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Abstract—The Kaczmarz algorithm is an iterative method that solves
linear systems of equations. It stands out among iterative algorithms when
dealing with large systems for two reasons. Firstly, in each iteration,
the Kaczmarz algorithm uses a single equation, resulting in minimal
computational work per iteration. Secondly, solving the entire system
may only require a small subset of equations. These characteristics have
attracted significant attention to the Kaczmarz algorithm. Researchers
have observed that randomly choosing equations can improve the
convergence rate of the algorithm. This insight led to the development
of the Randomized Kaczmarz algorithm and, subsequently, several other
variations emerged.

In this thesis, we analyze the behavior of the Kaczmarz method and
its sequential variations. We found that a randomized version of the
algorithm that samples equations without replacement can outperform
both the original and Randomized Kaczmarz methods.

Additionally, we explore approaches to parallelizing the Kaczmarz
method. In particular, we implement the Randomized Kaczmarz with
Averaging method that, for noisy systems, unlike the standard Kaczmarz
algorithm, reduces the final error of the solution. While efficient paral-
lelization of this algorithm is not achievable, we introduce a block version
of the averaging method that exhibits significantly improved speedups
compared to its sequential counterpart.

Index Terms—Linear systems; Iterative algorithms; Parallel and dis-
tributed computing; Rate of convergence; Least-Squares problem

I. INTRODUCTION

Solving linear systems of equations is a fundamental part of linear
algebra and, consequently, of mathematics. One example of the
application of solving linear systems in the real-world are problems
derived from computed tomography. During a CT scan, one has
to reconstruct an image of the scanned body using radiation data
measured by detectors. Nonetheless, physical quantities are always
measured with some error and, since CT data is not an exception, the
problem of reconstructing images is hampered by noise. Therefore,
it is important to create efficient computer algorithms that can
accurately solve linear systems, especially for large-scale problems
that generally take longer to solve.

There are two types of numerical methods used to solve linear
systems of equations: direct methods and iterative methods. A direct
method is characterized by a closed-form solution that can be
computed in a finite number of steps. Direct methods compute
solutions with high levels of precision but they can take a long
time to compute, especially if matrices are large. Iterative methods
calculate an approximate solution that gets improved with the number
of iterations. Depending on the required precision of the solution,
iterative methods can be faster than direct methods, particularly for
large systems.

There are two special classes of iterative methods: row-action
methods and column-action methods. These make use of a single
row or column of the system’s matrix per iteration. Each iteration
of these methods has diminutive computational work compared with
other iterative methods that use the entire matrix. An example of a
row-action algorithm is the Kaczmarz algorithm, the focus of this
dissertation.

Many real-world problems consist of large linear systems where
each equation corresponds to a data entry. Methods like Kaczmarz
that use one equation at a time can be used in real-time while data
is being collected. Furthermore, if the amount of data is so large that

storing it in a machine is not possible, row/column action methods
are still able to solve the system.

To improve the performance of iterative methods we can use
parallel computing. Parallelization, in the context of parallel and
distributed computing, refers to the technique of breaking down
a computational task or workload into smaller sub-tasks that can
be executed simultaneously or in parallel. It involves dividing the
problem into multiple independent parts and assigning each part to a
separate processing unit or computing resource.

There are two types of parallelization: using shared memory or
using distributed memory. In shared memory, the processing units
correspond to cores inside a single machine; in distributed memory,
several machines can be connected physically or within a network.
Since there are advantages and disadvantages to both approaches, it
is also an option to combine shared and distributed memory.

The main goal of parallelization is to improve performance by de-
creasing the execution time of a given task. However, parallelizations
that use distributed memory have the ability to process large amounts
of data that could not be processed if we were to use one machine
only. Parallelization is not a straightforward technique since we must
consider data dependencies between tasks, the communication over-
head between processing units, and synchronization points, among
others.

A. Problem Statement
Many variations of the original Kaczmarz method have been

proposed in the literature over the years. However, there is no
investigation that compares all the variations between themselves. Our
first task is to analyze the behavior of Kaczmarz-based methods that
sample matrix rows according to different criteria. More specifically,
we evaluate the relationship between the number of iterations needed
to find a solution and the corresponding execution time for systems
with different dimensions.

After a thorough analysis of the sequential variations of the Kacz-
marz method, we parallelize the method using shared and distributed
memory separately and the combination of both.

B. Organization of the Document
The organization of this document is as follows. In Section II we

describe the several types of linear systems and respective solutions
and how they can be obtained. Furthermore, we introduce the original
algorithm (Cyclic Kaczmarz algorithm) and the Randomized Kacz-
marz algorithm as iterative methods that solve linear systems, together
with other randomized variations. In Section III we introduce some
of the methods inspired by the Randomized Kaczmarz algorithm. In
Section IV we present the implementation details of the sequential
version of the algorithm and some of its variations, together with
the experimental results. In Sections V and VI we discuss several
approaches to parallelizing the Kaczmarz method using shared and
distributed memory, respectively. Finally, in Section VII, we conclude
this dissertation and discuss future work.

II. SYSTEMS OF LINEAR EQUATIONS: PROPERTIES AND

ALGORITHMS

We start this section by outlining the categorization of linear
systems based on factors such as matrix dimensions and the existence
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of a solution. We then elaborate on the methods used to solve linear
systems and the corresponding computational algorithms employed.
Finally, we present the Kaczmarz algorithm, along with its key
attributes, and subsequently introduce some randomized variants.

A. Types of Linear Systems

A linear system of equations can be written as Ax = b, where
A is an m × n matrix, x ∈ Rn is called the solution and b is a
vector in Rm. Linear systems can be classified based on distinct
criteria. When we consider the existence of a solution, systems
can be categorized as either consistent, if there is at least one
solution for the system, or inconsistent, if there is no solution. When
considering the relationship between the number of equations and
variables, systems can be classified as overdetermined, if m ≥ n,
or underdetermined, if m < n. For overdetermined consistent
systems, we are interested in finding the exact solution of the
system, x∗. However, most real-world overdetermined systems are
inconsistent and, in that case, we are interested in finding the least-
squares solution, that minimizes the residual. For underdetermined
systems, there are more degrees of freedom than equations, meaning
that systems often have infinite solutions. For these cases, we are
interested in finding the least Euclidean norm solution.

