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Abstract
The Kaczmarz algorithm is an iterative method that solves linear systems of equations. It stands out

among iterative algorithms when dealing with large systems for two reasons. Firstly, in each iteration,

the Kaczmarz algorithm uses a single equation, resulting in minimal computational work per iteration.

Secondly, solving the entire system may only require a small subset of equations. These character-

istics have attracted significant attention to the Kaczmarz algorithm. Researchers have observed that

randomly choosing equations can improve the convergence rate of the algorithm. This insight led to

the development of the Randomized Kaczmarz algorithm and, subsequently, several other variations

emerged.

In this thesis, we analyze the behavior of the Kaczmarz method and its sequential variations. We

found that a randomized version of the algorithm that samples equations without replacement can out-

perform both the original and Randomized Kaczmarz methods.

Additionally, we explore approaches to parallelizing the Kaczmarz method. In particular, we imple-

ment the Randomized Kaczmarz with Averaging method that, for noisy systems, unlike the standard

Kaczmarz algorithm, reduces the final error of the solution. While efficient parallelization of this algo-

rithm is not achievable, we introduce a block version of the averaging method that exhibits significantly

improved speedups compared to its sequential counterpart.

Lastly, we apply the Kaczmarz method to solve real-world problems involving noisy linear systems

derived from computed tomography. The objective is to obtain reconstructed images that minimize the

reconstruction error. We show that, by incorporating known image constraints, the error of the solution

is significantly reduced.

Keywords

Linear systems; Iterative algorithms; Parallel and distributed computing; Rate of convergence; Least-

Squares problem; Image reconstruction
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Resumo
O algoritmo de Kaczmarz é um método iterativo que resolve sistemas lineares de equações. Destaca-

se de entre outros algoritmos iterativos ao resolver sistemas com grandes dimensões por duas razões.

Em primeiro lugar, em cada iteração, o algoritmo de Kaczmarz utiliza uma única equação, resultando

em trabalho computacional reduzido. Em segundo lugar, pode ser apenas necessário um pequeno

subconjunto de equações do sistema para o resolver. Estas caracterı́sticas têm atraı́do grande atenção

para o algoritmo de Kaczmarz. Investigadores observaram que escolher as equações aleatoriamente

pode melhorar a velocidade de convergência do algoritmo, o que levou ao desenvolvimento do algoritmo

aleatório de Kaczmarz que, consequentemente, causou o aparecimento de variações do mesmo.

Nesta tese, analisamos o comportamento do método de Kaczmarz e das suas variações sequen-

ciais. Descobrimos que a versão aleatória do algoritmo que escolhe equações sem reposição pode

superar tanto o método original como a versão aleatória.

Além disso, exploramos abordagens para paralelizar o método de Kaczmarz. Em particular, imple-

mentamos o método aleatório de Kaczmarz com média que, para sistemas com ruı́do, ao contrário

do algoritmo original de Kaczmarz, reduz o erro final da solução. Embora não seja possı́vel obter

uma parallelização eficiente deste algoritmo, apresentamos uma versão por blocos do método anteri-

oremente referido que apresenta aumentos significativos nos tempos de execução em relação à sua

contraparte sequencial.

Por fim, aplicamos o método de Kaczmarz para resolver problemas reais que envolvem sistemas

lineares com ruı́do derivados de problemas de tomografia computadorizada. O objetivo é obter imagens

reconstruı́das que minimizem o erro de reconstrução. Mostramos que, incorporando restrições que

sabemos que são verificadas pela imagem, o erro da solução é significativamente reduzido.

Palavras Chave

Sistemas lineares; Algoritmos iterativos; Computação paralela e distribuı́da; Velocidade de con-

vergência; Problema de mı́nimos quadrados; Reconstrução de imagens
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Chapter 1

Introduction
Solving linear systems of equations is a fundamental part of linear algebra and, consequently, of mathe-

matics. One example of the application of solving linear systems in the real-world are problems derived

from computed tomography. During a CT scan, one has to reconstruct an image of the scanned body

using radiation data measured by detectors. Nonetheless, physical quantities are always measured with

some error and, since CT data is not an exception, the problem of reconstructing images is hampered

by noise. Therefore, it is important to create efficient computer algorithms for linear systems that can

accurately find the solution that minimizes the error, especially for large-scale problems that generally

take longer to solve.

There are two types of numerical methods used to solve linear systems of equations: direct methods

and iterative methods. A direct method is characterized by a closed-form solution that can be computed

in a finite number of steps. Direct methods compute solutions with high levels of precision but they can

take a long time to compute, especially if matrices are large. Iterative methods calculate an approximate

solution that hopefully improves with the number of iterations. Depending on the required precision of

the solution, iterative methods can be faster than direct methods, particularly for large systems.

