological Society, 84(3):353–356, 2003.

[8] N. Ferreira, J. T. Klosowski, C. E. Scheidegger, and
C. T. Silva. Vector Field k-Means: Clustering Tra-
jectories by Fitting Multiple Vector Fields. CoRR,
abs/1208.5801, 2012.

[9] D. Fink. A compendium of conjugate priors, 1997.

[10] Z. Fu, W. Hu, and T. Tan. Similarity based vehicle tra-
jectory clustering and anomaly detection. In IEEE In-
ternational Conference on Image Processing 2005, vol-
ume 2, pages II–602–5, Sept 2005.

[11] S. Gaffney and P. Smyth. Trajectory Clustering with
Mixtures of Regression Models. In Proceedings of
the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’99,
pages 63–72, New York, NY, USA, 1999. ACM.

[12] W. Hu, D. Xie, Z. Fu, W. Zeng, and S. Maybank.
Semantic-Based Surveillance Video Retrieval. IEEE
Transactions on Image Processing, 16(4):1168–1181,
April 2007.

[13] A. K. Jain. Data Clustering: 50 Years Beyond K-means.
Pattern Recognition Letters, 31(8):651–666, Jun 2010.

[14] J. Kim and H. Park. Sparse Nonnegative Matrix Fac-
torization for Clustering. 2008.

[15] D. D. Lee and H. S. Seung. Learning the parts of objects
by non-negative matrix factorization. Nature, 401:788–
791, Oct 1999.

[16] J. Lee, J. Han, and K. Whang. Trajectory Clustering:
A Partition-and-Group Framework. In In SIGMOD,
pages 593–604, 2007.

[17] T. C. M. Lee. An Introduction to Coding Theory and
the Two-Part Minimum Description Length Principle.
International Statistical Review, 69(2):169–183, 2001.

[18] Y. Li and A. Ngom. The non-negative matrix factor-
ization toolbox for biological data mining. Source Code
for Biology and Medicine, 8(1):1–15, 2013.

[19] K. V. Mardia, G. Hughes, C. C. Taylor, and H. Singh. A
Multivariate Von Mises Distribution with Applications
to Bioinformatics. The Canadian Journal of Statistics
/ La Revue Canadienne de Statistique, 36(1):99–109,
2008.

[20] J. C. Nascimento, M. A. T. Figueiredo, and J. S. Mar-
ques. Activity Recognition Using a Mixture of Vec-
tor Fields. IEEE Transactions on Image Processing,
22(5):1712–1725, May 2013.

[21] A. Ng. Lecture Notes. CS229: Machine Learning. Stan-
ford University, 2003.

[22] M. Pierobon, M. Marcon, A. Sarti, and S. Tubaro. Clus-
tering of human actions using invariant body shape de-
scriptor and dynamic time warping. In IEEE Confer-
ence on Advanced Video and Signal Based Surveillance,
2005., pages 22–27, Sept 2005.

[23] M. Vlachos, G. Kollios, and D. Gunopulos. Discover-
ing similar multidimensional trajectories. In Data En-
gineering, 2002. Proceedings. 18th International Con-
ference on, pages 673–684, 2002.

[24] J. Wei, H. Yu, J. H. Chen, and K. L. Ma. Parallel
clustering for visualizing large scientific line data. In
Large Data Analysis and Visualization (LDAV), 2011
IEEE Symposium on, pages 47–55, Oct 2011.

10