B. How to Solve Linear Systems

There are two classes of numerical methods that solve linear
systems of equations: direct and indirect or iterative. Direct methods
compute the solution of the system in a finite number of steps.
Although solutions given by direct methods have a high level of
precision, the computational cost and memory usage can be high for
large matrices when using these methods. Iterative methods generate
a sequence of approximate solutions that get increasingly closer
to the exact solution with each iteration. They are generally less
computationally demanding than direct methods and the precision
of the solutions given by iterative methods can be controlled by
external parameters. Therefore, if high precision is not a requirement,
iterative methods can outperform direct methods, especially for large
and sparse matrices. A particular class of iterative methods is row-
action methods. These use one row of matrix A in each iteration.
The Kaczmarz method, that will now be introduced, is one example.

C. Kaczmarz Method

The Kaczmarz method [1] is an iterative algorithm that solves
consistent linear systems of equations Ax = b, where A is a m× n
matrix with m ≥ n and b ∈ Rm. Let A(i) be the i-th row of A and bi
be the i-th coordinate of b. Each iteration x(k+1) can be thought of as
the projection of x(k) onto the hyperplane defined by ⟨A(i), x⟩ = bi.
The original version of the algorithm can then be written as

x(k+1) = x(k) + αi
bi − ⟨A(i), x(k)⟩
∥A(i)∥22

A(i)T , (1)

with i = k mod m and where αi is a relaxation parameter that is
set to 1. Each iteration of the Kaczmarz method can be thought of
as the projection of x(k) onto Hi, the hyperplane defined by Hi =
x : ⟨A(i), x⟩ = bi. Since the rows of matrix A are used in a cyclic
manner, this algorithm is also known as the Cyclic Kaczmarz (CK)
method. The Kaczmarz method also converges to xLN in the case
of underdetermined systems. For highly coherent matrices, that is,
matrices for which the angle between consecutive rows is small, the
convergence of the cyclic Kaczmarz method can be slow. However,
convergence can be accelerated if the rows of the matrix are used in
a random fashion. This was experimentally observed and led to the
development of randomized versions of the Kaczmarz method.

D. Randomized Kaczmarz Method

Kaczmarz [1] showed that, if the linear system is solvable, the
method converges to the solution x∗, but the rate at which the
method converges is difficult to quantify. Furthermore, it has been
observed [2]–[4] that, instead of using the rows of A in a cyclic
manner, choosing rows randomly can improve the rate of convergence
of the algorithm. Therefore, to tackle these two questions, Strohmer
and Vershynin [5] introduced a randomized version of the Kaczmarz
method that converges to x∗. Instead of selecting rows in a cyclical
fashion, in the randomized version, in each iteration, we use the row
with index i, chosen at random from the probability distribution

P{i = l} = ∥A
(l)∥2

∥A∥2F
(l = 1, 2, ...,m) . (2)

This version of the algorithm is called the Randomized Kaczmarz
(RK) method. Strohmer and Vershynin proved that RK has exponen-
tial error decay. Moreover, they showed that in extremely overdeter-
mined systems the Randomized Kaczmarz method outperforms all
other known algorithms. They reignited not only the research on the
Kaczmarz method but also triggered much investigation into devel-
oping and analyzing randomized linear solvers. Later, Needell [6]
extended these results for inconsistent systems, showing that RK
reaches an estimate that is within a fixed distance from the solution,
called the convergence horizon.

E. Simple Randomized Kaczmarz Method

Apart from the comparison between the original Kaczmarz method
with the Randomized Kaczmarz method, Strohmer, and Vershynin [5]
also compared both these methods with the Simple Randomized
Kaczmarz (SRK) method. In this method, rows are sampled using a
uniform probability distribution. Schmidt [7] proved the convergence
rate for this method and showed that RK should be at least as fast
as SRK.

F. Sampling rows using quasirandom numbers

We previously mentioned that using consecutive rows from highly
coherent matrices can make convergence slow and that sampling rows
in a random fashion can improve the rate of convergence. However,
when sampling random numbers, these can form clumps, meaning
that consecutively sampled rows can have small angles between them.
This is where quasirandom numbers come in: they are sequences of
numbers that are evenly distributed and have been shown to improve
the convergence rate of Monte-Carlo-based methods. Several low-
discrepancy sequences can be used to generate quasirandom. Here
we will work with two sequences that are widely used: the Halton
sequence [8] and the Sobol sequence [9].

III. THE REVIVAL OF ROW AND COLUMN ACTION METHODS

The work by Strohmer and Vershynin in [5] motivated other
developments in row/column action methods by randomizing classical
algorithms. In this section, we present several iterative methods, some
of which are modifications of the RK method.

A. Randomized Coordinate Descent Method

Leventhal and Lewis [10] developed the Randomized Gauss-Seidel
(RGS) algorithm. Like RK, for overdetermined consistent systems,
this algorithm converges to the unique solution x∗. Unlike RK, for
overdetermined inconsistent systems, RGS converges to the least
squares solution xLS . RGS is a column-action method where the
columns are sampled with probability proportional to their norms.
Leventhal and Lewis also showed that, like RK, RGS converges
linearly in expectation.
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B. Randomized Extended Kaczmarz Method
The Randomized Kaczmarz method can only be applied to solv-

able linear systems but most systems in real-world applications
are affected by noise, and therefore, are inconsistent. To extend
the work developed by Strohmer and Vershynin [5] to inconsis-
tent systems, Zouzias and Freris [11] introduced the Randomized
Extended Kaczmarz (REK) method. This method is a mixture of
a row and column action method since, in each iteration, we use
one row and one column of matrix A, and it converges linearly in
expectation to the least-squares solution, xLS . Rows are chosen with
probability proportional to the row norms and columns are chosen
with probability proportional to column norms.

C. Greedy Randomized Kaczmarz Method
The Greedy Randomized Kaczmarz (GRK) method introduced

by Bai and Wu [12] is a variation of the Randomized Kaczmarz
method with a different row selection criterion. Note that the selection
criterion for rows in the RK method can be simplified to uniform
sampling if we scale matrix A with a diagonal matrix that normalizes
the Euclidean norms of all its rows. But, in iteration k, if the residual
vector r(k) = b−Ax(k) has |r(k)(i)| > |r(k)(j)|, we would like for
row i to be selected with a higher probability than row j. In summary,
GRK differs from RK by selecting rows with larger entries of the
residual vector with higher probability. The Greedy Randomized
Kaczmarz method presents a faster convergence rate when compared
to the Randomized Kaczmarz method, meaning that it is excepted
for GRK to outperform RK.