There are two special classes of iterative methods: row-action methods and column-action methods.

These make use of a single row or column of the system’s matrix per iteration. Each iteration of these

methods has diminutive computational work compared with other iterative methods that use the entire

matrix. An example of a row-action algorithm is the Kaczmarz algorithm, the focus of this dissertation.

Many real-world problems consist of large linear systems. Methods like Kaczmarz that use one

equation at a time can be used in real-time while data is being collected. Furthermore, if the amount of

data is so large that storing it in a machine is not possible, row/column action methods are still able to

solve the system.

To improve the performance of algorithms we can use parallel computing. Parallelization, in the

context of parallel and distributed computing, refers to the technique of breaking down a computational

task or workload into smaller sub-tasks that can be executed simultaneously or in parallel. It involves

dividing the problem into multiple independent parts and assigning each part to a separate processing

unit or computing resource.

There are two types of parallelization: using shared memory or using distributed memory. In shared

memory, the processing units correspond to cores inside a single machine; in distributed memory, sev-
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eral machines can be connected physically or within a network. Since there are advantages and disad-

vantages to both approaches, it is also an option to combine shared and distributed memory.

The main goal of parallelization is to improve performance by decreasing the execution time of a

given task. However, parallelizations that use distributed memory have the ability to process large

amounts of data that could not be processed if we were to use one machine only. Parallelization is not a

straightforward technique since we must consider data dependencies between tasks, the communication

overhead between processing units, and synchronization points, among others.

1.1 Problem Statement

Many variations of the original Kaczmarz method have been proposed in the literature over the years.

However, there is no investigation that compares all the variations between themselves. Our first task

is to analyze the behavior of Kaczmarz-based methods that sample matrix rows according to different

criteria. More specifically, we evaluate the relationship between the number of iterations needed to find

a solution and the corresponding execution time for systems with different dimensions.

After a thorough analysis of the sequential variations of the Kaczmarz method, we parallelize the

method using shared and distributed memory separately and the combination of both.

Lastly, we apply our investigation of the Kaczmarz method to a real-world problem consisting in

reconstructing images provided by computed tomography data.

1.2 Organization of the Document

The organization of this document is as follows. In Chapter 2 we describe the several types of linear

systems and respective solutions and how they can be obtained. Furthermore, we introduce the original

algorithm (Cyclic Kaczmarz algorithm) and the Randomized Kaczmarz algorithm as iterative methods

that solve linear systems, together with other randomized variations. In Chapter 3 we introduce some of

the methods inspired by the Randomized Kaczmarz algorithm and present some attempts to parallelize

the Kaczmarz method. In Chapter 4 we present the implementation details of the sequential version of

the algorithm and some of its variations, together with the experimental results. In Chapters 5 and 6 we

discuss several approaches to parallelizing the Kaczmarz method using shared and distributed mem-

ory, respectively. In Chapter 7 we apply the Kaczmarz method to inconsistent systems for computed

tomography problems. Finally, in Chapter 8, we conclude this dissertation and discuss future work.
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Chapter 2

Systems of Linear Equations:

Properties and Algorithms
In the first section of this chapter, we outline the categorization of linear systems based on factors

such as matrix dimensions and the existence of a solution. The following section elaborates on the

methods used to solve linear systems and the corresponding computational algorithms employed. The

chapter culminates by presenting the Kaczmarz algorithm, along with its key attributes, and subsequently

introduces some randomized variants.

2.1 Types of Linear Systems

A linear system of equations can be written as

Ax = b , (2.1)

where A is an m× n matrix, x ∈ Rn is called the solution and b is a vector in Rm.

Linear systems can be classified based on distinct criteria. When we consider the existence of a

solution, systems can be categorized as either consistent or inconsistent. For a consistent system

there is at least one value of x that satisfies all the equations in the system. However, it is possible that

there are equations that constradict each other and, in that case, the system is said inconsistent.

When considering the relationship between the number of equations and variables, systems can be

classified as overdetermined or underdetermined. When m ≥ n, there are more equations than vari-

ables, and the system is said to be overdetermined. If an overdetermined system is consistent and

there is a single solution that satisfies (2.1), we denote it by x∗. Otherwise, if the system is inconsistent,

we are usually interested in finding the least-squares solution, that is

xLS = argmin
x
∥Ax− b∥22 . (2.2)

In real-world overdetermined systems, it is more frequent to have inconsistent systems than consistent

systems. The least-squares solution can be computed using the normal equations xLS = (ATA)−1AT b =

A†b, where A† is the Moore–Penrose inverse or pseudoinverse (demonstrated in Section A.1 of Ap-

pendix A). If the system has a matrix with m = n, we are in the presence of an exactly determined

system.
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Underdetermined systems verify m < n, meaning that we have fewer equations than variables. If

the system is inconsistent there is no solution. On the other hand, if there is no contradiction between

equations, we will still have m−n degrees of freedom and the system is consistent with infinite solutions.