D. Selectable Set Randomized Kaczmarz Method
Just like the Greedy Randomized Kaczmarz method, the Selectable

Set Randomized Kaczmarz (SSRK) method [13] is a variation of the
Randomized Kaczmarz method with a different probability criterion
for row selection that avoids sampling equations that are already
solved by the current iterate. The set of equations that aren’t yet
solved is referred to as the selectable set, which is updated in each
iteration. There are two ways to update the selectable set, described
by the variations of the SSRK method known as the Non-Repetitive
Selectable Set Randomized Kaczmarz (NSSRK) method and the
Gramian Selectable Set Randomized Kaczmarz (GSSRK) method.
In the NSSRK method, any row can be chosen except the row that
was used in the previous iteration. In the GSSRK, rows that are
orthogonal to the rows used in the previous iteration should not be
chosen in the current iteration, which can be verified by checking
null entries of the Gramian matrix G = ATA.

E. Randomized Kaczmarz with Averaging method
The Randomized Kaczmarz method is difficult to parallelize since

it uses sequential updates. Furthermore, just as was mentioned before
RK does not converge to the least-squares solutions when dealing
with inconsistent systems. To overcome these obstacles, the Random-
ized Kaczmarz with Averaging (RKA) method [14] was introduced
by Moorman et al. It is a block-parallel method that, in each iteration,
computes multiple updates that are then gathered and averaged. Let
q be the number of threads and τk be the set of q rows randomly
sampled in each iteration. In that case, the Kaczmarz step can be
written as

x(k+1) = x(k) +
1

q

∑
i∈τk

wi
bi − ⟨A(i), x(k)⟩
∥A(i)∥22

A(i)T (3)

where wi are the row weights. The projections corresponding to each
row in set τk should be computed in parallel. The authors of this
method have shown that not only has RKA linear convergence like
RK but that it is also possible to decrease the convergence horizon for
inconsistent systems if more than one thread is used. Furthermore,

that decrease is proportional to the number of threads. For the special
case of uniform row weights, that is wi = α, the authors give some
insight into how to choose α to improve convergence. For a consistent
system, the optimal value for α is:

α∗ =


q

1 + (q − 1)smin
, smax − smin ≤

1

q − 1
2q

1 + (q − 1)(smin + smax)
, smax − smin >

1

q − 1

(4)

where smin = σ2
min(A)/∥A∥2F and smax = σ2

max(A)/∥A∥2F .
Although the authors proved that, if the computation of the q
projections can be parallelized, RKA can have a faster convergence
rate than RK, they did not implement the algorithm using shared or
distributed memory, meaning that no results regarding speedups are
presented.

IV. SEQUENTIAL VERSION
In this section, we evaluate the performance of sequential im-

plementations of the Kaczmarz method and some of its variants.
Section IV-A presents the implementation details for the considered
variants of the Kaczmarz method, as well as a description of the
experimental setup. Section IV-B discusses the obtained experimental
results.

A. Implementation
We implemented all the sequential methods previously discussed.

Furthermore, since several authors have found that sampling without
replacement can be an effective row selection criterion [15], we also
developed the Simple Randomized Kaczmarz Without Replacement
method (SRKWOR). In sampling without replacement, after an
observation is selected, it cannot be selected again. This can be
accomplished by working with an array of row indices that is shuffled
during pre-processing.

To motivate the parallelization of the Kaczmarz method, it is worth
showing that it can outperform the celebrated Conjugate Gradient
method. Therefore, other than the Kaczmarz method and its variants,
we will also use the Conjugate Gradient (CG) and Conjugate Gradient
for Least-Squares (CGLS) methods from the EIGEN 1 linear algebra
library.

Simulations were implemented in the C++ programming language;
its source code and corresponding documentation are publicly avail-
able 2. All experiments were carried out on the Accelerates Cluster 3.
This cluster has 1600 cores distributed over 80 nodes, each of them
with two 2.8 GHz central processing units (Intel Xeon E5-2680 v2
CPU) with 32 GB memory.

1) Stopping Criterion
Since the Kaczmarz method and its variants are iterative methods,

it is required to define a stopping criterion. For the implemented
methods that solve consistent systems, the chosen stopping criterion
is made up of two conditions:
• Condition 1 - The squared norm of the difference between the

current and previous iterations must not surpass a certain threshold
ε1, that is, ∥x(k)−x(k−1)∥2 < ε1. This means that we have reached
a point where barely any changes are being made to the estimate
of the solution. This condition by itself is not enough since, in
the randomized versions, there is a chance that the same row is
chosen in two consecutive iterations, meaning that the estimate of
the solution is not going to change between those iterations, and
thus ∥x(k) − x(k−1)∥2 = 0.

• Condition 2 - If the first condition holds, a second test is made
to confirm that the solution has been found. Since the residual

1https://eigen.tuxfamily.org/index.php?title=Main Page
2Code available here: https://github.com/inesalfe/Thesis-Kaczmarz.git
3http://epp.tecnico.ulisboa.pt/accelerates/

https://eigen.tuxfamily.org/index.php?title=Main_Page
https://github.com/inesalfe/Thesis-Kaczmarz.git
http://epp.tecnico.ulisboa.pt/accelerates/
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r = b − Ax(k) should be zero for the solution, we check if the
squared norm of the residual is also inferior to a certain threshold
ε2, that is, ∥r∥2 < ε2. This parameter describes how accurate the
solution is.

Note that the computation of the residual in the second condition is
a very computationally expensive task. To make the stopping criteria
as efficient as possible two modifications were introduced. Firstly,
since the number of iterations for the Kaczmarz method is usually
very high the first condition of the stopping criteria is only verified
every 1000 iterations. Second, to reduce the number of times that the
residual is calculated, the first condition was defined to be more strict
that the second one. This can be accomplished by using ε1 = 10−25

and ε2 = 10−10.

CG and CGLS have a different stopping criterion than RK, based
on a maximum number of iterations and/or an upper bound for the
relative residual error (∥Ax(k)−b∥/∥b∥). To ensure a fair comparison
between the EIGEN methods and RK we must make a few changes.
First, we determine the number of iterations that the different methods
take to achieve a given error. Then we use those numbers as the
maximum number of iterations and measure the execution time of
the methods.

The methods that solve least-squares problems (REK and RGS)
also require different stopping criteria: for overdetermined inconsis-
tent systems the residual is never zero and the second condition
cannot be used. Similarly to the previous case, we compute the
number of iterations for RK, CG, and CGLS to reach the error upper
bound ∥x(k)−xLS∥2 < ϵ3 = 10−10 and then measure the execution
time of those iterations.

2) Datasets

The Kaczmarz method and its variants were tested for dense
matrices using artificial datasets generated using C++. Two main
datasets were generated: one with contrasting row norms and a second
one with coherent rows. The goal of the first dataset was to evaluate
how different row selection criteria perform against matrices with
contrasting row norms. The goal of the second dataset was to compare
the randomized versions with the original version of the Kaczmarz
method for systems with coherent rows.

In the first dataset matrix entries were sampled from normal
distributions where the average µ and standard deviation σ were
obtained randomly. For every row, µ is a random number between
−5 and 5 and σ is a random number between 1 and 20. To guarantee
a unique solution for consistent systems the solution vector x is
sampled from a normal distribution with µ and σ using the same
procedure as before, and vector b is calculated as the product of A and
x. The goal of the second dataset is to have coherent rows. This can
be achieved by having consecutive rows with few changes between
them. Entries are sampled from a normal distribution N(2, 20) but
each two consecutive rows only differ in 5 elements.

Finally, a dataset with inconsistent systems was generated to test
the methods that solve least-squares problems (REK and RGS). This
was accomplished by adding an error term to the consistent systems
from the first dataset sampled from a normal distribution N(0, 1).

3) The Effect of Randomization

Since the row selection criterion has a random component in most
variants of the algorithm, the solution vector x, the maximum number
of iterations, and the running time varies with the chosen seed for the
random number generator. To get a robust estimate of the number of
iterations and execution times, for each input, the algorithm is run
10 times with different seeds, and the solution x is calculated as the
average of the outputs from those runs.
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Fig. 1. Error as a function of the number of iterations for an 80000× 1000
overdetermined system for the Randomized Kaczmarz method.

B. Results

C. Randomized Kaczmarz Algorithm

The simulations for the RK method in this section used the first
dataset. We start with the analysis of the method’s convergence,
shown in Figure 1. Note that the y-axis scale is logarithmic, meaning
that the error decreases exponentially with the number of iterations,
proving that the method exhibits linear convergence.

The following analysis focuses on the number of iterations and
execution time as functions of the number of rows, m, and columns,
n. From Figure 2a it is clear that the number of iterations increases
with n. Increasing n while maintaining m makes systems harder
to solve since there are more variables for the same number of
restrictions. However, for a given value of n, there isn’t a clear
correlation between execution time and the number of rows. This is
due to the connection between rows and information: for overdeter-
mined systems, more rows translate into more information to solve
the system. Figure 2b shows that the total computation time also
increases with n due to the correlation with the number of iterations.
However, for a given value of n, systems with a larger number of
rows may take more or less time than systems with a smaller number
of rows. To better understand the dependency of the total time with
n, the time per iteration was computed and is shown in Figure 2c. We
can see that the time per iteration increases with n and that iterations
for systems with larger m take longer to compute. This is excepted
since the work per iteration depends on n and since the stopping
criteria require computing the norm of the residual, which depends
on m. For smaller n, since the number of iterations is similar for
all values of m, and iterations for larger m take longer to solve, the
total time is larger for larger m. When n increases, the number of
iterations for smaller m increases in a larger proportion than the time
per iteration for larger m.

To finish the analysis of RK, we show how this method can
outperform CG and CGLS. From both Figures 3a and 3b we can
conclude that, regardless of matrix dimension, CGLS is a faster
method than CG for solving overdetermined problems. This is only
normal since CGLS is an extension of CG to non-square systems.
From Figure 3a we can see that, except for the smallest system, RK
is faster than CGLS. Figure 3b shows that, although RK is faster for
the matrix dimensions shown in the plot, the difference between this
method and CGLS decreases when n increases, that is, when m and
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Fig. 2. Results for the Randomized Kaczmarz algorithm using a fixed number
of rows and a varying number of columns.
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Fig. 3. Comparison between RK, CG and CGLS for overdetermined systems.

n get closer. In summary, RK should be used to the detriment of CG
and/or CGLS for very overdetermined systems.

1) Variants of the Kaczmarz Algorithm for Consistent Systems
We now compare several variants of the Kaczmarz method between

themselves. In this section, we will use analyze the results for
the first dataset using a fixed column number. We start with the
methods introduced in Section III that, like RK, select rows based
on their norms. Figure 4a contains the evolution of the number
of iterations while the right plot contains the total execution time
until convergence. From the number of iterations, we can conclude
that the GRK method has the most efficient row selection criterion.
However, this does not translate into a lower execution time, as
observed in Figure 4a, meaning that each individual iteration is
more computationally expensive than individual iterations of the other
methods. This is due to two factors: first, there is the need to calculate
the residual in each iteration; second, since rows are chosen using
a probability distribution that relies on the residual, and since the
residual changes in each iteration, there is the need to update, in
each iteration, the discrete probability distribution that is used to
sample a single row. The RK, GSSRK, and NSSRK methods have an
indistinguishable number of iterations. In terms of time (Figure 4b),
NSSRK and RK have similar performance while GSSRK is a slower
method. This happens since, for dense matrices, it is very rare that
rows of matrix A are orthogonal and the selectable set usually
corresponds to all the rows of the matrix - this means that a lot
of time is spent checking for orthogonal rows and very few updates
are made to the selectable set.

When Strohmer and Vershynin in [5] introduced the RK method,
they compared its performance to the CK and the SRK methods.
Here, we make the same analysis with the addition of SRKWOR.
The results for the number of iterations and computational time are
presented in Figure 5. The first observation to be made is that CK
yields very similar results to SRKWOR, which is expected when
working with random matrices. The SRK method, exhibits a lower
number of iterations and time than the RK method, which shows that,
for this dataset, sampling rows with probabilities proportional to their
norms is not a better row sampling criterion than using a uniform
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Fig. 4. Results for some variants of the Kaczmarz algorithm for systems
using a fixed number of columns n = 1000 and a varying number of rows.
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Fig. 5. Results for some variants of the Kaczmarz algorithm for systems
using a fixed number of columns and a varying number of rows.

probability distribution. Furthermore, CK and SRKWOR outperform
RK and SRK in iterations and time. These results show that sampling
without replacement is indeed an efficient way to choose rows.