In this case, we are often interested in the least Euclidean norm solution,

xLN = argmin
x
∥x∥2 subject to Ax = b , (2.3)

which can be computed using xLN = AT (AAT )−1b (demonstrated in A.2 of Appendix A).

2.2 How to Solve Linear Systems

There are two classes of numerical methods that solve linear systems of equations: direct and indirect

or iterative. Direct methods compute the solution of the system in a finite number of steps. Although

solutions given by direct methods have a high level of precision1, the computational cost and memory

usage can be high for large matrices when using these methods. Some widely used direct methods are

Gaussian Elimination and LU Factorization. Iterative methods generate a sequence of approximate solu-

tions that get increasingly closer to the exact solution with each iteration. Iterative methods are generally

less computationally demanding than direct methods and their convergence rate2 is highly dependent

on properties of the matrix of the system. The precision of the solutions given by iterative methods can

be controlled by external parameters, meaning that there is a trade-off between the running time and the

desired accuracy of the solution. Therefore, if high precision is not a requirement, iterative methods can

outperform direct methods, especially for large and sparse matrices. Some popular iterative methods

are the Jacobi method and the Conjugate Gradient (CG) method.

A particular class of iterative methods is row-action methods. These use only one row of matrix A

in each iteration, meaning that the computational work per iteration is small compared to methods that

make use of the entire matrix. There are also column-action methods that, instead of using a single row

per iteration, use a single column. An example of a row action algorithm is the Kaczmarz method which

is introduced in the following section.

2.3 The Kaczmarz Method

2.3.1 Definition

The Kaczmarz method [2] is an iterative algorithm that solves consistent linear systems of equations

Ax = b, where A is a m × n matrix with m ≥ n and b ∈ Rm. Let A(i) be the i-th row of A and bi be the

1Precision can be defined as the Euclidean distance of the difference between the obtained solution and the real solution of
the system.

2The rate of convergence [1] of an algorithm quantities how quickly a sequence approaches its limit. In the case of iterative
methods, a higher rate of convergence means that the method will take less iterations to approach the solution.
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i-th coordinate of b. The original version of the algorithm can then be written as

x(k+1) = x(k) + αi
bi − ⟨A(i), x(k)⟩
∥A(i)∥22

A(i)T , with i = k mod m , (2.4)

with k starting at 0 and where αi is a relaxation parameter that is set to 1. This means that, in each

iteration, the estimate of the solution will satisfy a different constraint, until a point is reached where all

the constraints are satisfied. Since the rows of matrix A are used in a cyclic manner, this algorithm is

also known as the Cyclic Kaczmarz (CK) method. The Kaczmarz method also converges to xLN in the

case of underdetermined systems. For more details see Section 3.3 of [3].

2.3.2 Geometric Interpretation

x(k)

p

w

x(k+1)

⟨A(i), x⟩ = bi

Figure 2.1: Geometric interpretation of a single iteration of the Kaczmarz method.

This section presents a geometric interpretation of the Kaczmarz method. We define the hyperplane

Hi = x : ⟨A(i), x⟩ = bi. Each iteration x(k+1) can be thought of as the projection of x(k) onto Hi, which

we will now prove. Let us assume that the number of columns of A is 2 so that we can visualize the

system in a plane, as demonstrated in Figure 2.1. We will now show that x(k+1) is given by (2.4) (if αi is

set to one). We start by observing that

x(k+1) = x(k) − p . (2.5)

Note that p is the projection of x(k)−w into A(i), since A(i) is a normal vector to the hyperplane ⟨A(i), x⟩ =
bi. To find an expression for p, we first need to find w, which is just x(k) multiplied by a constant, such

that w = kx(k). The constant k can be found using the constraint that w has to belong to the hyperplane,
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that is, ⟨A(i), kx(k)⟩ = bi ⇒ k = bi/⟨A(i), x(k)⟩. Since the projection of the column vector u onto the

column vector v is given by ( ⟨u, v⟩
∥v∥2

)
v , (2.6)

we can use it to calculate p, the projection of x(k) − w into A(i). Note that A(i) is a line of the matrix A,

so we must use A(i)T to represent it as a column vector. The result is

p =
⟨A(i), (1− k)x(k)⟩

∥A(i)∥2 A(i)T =
(
1− bi
⟨A(i), x(k)⟩

) ⟨A(i), x(k)⟩
∥A(i)∥2 A(i)T =

⟨A(i), x(k)⟩ − bi
∥A(i)∥2 A(i)T . (2.7)