Contrary to the intuition provided by Strohmer and Vershynin [5],
the RK inspired method from Figure 5 does not outperform CK.
As Wallace and Sekmen [16] refer, choosing rows in a random way
should only outperform the CK method for matrices where the angle
between consecutive rows is very small, that is, highly coherent
matrices. To confirm this we also compare the results of the methods
used in Figure 5 for the second dataset. Figure 6 shows that, for highly
coherent matrices, CK does have a slower convergence compared to
RK and its random variants.

We finish this section with some simulations of the Kaczmarz
method using quasirandom numbers. So far, it seems that, for the
first dataset, the fastest method is SRKWOR. For this reason, we
compare sampling rows using the quasirandom numbers generated
with the Sobol and Halton sequence with the Randomized Kaczmarz
method and SRKWOR. From the results presented in Figure 7, we
can draw several main conclusions: firstly, the results are similar
for the Halton and Sobol sequence in terms of iterations and time;
second, quasirandom numbers can outperform RK in both iterations
and time; finally, quasirandom numbers can have similar execution
times to SRKWOR, depending on the dimension of the problem.

From the analysis of the variants of the Kaczamrz algorithm for
consistent systems, we can conclude that, for the datasets that we
used, the only methods capable of outperforming the Randomized
Kaczmarz method are SRK (using random and quasirandom num-
bers) and SRKWOR. From all these methods the SRKWOR appears
to be the fastest.

D. Variants of the Kaczmarz Algorithm for Least-Squares Systems
In this section, we discuss the results for the REK and RGS

methods. We will also show that, for the dataset that we generated,
other benchmark methods are faster. In Section IV-C, we compared
the RK method with CG and CGLS and concluded that the CGLS
is faster than the CG method for overdetermined systems. For this
reason, we will compare REK and RGS with CGLS. The execution
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Fig. 7. Results for some variants of the Kaczmarz algorithm for systems
using a fixed number of columns n = 10000 and a varying number of rows.

time of the three methods, shown in Figure 8, shows that, regardless
of the dimension of the problem, CGLS is faster than REK and
RGS. Between REK and RGS, RGS is slightly faster than REK.
In conclusion, REK and RGS are not the most suitable methods for
solving least-squares problems.
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Fig. 8. Execution time for REK, RGS and CGLS for inconsistent systems
using a fixed number of rows and a varying number of columns.

V. PARALLEL IMPLEMENTATIONS USING SHARED MEMORY

It is not a trivial task to parallelize the Kaczmarz algorithm, as it is
an iterative algorithm where each iteration depends on the previous
one. There are, nonetheless, two main strategies for the parallelization
of iterative algorithms: block-sequential, where we parallelize the
work inside each iteration; and block-parallel, where several iterations
are distributed and computed in parallel, after which the results
are combined. In this section, we present several shared memory
approaches to the parallelization of RK using both block-sequential
and block-parallel strategies.

The implementations of the several methods were accomplished
using the OPENMP C++ API. All the experiments and results
reported throughout this section were conducted on the Accelerates
Cluster, also used for the sequential simulations. Regarding the
datasets that were used, the simulations in Sections V-A to V-C
used consistent systems taken from the first dataset discussed in
Section IV-A2. Only for Section V-D, did we use inconsistent systems
from the least-squares problems dataset.

A. Parallelization of Each Iteration
In a first attempt at parallelization, we show that using a block-

sequential approach that parallelizes the work inside each iteration
doesn’t always exhibit speedup and, when it does, it is far from
ideal, which was somewhat expected due to the small workload per
iteration.

As previously mentioned, the main computations in each iteration
are the calculation of the internal product and the update of the solu-
tion. The former can be effortlessly parallelized using the OPENMP
reduce command with the sum operation. The latter is easily handled
by distributing the entries of the solution by the available threads
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Fig. 9. Results for the parallel implementation of RK for 8 threads using a
block-sequential approach.

using the OPENMP for command since the update of the entries of
x can be done independently.

Our goal is to evaluate the performance of the parallelization of
iterations only and not take into account the stopping criteria. To
accomplish this, we run the sequential version of the algorithm and
compute the error, ∥x(k)−x∗∥, in each iteration. When the error drops
below a given tolerance, ε = 10−5, the algorithm is terminated and
the number of completed iterations is saved. Then, both the sequential
and parallel versions of the algorithm are run for the number of
iterations previously computed.

This implementation of the parallelization of RK was run for
8 threads. Figure 9 shows the execution time and speedup, where
speedup is defined as the quotient of the sequential execution time
and the parallel time. It is clear that the parallel implementation is
only faster than the sequential implementation for n = 10000. We
can also note that speedups are far from linear and that they increase
with the number of columns, which was anticipated since increasing
the workload per iteration attenuates the overhead of parallelization.
Although we don’t show here the results, the speedups for 2 and 4
threads are also not ideal.

B. Randomized Kaczmarz with Averaging
We now move on to block-parallel implementations with the RKA

algorithm. In each iteration of RKA, each thread samples a row
of the matrix, computes an updated version of the estimate of the
solution, and then the results for all threads are averaged. In this
implementation, we decided to use uniform row weights (wi = α),
meaning that we can rewrite (3) such that

x(k+1) = x(k) +
α

q

∑
i∈τk

bi − ⟨A(i), x(k)⟩
∥A(i)∥22

A(i)T . (5)

where q is the number of threads. Using the previous expression,
we implemented a sequential version of RKA so that we could
validate the results obtained by the authors of RKA and evaluate
the effectiveness of the parallelization. We will now go through the
details of the computations involved in each iteration of the parallel
implementation of RKA, presented in Algorithm 1.

In lines 3 and 4 of Algorithm 1 we store the estimate of the solution
from the previous iteration, x(prev). This is necessary since, if the
scale factor in line 6 was computed using the current estimate of the
solution, x, one thread could be computing the scale factor while
another thread was updating x in the critical section ahead and the
scale factor would not have the correct value.

In line 5 of Algorithm 1 a row is sampled according to a probability
distribution proportional to the norms of the rows of matrix A.
However, it does not make sense to have threads sampling the same
sequence of rows since we would be averaging identical results. This
can be easily avoided by giving each thread a different seed for the
random number generator that samples rows.