Finally we can obtain x(k+1) using (2.5) such that

x(k+1) = x(k) − p = x(k) − ⟨A
(i), x(k)⟩ − bi
∥A(i)∥2 A(i)T = x(k) +

bi − ⟨A(i), x(k)⟩
∥A(i)∥2 A(i)T . (2.8)

Now that we have shown the process of computing a single iteration, we will now show how the estimate

of the solution evolves throughout several iterations.
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6

7

8

y

〈a1, x〉 = b1

〈a2, x〉 = b2

〈a3, x〉 = b3

〈a4, x〉 = b4

x(0)

x(k)

(a) Example of a consistent system with an
unique solution.
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〈a1, x〉 = b1

〈a2, x〉 = b2

〈a3, x〉 = b3

x(0)

x(k)

xLS

(b) Example of an inconsistent system and
its least-squares solution.

Figure 2.2: Convergence of the Kaczmarz method in 2 dimensions for solvable and nonsolvable systems.

Figure 2.2 provides the geometrical interpretation of a linear system with 4 equations in 2 dimensions:

each equation of the system is represented by a line in a plane; the evolution of the estimate of the

solution, x(k), is also shown throughout several iterations. Since we are using the rows of the matrix in a

cyclical fashion, we start by projecting the initial estimate of the solution onto the first equation and then

the second, and so on. The difference between Figures 2.2a and 2.2b is the following: Figure 2.2a shows

a consistent system with a unique solution, x∗, the point where all equations meet. It is clear that the

estimate of the solution given by the Kaczmarz method encounters x∗ after some time; in Figure 2.2b we

have an inconsistent system with its least-squares solution marked in magenta. Note that it is impossible

for the Kaczmarz to reach it since the estimate of the solution will always remain a certain distance from

xLS . In the next section, we will show how this distance can be quantified.
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(a) Example of the convergence of the
Kaczmarz method for a consistent
solvable system using cyclical selec-
tion of rows.
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(b) Example of the convergence of the
Kaczmarz method for a consistent solv-
able system using random selection of
rows.

Figure 2.3: Convergence of the Kaczmarz method in 2 dimensions using two different row selection criteria.

Figure 2.3 shows the special case of a consistent system with a highly coherent matrix. In these

systems the angle between consecutive rows of the matrix is small. If we go through the matrix cyclically,

shown in Figure 2.3a, the convergence is quite slow since the change in the solution estimate is minimal.

On the other hand, in Figure 2.3b, where the rows of the matrix are used in a random fashion, the

estimate of the solution approaches the system solution much faster. This was experimentally observed

and led to the development of randomized versions of the Kaczmarz method.

2.4 Randomized Kaczmarz Method

Kaczmarz [2] showed that, if the linear system is solvable, the method converges to the solution x∗,

but the rate at which the method converges is very difficult to quantify. Known estimates for the rate of

convergence of the cyclic Kaczmarz method rely on quantities of matrix A that are hard to compute and

that make it difficult to compare with other algorithms (for some examples see references [4–6]). Ideally,

we would like to have a rate of convergence that depends on the condition number of the matrix A,

which is difficult for this algorithm since it relies on the order of the rows of the matrix, and the condition

number is only related with geometric properties of the matrix.

It has been observed [7–9] that, instead of using the rows of A in a cyclic manner, choosing rows

randomly can improve the rate of convergence of the algorithm. To tackle the problem of finding an

adequate rate of convergence for the Kaczmarz method and to try to explain the empirical evidence

that randomization accelerates convergence, Strohmer and Vershynin [10] introduced a randomized

version of the Kaczmarz method that converges to x∗. Instead of selecting rows in a cyclical fashion,

in the randomized version, in each iteration, we use the row with index i, chosen at random from the
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probability distribution

P{i = l} = ∥A
(l)∥2
∥A∥2F

(l = 1, 2, ...,m) . (2.9)

This version of the algorithm is called the Randomized Kaczmarz (RK) method. Strohmer and Vershynin

proved that RK has exponential error decay, also known as linear convergence 3. The rate of conver-

gence depends only on the scaled condition number of A, κ(A), and not on the number of equations in

the system. Let x0 be the initial guess, x∗ be the solution of the system, and σmin(A) be the smallest

singular value of matrix A. The expected convergence of the algorithm for a consistent system can then

be written as

E ∥x∗ − x(k)∥2 ≤ (1− κ(A)−2)k∥x∗ − x(0)∥2 ≤
(
1− σ2

min(A)

∥A∥2F

)k

∥x∗ − x(0)∥2 . (2.10)

Later, Needell [11] extended these results for inconsistent systems, showing that RK reaches an

estimate that is within a fixed distance from the solution. This error threshold is dependent on the matrix

A and can be reached with the same rate as in the error-free case. The expected convergence proved

by Strohmer and Vershynin can then be extended such that

E ∥x∗ − x(k)∥2 ≤
(
1− σ2

min(A)

∥A∥2F

)k

∥x∗ − x(0)∥2 +
∥rLS∥2
σ2
min(A)

. (2.11)

where rLS = b − AxLS is the least-squares residual. This extra term is called the convergence horizon

and is zero when the linear system is consistent.

This analysis shows that it is not necessary to know the whole system to solve it, but only a small

part of it. Strohmer and Vershynin show that in extremely overdetermined systems the Randomized

Kaczmarz method outperforms all other known algorithms and, for moderately overdetermined systems,

it outperforms the celebrated conjugate gradient method. They reignited not only the research on the

Kaczmarz method but also triggered the investigation into developing randomized linear solvers.

Chen [12] showed the Kaczmarz method can be seen as a special case of other row action methods.

A case worth mentioning is that the Randomized Kaczmarz method can be derived from the Stochastic

Gradient Descent (SGD) method using certain parameters. The SGD method is widely used in machine

learning, meaning that parallelizations of this algorithm can be adapted to the Randomized Kaczmarz

method. An analysis of the relationship between the two methods is present in Appendix B.

2.5 Simple Randomized Kaczmarz Method

Apart from the comparison between the original Kaczmarz method with the Randomized Kaczmarz

method, Strohmer and Vershynin [10] also compared both these methods with the Simple Randomized

Kaczmarz (SRK). In this method, instead of sampling rows using their norms, rows are sampled using

a uniform probability distribution. Although they did not prove the convergence rate for this method,

3The concept of linear convergence in numerical analysis is often referred to, by mathematicians, as exponential convergence.
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Schmidt [13] did:

E ∥x∗ − x(k)∥2 ≤
(
1− σ2

min(A)

m∥A∥2∞

)k

∥x∗ − x(0)∥2. (2.12)

Schmidt also mentions that RK should be at least as fast as SRK, and faster if any two rows don’t have

the same norm.

2.6 Sampling Rows Using Quasirandom Numbers

In Section 2.3.2 we discussed how sampling rows in a random fashion instead of cyclically can improve

convergence for highly coherent matrices. Furthermore, convergence should be faster if indices cor-

responding to consecutively sampled rows are not close so that the angle between these rows is not

small. However, when sampling random numbers, these can form clumps and they can be poorly dis-

tributed, meaning that even if we sample rows randomly, these can still be very close regarding their

position in the matrix and, consecutively, in the angle between them. To illustrate the importance of how

the generation of random numbers affects the results of the Kaczmarz algorithm, Figure 2.4a shows 50

random numbers sampled from the interval [1, 1000] using a uniform probability distribution, illustrating

the process of sampling row indices for a matrix with 1000 rows. Note that there are, simultaneously,

clumps of numbers and areas with no sampled numbers.

This is where quasirandom numbers, also known as low-discrepancy sequences, come in: they are

sequences of numbers that are evenly distributed, meaning that there are no areas with a very low

or very high density of sampled numbers. Quasirandom numbers have been shown to improve the

convergence rate of Monte-Carlo-based methods, namely methods related to numerical integration [14].

Several low-discrepancy sequences can be used to generate quasirandom. Here we will work with

two sequences that are widely used: the Halton sequence [15] and the Sobol sequence [16]. To show

that indeed these sequences can generate numbers that are more evenly distributed than the ones

generated using pseudo-random numbers, Figures 2.4b and 2.4c show 50 sampled numbers from the

interval [1, 1000] using the Sobol and Halton sequences.

(a) Random numbers generated using an
uniform probability distribution.

(b) Quasirandom numbers generated us-
ing the Sobol sequence.

(c) Quasirandom numbers generated us-
ing the Halton sequence.

Figure 2.4: Distribution of 50 sampled numbers in interval [1, 1000].
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Chapter 3

The Revival of Row and Column Action

Methods
The work by Strohmer and Vershynin in [10] motivated other developments in row/column action meth-

ods by randomizing classical algorithms. In this chapter, we present several iterative methods, some of

which are modifications to the RK method. We conclude with some attempts at parallelization of both

the Cyclic and Randomized Kaczmarz methods.