In lines 7 to 9 of Algorithm 1 the results are combined. To ensure
that all threads update the estimate of the solution and that no two
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Algorithm 1 Pseudocode for an iteration of the parallel implementa-
tion of RKA. A(row)

i corresponds to the i-th column of a given row
of matrix A. D is a probability distribution that samples row indices
with probability proportional to their norms.

1: it ← it + 1

2: OMP barrier
3: OMP for i = 0, ..., N do
4: x

(prev)
i ← xi

5: row ← sampled from D

6: scale ← α× brow − ⟨A(row), x(prev)⟩
q ∥A(row)∥22

7: OMP critical
8: for i = 0, ..., N do
9: xi ← xi + scale ×A

(row)
i

threads are updating x simultaneously, a critical section must be
created, meaning that the gathering of results is done sequentially. It
is also important to mention that the time respective to combining the
results is directly proportional to the number of threads. Note that,
since there is no implicit barrier at the end of the critical section,
a synchronization point was introduced in line 2, so that we avoid
having one thread updating x(prev) in line 4 while another thread is
still in the previous iteration updating x in line 9.

We can already identify two problems in the parallel implementa-
tion of this algorithm: not only do we have a synchronization point
in each iteration, but also the averaging of results must be done
sequentially.

As in Section V-A, we do not consider the stopping criteria
when measuring execution times. For that, we measure the necessary
number of iterations to reach convergence by running the sequential
and parallel algorithms until ∥x(k) − x∗∥ < 10−5 is verified. We
then measure the execution time by rerunning the algorithm for the
previously computed number of iterations.

We now discuss the results for the RKA method. We will use
the optimal values for parameter α given by (4). The sequential and
parallel versions of RKA were tested for 2, 4, and 8 threads, whose
results are shown in Figure 10. From Figure 10a it is clear that the
number of iterations of RKA is inferior to that of RK. Furthermore,
when the number of threads is increased, fewer iterations are needed
for RKA to converge. Although Figure 10a shows that RKA requires
fewer iterations to converge than RK, Figure 10b shows that, regard-
less of the number of threads, RKA is a slower method than RK. Note
that, for RKA, regardless of the number of threads, the work done by
each thread during the computation of the results corresponding to
one row of matrix A is the same as RK (lines 5 and 6 of Algorithm 1).
This means that the increase in execution time for RKA can only be
due to the averaging of results. Although the number of iterations is
smaller for a larger number of threads, this decrease is not enough
to make up for the time spent in updating x(k), which has to be
done sequentially. Figure 10c represents the speedup computed as
the quotient between the execution time of RK and the execution
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Fig. 10. Results for RK and the parallel implementation of RKA using 2,
4, and 8 threads for several overdetermined systems with n = 1000 with a
varying number of rows.
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Fig. 11. Speedup for RKA using 2, 4, and 8 threads for several overdetermined
systems using a fixed number of columns and a varying number of rows.

time of the parallel implementation of RKA for the several numbers
of threads and shows that speedups are far from linear.

We now evaluate the parallelization of the RKA algorithm by
comparing it with its sequential version. Figure 11, contains the
speedup calculated as the quotient between the total execution time
of the sequential and parallel implementations of RKA for several
threads. Note that regardless of the number of threads, speedups
improve for datasets with larger n. This is expected since a larger
number of columns means that the work per iteration also increases
and, consequently does the execution time. However, speedups are
still far from ideal and there are cases where the sequential version
is faster than the parallel version.

C. Randomized Kaczmarz with Averaging with Blocks
Efficient parallelization of RKA isn’t possible due to the large

cost of communication that happens in every iteration. To decrease
the impact of communication we developed a variation of the RKA
method called RKAB. In a single iteration of RKA, each thread only
processes one row of the matrix before the results are averaged. In
RKAB, instead of each thread only processing one row per iteration,
the results corresponding to a block of several rows are computed,
meaning that the results from several threads are only gathered
once in a while. Just like for RKA, we developed a sequential
version of RKAB so that we can evaluate the effectiveness of the
parallelization. Here, we discuss a detailed explanation of the work
inside a single iteration of the parallel implementation of RKAB
presented in Algorithm 2.

In Algorithm 2, instead of saving the previous iteration (Algo-
rithm 1), every thread has a private variable x(thread) that stores the
current results for that thread. In the first row of the block, threads
use the estimate of the solution from the previous iteration, x, to
calculate the scale factor, needed to compute x(thread) (lines 3 to 6
of Algorithm 2). For the remaining rows of the block, threads use
their local estimative of the solution, x(thread), to compute the scale
factor (lines 7 to 11 of Algorithm 2). Note that the size of the block,
block size , has to be determined by the user and that using the RKAB
method with block size = 1 is equivalent to the RKA method. Later
on, we will discuss how to choose block size .

The process of averaging the results is slightly different from RKA.
In each thread, after the results of the entire block are computed, we
subtract x to x(thread) so that we can update x by summing the
changes. Note that we need the barrier in line 14 of Algorithm 2 so
that we don’t have one thread updating x in the critical region while
another thread is behind computing x(thread) in line 13.

The stopping criterion will be the same as the one used for RKA.
During the implementation of RKA we used the optimal value for
the row weights, α∗. However, since RKAB is a different algorithm
than RKA and there is no calculated optimal value for α, we will
use α = 1.

We will start by analyzing how the execution time of RKAB
depends on the size of the blocks by setting block size =
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Algorithm 2 Pseudocode for an iteration of the parallel implemen-
tation of RKAB.