3.1 Randomized Coordinate Descent Method

Leventhal and Lewis [17] developed the Randomized Coordinate Descent Method, also known as

Randomized Gauss-Seidel (RGS) algorithm. Like RK, for overdetermined consistent systems, this al-

gorithm converges to the unique solution x∗. Unlike RK, for overdetermined inconsistent systems, RGS

converges to the least squares solution xLS ; for underdetermined consistent systems RGS does not

converge to the least euclidean norm solution xLN [3]. RGS is an iterative method that uses only one

column of matrix A in each iteration which is chosen at random from the probability distribution

P{j = l} = ∥A(l)∥2
∥A∥2F

(l = 1, 2, ..., n) . (3.1)

It also uses an intermediate variable r ∈ Rm. The algorithm has three steps to be completed in a single

iteration:

α(k) =
⟨A(j), r

(k)⟩
∥A(j)∥2

, (3.2)

x(k+1) = x(k) + α(k)e(j) , and (3.3)

r(k+1) = r(k) − α(k)A(j) , (3.4)

where e(j) is the jth coordinate basis column vector (all zeros with a 1 in the jth position) and r is initialized

to b − Ax(0). Leventhal and Lewis also showed that, like RK, RGS converges linearly in expectation.

Later, Needell, Zhao, and Zouzias [18] developed a block version of the RGS method that uses several

columns in each iteration, with the goal to improve the convergence rate. For further discussion see

Section C.1 in Appendix C.

10



3.2 Randomized Extended Kaczmarz Method

The Randomized Kaczmarz method can only be applied to solvable linear systems but most systems

in real-world applications are affected by noise, and are consequently inconsistent, meaning that it is

important to develop a version of RK that solves least-squares problems. To extend the work devel-

oped by Strohmer and Vershynin [10] to inconsistent systems, Zouzias and Freris [19] introduced the

Randomized Extended Kaczmarz (REK) method. This method is a combination of the Randomized

Orthogonal Projection algorithm [20] together with the Randomized Kaczmarz method and it converges

linearly in expectation to the least-squares solution, xLS . The algorithm is a mixture of a row and column

action method since, in each iteration, we use one row and one column of matrix A. Rows are chosen

with probability proportional to the row norms and columns are chosen with probability proportional to

column norms. In each iteration, we use a row with index i, chosen from the probability distribution in

(2.9) and a column with index j, chosen at random from the probability distribution (3.1). Each iteration

of the algorithm can then be computed in two steps. In the first one, the projection step, we calculate

the auxiliary variable z ∈ Rm. In the second one, the Kaczmarz step, we use z to estimate the solution

x. Variables z and x are initialized, respectively, to b and 0. The two steps of each iteration are then

z(k+1) = z(k) − ⟨A(j), z
(k)⟩

∥A(j)∥2
A(j) , and (3.5)

x(k+1) = x(k) +
bi − z

(k)
i − ⟨x(k), A(i)⟩
∥A(i)∥2 A(i)T . (3.6)

The rate of convergence can be described by

E ∥xLS − x(k)∥2 ≤
(
1− σ2

min(A)

∥A∥2F

)⌊k/2⌋ (
1 + 2

σ2
max(A)

σ2
min(A)

)
∥xLS∥2 . (3.7)

Later on, Needell, Zhao, and Zouzias [18] developed a variation of this algorithm that uses blocks to

accelerate convergence. For further discussion see Section C.2 in Appendix C.

3.3 Greedy Randomized Kaczmarz Method

The Greedy Randomized Kaczmarz (GRK) method introduced by Bai and Wu [21] is a variation of the

Randomized Kaczmarz method with a different row selection criterion. Note that the selection criterion

for rows in the RK method can be simplified to uniform sampling if we scale matrix A with a diagonal

matrix that normalizes the Euclidean norms of all its rows. But, in iteration k, if the residual vector

r(k) = b − Ax(k) has |r(k)(i)| > |r(k)(j)|, we would like for row i to be selected with a higher probability

than row j. In summary, GRK differs from RK by selecting rows with larger entries of the residual vector

with higher probability. Each iteration is still calculated using (2.4), the row index i chosen in iteration k
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is computed using the following steps:

Compute ϵk =
1

2

( 1

∥b−Ax(k)∥22
max

1≤i≤m

{ |bi −A(i)x(k)|2
∥A(i)∥22

}
+

1

∥A∥2F

)
(3.8)

Determine the index set of positive integers Uk =
{
i : |bi −A(i)x(k)|2 ≥ ϵk∥b−Ax(k)∥22 ∥A(i)∥22

}
(3.9)

Compute vector r̃(k)
(i) =

{
bi −A(i)x(k), if i ∈ Uk
0, otherwise

(3.10)

Select ik ∈ Uk with probability P{ik = i} = |r̃
(k)(i)|2
∥r̃(k)∥22

(3.11)

The Greedy Randomized Kaczmarz method presents a faster convergence rate when compared to the

Randomized Kaczmarz method, meaning that it is expected for GRK to outperform RK.

3.4 Selectable Set Randomized Kaczmarz Method

Just like the Greedy Randomized Kaczmarz method, the Selectable Set Randomized Kaczmarz (SSRK)

method [22] is a variation of the Randomized Kaczmarz method with a different probability criterion for

row selection that avoids sampling equations that are already solved by the current iterate. The set of

equations that are not yet solved is referred to as the selectable set. In each iteration of the algorithm,

the row to be used in the Kaczmarz step is chosen from the selectable set. The algorithm is as follows

• Sample row ik according to probabilities p1, ..., pm with rejection until ik ∈ Sk;

• Compute the estimate of the solution x(k+1);

• Update the selectable set Sk+1 such that ik /∈ Sk+1.

The first step of the algorithm can be achieved by repeatedly sampling ik according to the same proba-

bilities as the ones used in RK until we get a row that is present in the selectable set; or, one can change

the probability distribution such that the probability of a row is 0 if that row’s index is not in the selectable

set or, otherwise, it is given by pi/
∑

j∈Sk
pj . If the selectable set is small, it is computationally advanta-

geous to explicitly change the sampling distribution in each iteration. On the other hand, if the selectable

set contains many rows, a rejection sampling approach is better since it avoids constantly recomputing

the distribution. The last step of the algorithm can be done in two ways, meaning that there are two

variations of the SSRK method: the Non-Repetitive Selectable Set Randomized Kaczmarz (NSSRK)

method and the Gramian Selectable Set Randomized Kaczmarz (GSSRK) method.

For the NSSRK method, the selectable set is updated in each iteration by simply using all rows except

the row that was sampled in the previous iteration. In that case, the last step of the algorithm can be

written as Sk+1 = [m]\ik.
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The GSSRK method makes use of the Gramian of matrix A, that is G = AAT , where each entry can

be written as Gij = ⟨A(i)A(j)⟩. It is known that if an equation A(j)x = b(j) is solved by iterate x(k) and if

A(ik) is orthogonal to A(j), that is, if Gikj = 0, then the equation is also solved by the next iterate x(k+1).

This means that if j /∈ Sk and if Gikj = 0, then equation A(j)x = b(j) is still solvable by the next iterate

x(k+1) and the index j should remain unselectable for one more iteration. However, indices that satisfy

Gikj ̸= 0 should be reintroduced in the selectable set in each iteration. In summary, the last step of the

SSRK algorithm can be written as Sk+1 = (Sk ∪ {j : Gikj ̸= 0})\{ik}.

In terms of performance, the authors observed that: NSSRK and RK are almost identical; GRK out-

performs GSSRK, NSSRK and RK; depending on the data sets, GSSRK can either outperform NSSRK

and RK or it can be similar to RK. It is important to note that these conclusions were only made in terms

of how fast the error decreases as a function of the number of iterations. There is no analysis of the

performance of the algorithms in terms of time.

3.5 Randomized Kaczmarz with Averaging Method

The Randomized Kaczmarz method is difficult to parallelize since it uses sequential updates. Fur-

thermore, just as was mentioned before, RK does not converge to the least-squares solutions when

dealing with inconsistent systems. To overcome these obstacles, the Randomized Kaczmarz with Av-

eraging (RKA) method [23] was introduced by Moorman, Tu, Molitor, and Needell. It is a block-parallel

method that, in each iteration, computes multiple updates that are then gathered and averaged. Let q

be the number of threads and τk be the set of q rows randomly sampled in each iteration. In that case,

the Kaczmarz step can be written as

x(k+1) = x(k) +
1

q

∑
i∈τk

wi
bi − ⟨A(i), x(k)⟩
∥A(i)∥22

A(i)T (3.12)

where wi are the row weights. The projections corresponding to each row in set τk should be computed

in parallel. The authors of this method have shown that not only has RKA linear convergence like RK

but that it is also possible to decrease the convergence horizon for inconsistent systems if more than

one thread is used. More specifically, they showed that using the same probability distribution as in RK

for row sampling, that is, proportional to the row’s squared norm, and using uniform weights wi = α, the

convergence can be accelerated such that the error in each iteration satisfies

E ∥x∗ − x(k)∥2 ≤ σmax

((
I − α

ATA

∥A∥2F

)2

+
α2

q

(
I − ATA

∥A∥2F

) ATA

∥A∥2F

)
∥x∗ − x(0)∥2 +

α2

q

∥rLS∥2
∥A∥2F

. (3.13)

Notice that larger values of q lead to faster convergence and a smaller convergence horizon. The authors

also give some insight into how α can be chosen to optimize convergence. In the special case of uniform
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weights and consistent systems, the optimal value for α is given by:

α∗ =


q

1 + (q − 1)smin
, smax − smin ≤

1

q − 1
2q

1 + (q − 1)(smin + smax)
, smax − smin >

1

q − 1

(3.14)

where smin = σ2
min(A)/∥A∥2F and smax = σ2

max(A)/∥A∥2F . Although the authors proved that, if the

computation of the q projections can be parallelized, RKA can have a faster convergence rate than

RK, they did not implement the algorithm using shared or distributed memory, meaning that no results

regarding speedups are presented.