1: it ← it + 1

2: OMP barrier
3: row ← sampled from D

4: scale ← α× brow − ⟨A(row), x⟩
∥A(row)∥22

5: for i = 0, ..., N do
6: x

(thread)
i ← xi + scale ×A

(row)
i

7: for b = 0, ..., block size − 1 do
8: row ← sampled from D

9: scale ← α× brow − ⟨A(row), x(thread)⟩
∥A(row)∥22

10: for i = 0, ..., N do
11: x

(thread)
i ← x

(thread)
i + scale ×A

(row)
i

12: for i = 0, ..., N do
13: x

(thread)
i ← x

(thread)
i − xi

14: OMP barrier
15: OMP critical
16: for i = 0, ..., N do

17: xi ← xi +
x
(thread)
i

q

{5, 10, 50, 100, 500, 1000, 10000}. Similarly to the previous paral-
lelization attempts, the sequential and parallel versions of RKAB
were tested for 1, 2, 4, and 8 threads. Figure 12 shows the results for
RKAB for a system with dimensions 80000×1000. Figure 12a shows
that, for all threads, when we increase block size , the number of
iterations decreases. This was expected since, by processing a larger
number of rows in each iteration, the estimate of the solution will
converge faster than if only the use row was used. Furthermore, for
fixed block size , larger numbers of threads require fewer iterations.
However, that decrease is small, since the total number of used
rows, shown in Figure 12b, increases when more threads are used.
Figure 12b also shows that, for a given number of threads, regardless
of block size , the total number of used rows stays the same (with
the exception of the block size = 10000). The results in Figure 12c
can be easily explained by using the number of iterations and the
total number of rows. First, for blocks of a fixed size, time generally
increases with the number of threads since, although iterations
decrease, that decrease is not big enough to make up for the overhead
in synchronization. Second, increasing the block size, in general,
decreases time since, although the total amount of work is similar
between block sizes (see Figure 12b), the number of times that the
threads have to communicate to average the results is smaller. The
larger block size is special since it is the only one for which the total
number of used rows and time increase. Note that this is the only
value for which block size > n. For a full rank matrix, using the
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Fig. 12. Results for the parallel implementation of RKAB using 2, 4, and
8 threads for an overdetermined system 80000× 1000 for several values of
block size.
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Fig. 13. Speedup for RKAB using 2, 4, and 8 threads for several overde-
termined systems using a fixed number of columns and a varying number of
rows. block size was set to the number of columns.

same number of rows as columns is enough information to solve
the system, meaning that using a block size much larger than n
makes it so that the individual solution estimates in each thread are
already close to the real solution and also close between themselves,
meaning that there is little to no benefit in averaging similar results.
In summary, we can use the number of columns as a rule of thumb
to select the block size. Still, just like RKA, for most numbers of
threads and for most block sizes, the parallel implementation is not
faster than the sequential implementation.

We will now evaluate the parallelization of the RKAB algorithm
by comparing it with its sequential version. Figure 13, contains
the speedup calculated as the quotient between the total execution
time of the sequential and parallel implementations of RKAB for
several threads using block size = n. The results show much higher
speedups than the ones obtained with RKA (see Figure 13).

In conclusion, although the parallelization of the RKAB can be
done more effectively than the parallelization of RKA, the RKAB
method, just like RKA, is not faster than the sequential RK for most
systems in our dataset.

D. Application of RKA and RKAB to inconsistent systems
In Sections V-B and V-C we discussed the parallel implementations

of RKA and RKAB using shared memory. We concluded that, in
general, neither RKA nor RKAB can consistently beat the sequential
RK in terms of execution time. However, RKA is able to decrease
the convergence horizon for inconsistent systems when more than one
thread is used, something that is not possible for RK. In this section,
we show that RKAB is also able to achieve this. To show how the
convergence horizon can change for several numbers of threads we
will show the evolution of the error, ∥x(k) − xLS∥ for RKA and
RKAB using α = 1. The inconsistent system used in this section
has dimensions 80000× 1000 and was taken from the least-squares
dataset that was generated to test REK and RGS.

Figure 14 shows the error evolution for RKA and RKAB. Note
that Figures 14a and 14b are very similar: using a higher number
of threads, q, the error value around which the method stabilizes
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decreases. Furthermore, the values around the error stabilizes are
similar for both methods, meaning that the RKAB method, like RKA,
can decrease the convergence horizon.

VI. PARALLEL IMPLEMENTATIONS USING DISTRIBUTED

MEMORY

In the previous section, we concluded that it is not possible to
achieve an efficient block-sequential parallel implementation of RK
using shared memory since none of our parallelization attempts can
consistently beat the execution time of the sequential RK. However,
we have shown that RKA and RKAB can be used to decrease the
convergence horizon for inconsistent systems and that this decrease
is proportional to the number of used threads.

In parallel implementations using shared memory, one is limited by
the number of cores in a single machine. Distributed memory allows
us to use more than one machine, and therefore, increase the number
of cores available. With more cores, we can use RKA and RKAB to
obtain solutions for inconsistent systems with smaller errors. Another
advantage of using distributed memory is that we can process data
sets that cannot be stored in a single machine.

In this section, we implement and discuss the results for the RKA
and RKAB methods using distributed memory. The implementations
using distributed memory were accomplished using the C++ API
MPI 4. Similarly to the sequential versions and the parallel imple-
mentations for shared memory, experiments were carried out on the
Accelerates Cluster; the consistent systems used during the simulation
were taken from the first dataset and execution times correspond to
the total time of 10 runs of the algorithm.

A. Distributed Memory Implementation of the RKA Method
In this section, we discuss the implementation and results for RKA

for distributed memory.
Since one of the advantages of using distributed memory is to

be able to process data sets that are not able to be stored in a
single machine, in this implementation we divide matrix A and
vector b between the several available machines. We developed a
new sequential implementation of RKA that simulates the partition
of the system amongst the several processes.

The implementation of the parallel implementation of RKA for
distributed memory is much simpler than that for shared memmory. In
distributed memory we do not need to worry about conflicts between
processes reading and writing in the same memory position. This
eliminates the need for the storage of the estimate of the solution
from the previous iteration (x(prev) in Algorithm 1). The averaging
of the results was accomplished with the Allreduce command with
the sum operation.

The stopping criterion was chosen to be the same used for the
shared memory implementation of RKA: we measure the necessary
number of iterations to reach convergence by running the sequential
and parallel algorithms until ∥x(k) − x∗∥ < 10−5 is verified;
execution time is measured by rerunning the algorithm for the
previously computed number of iterations. Since a single node of
the cluster has 2 central processing units, simulations were run with
two MPI processes per node.

We now discuss the results of the RKA method by comparing it
with the sequential RK present in Figure 15. Figure 15a shows similar
results to the ones using shared memory (Figure 10a): increasing
the number of MPI processes decreases the number of iterations.
However, the results for execution time in Figure 15b do not follow
the same tendency as the number of iterations. Although iterations
decrease for larger numbers of processes, time increases, meaning
that the communication cost has a dominant factor in the execution

4https://www.mpi-forum.org/
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Fig. 15. Results for RK and RKA using 2, 4, 8, and 20 MPI tasks for several
overdetermined systems with n = 1000 with a varying number of rows. Row
weights, α, were chosen as the optimal values given by (4).

time. As a consequence, the speedups in Figure 15c, computed as the
quotient between the execution time of RK and the execution time
of the parallel implementation of RKA, are very small, even smaller
than the ones obtained for shared memory, present in Figure 10c. In
conclusion, using distributed memory only, RKA cannot be efficiently
implemented.

B. Distributed Memory Implementation of the RKAB Method
In this section, we discuss the implementation and results for

RKAB for distributed memory. Similarly to the implementation of
RKA (Section VI-A), the system will be partitioned between the
several processes.

Once more, the implementation of the parallel implementation of
RKAB for distributed memory is much simpler than that for shared
memory (Algorithm 2) since we do not need the extra variable
x(thread) and, just like for RKA, the averaging of the results was
accomplished with the Allreduce command with the sum operation.

During the analyses of RKAB in Section V-C, we concluded that a
good option for the parameter block size was the number of columns,
n. However, since in this distributed memory implementation the
matrix is partitioned amongst processes, this conclusion might not
hold. For that reason, we will analyze the behavior of RKAB for
several values of block size .

The stopping criterion is the same as the one chosen for RKA. The
value of the row weights was chosen as α = 1 (see Section V-C) and
we used the configuration of two processes per node. The results for
8 MPI processes for a system 80000 × 10000 for several values of
block size are shown in Figure 16. Firstly, contrary to the results for
8 threads using OPENMP (Figure 12c), time does not monotonically
decrease for increasing block sizes up to the number of columns. Note
that by partitioning the matrix by processes and using 8 processes,
each will have a subsystem with dimensions 10000 × 10000. For
block size = 10000, since rows are chosen accordingly to their
norms, it is likely that some rows will be chosen more than once and
that others will not be chosen at all. Using block sizes that are equal to
or larger than the number of rows in each process can lead to reusing
information and, consequently, decrease the rate of convergence. This
can also be observed in Figure 16b where we see that the number
of total used rows has a larger increase from block size = 1000
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Fig. 16. Results for RKAB using 8 MPI processes for a system with
dimensions 80000 × 10000. We also represent the execution time for the
sequential RKAB.
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to block size = 10000. This means that the increase in the total
amount of work needed for the algorithm to converge when using
larger block sizes has a larger impact on execution time than the
decrease in communication. As for the relationship between execution
times for the three configurations, it is not always true that having
all the processes in one node is faster than distributing processes
among nodes, something that was observed for RKA. When the block
size increases, the amount of communication decreases and so does
the execution time. However, for large block sizes, communication
between processes in the same node is slower than communication
between processes in different nodes. This might mean that, for
large block sizes, cache phenomenons have a dominant impact on
communication. Nonetheless, just like for RKA, generally using two
processes per node is faster than using only one.

100 101 102 103 104

Block Size

103

104

T
ot

al
T

im
e

(s
)

Sequential

2 Processes per node (4 nodes)

(a) Exection time for a
system with dimensions
40000× 10000.

100 101 102 103

Block Size

100

101

102

T
ot

al
T

im
e

(s
)

Sequential

2 Processes per node (4 nodes)

(b) Exection time for a
system with dimensions
80000× 1000.

100 101 102 103

Block Size

101

102

T
ot

al
T

im
e

(s
)

Sequential

2 Processes per node (4 nodes)

(c) Exection time for a
system with dimensions
4000× 1000.

Fig. 17. Results for RKAB using 8 MPI processes for three systems. We also
represent the execution time for the sequential RKAB.

Figure 17 shows the execution time for 8 processes for systems
with other dimensions. Note that the system in Figure 17a has the
same number of columns as the system in Figure 16a and both show
an optimal block size of 1000. However, although the systems in
Figures 17b and 17c both have n = 1000, it is not true that they
have the same optimal parameter for block size . When we partition
the systems in Figure 17b and 17c among processes, each will
have a submatrix with dimensions 10000 × 1000 and 500 × 1000
respectively. Note that 10000 × 1000 is an overdetermined system
that benefits from a larger block size, contrary to 500× 1000 which
is an underdetermined system. This leads us to conclude that the
optimal block size for the implementation of RKAB for distributed
memory not only depends on the number of columns but also on
the relationship between the number of rows and columns of the
submatrices that are owned by each process.

VII. CONCLUSION

A. Summary of Contributions
In this dissertation, we have implemented several algorithms based

on the Kaczmarz method, including variations for consistent and
inconsistent systems. We concluded that, although there are some
variations that can outperform RKlike the SRK method and sampling
based on quasirandom numbers, the SRKWOR method is the fastest
Kaczmarz-based method for consistent systems. For inconsistent
systems, we concluded that, although RGS is faster than REK, the
CGLS method is significantly faster than both methods.

We explored multiple approaches to parallelize the Kaczmarz
method using shared and distributed memory and concluded that, in
general, it is not possible to efficiently parallelize it. More specifically,
we implemented the Randomized Kaczmarz with Averaging (RKA)
algorithm and showed that its parallelization is not effective since
the cost of communication does not make up for the decrease
in the number of iterations in comparison with the RK method.
Nevertheless, we introduced a new method, a blocked version of the
RKA algorithm (RKAB), that can have the same effect that RKA
has in decreasing the convergence horizon for inconsistent systems.

Although the parallel implementation of RKAB cannot consistently
beat the execution times of the sequential RK, the speedups regarding
its sequential version are much improved compared to those of RKA.
For the shared memory implementation of RKAB, we show that a
good choice for the block size parameter is to use a number similar
to the number of columns of the matrix of the system.

B. Future Work
In Section V-C, we analyzed how RKAB behaves for unitary

uniform row weights (α = 1) for a consistent system. However,
contrary to RKA, there is no formula for the optimal value of α. An
improvement to the RKAB method would be to find this optimal α
as a function of the block size.

When analyzing how the RKA method can be used to solve
inconsistent systems in Section V-D, we showed that using α = 1
can decrease the convergence horizon proportionally to the number
of threads. It would be interesting to find an optimal value for α for
inconsistent systems, just like α∗ for consistent systems.

We concluded in Section VI-B that the optimal block size for
RKAB depends not only on the dimensions of the system but also on
the number of processors. We leave a more comprehensive analysis
of this behavior for future work.
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