3.6 Parallel Implementations of the Kaczmarz Method

There are two main approaches to parallelizing iterative algorithms, both of which divide the equations

into blocks. The first mode, called block-sequential or block-iterative, processes the blocks in a sequen-

tial fashion, while computations on each block are done in parallel. In the second mode of operation,

the block-parallel, the blocks are distributed among the processors and the computations in each block

are simultaneous; the results obtained from the blocks are then combined to be used in the following

iteration.

3.6.1 Component-Averaged Row Projections

The Component-Averaged Row Projections (CARP) [24] was introduced to solve partial differential equa-

tions (PDEs). Previous methods used a block-sequential approach and are not adequate to solve PDEs:

some methods require computation and storage of data related to the inverses of submatrices; others

are very robust but do not have a consistent way to partition the matrix into submatrices. CARP is a

block-parallel method of the Kaczmarz method where the blocks of equations are assigned to proces-

sors and the results are then merged to create the next iteration. CARP is more memory efficient than

previous block-based projection methods since the only memory requirement for each processor is the

submatrix of the local equations coefficients and respective entries of the b vector and solution vector. In

terms of parallel behavior, CARP was developed in both shared and distributed memory and it exhibits

an almost linear speedup ratio. Although CARP is shown to converge for consistent systems, no linear

convergence rate is given. It is also important to note that the optimal performance of CARP depends

on the choice of the relaxation parameter and the number of inner iterations in each block, which are not

known.
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3.6.2 Asynchronous Parallel Randomized Kaczmarz Algorithm

Liu, Wright, and Sridhar [25] developed the Asynchronous Parallel Randomized Kaczmarz (AsyRK)

algorithm for shared memory systems. The asynchronous parallel technique used in AsyRK was devel-

oped by Niu et al [26] for HOGWILD!, a parallelization scheme for SGD (see Appendix B) developed

without locking. HOGWILD! was built specifically for sparse problems to minimize the time spent in

synchronization. Since SGD is an iterative algorithm, similar to CARP or RKA, we can calculate sev-

eral iterations in parallel and then update the solution vector x. Normally we would think that x should

be locked because, otherwise, the processors would override each other’s updates. But, if the data

is sparse, memory overwrites are minimal since each processor only modifies a small part of x. This

method reduces significantly the overhead of synchronization; even if memory overwrites do occur, the

error introduced by them is very small and has minimal impact. There is a small restriction regarding

the update of x: there is a maximum number of updates, ρ, that can occur between the time at which

any processor reads the current x and the time at which it makes its update. The asynchronous par-

allel variant of the Stochastic Gradient Descent method exhibits near-linear speedup with the number

of processors when using sparse data. The application of this no-lock technique to the asynchronous

parallelization of the Stochastic Coordinate Descent (SCD) method [27], called ASYSCD [28], has also

shown improvements in the rate of convergence when compared to sequential versions. Note that, just

like RK is a special case of the SGD method (see Appendix B), RGS (see Appendix B) is also a special

case of the SCD method.

The AsyRK algorithm was built by applying the HOGWILD! technique to RK. Liu, Wright, and Sridhar

show that the AsyRK method can outperform ASYSCD in running time by an order of magnitude. The

algorithm is now described. Let us consider that there is an iteration counter k that is incremented each

time x is updated by a thread; j(k) is the iterate at which x was read by the thread that updated x(k) to

x(k+1) (these are only the same if x is read and updated and there are no other threads making changes

to x in that time frame). AsyRK includes the following steps:

• The matrix A is partitioned into blocks of equal size, such that a subset of equations is assigned to

each thread;

• Each thread randomly orders its rows such that the rows in each iteration are sampled without replace-

ment 1. After a full scan of a thread’s submatrix, the thread reshuffles the rows.

• Making the assumption that the rows of matrix A are normalized, for each sampled row in each thread,

the only computation needed to update x is that of ∆x = A(i)T (bi − ⟨A(i), xj(k)⟩). Note that since A

is sparse, ∆x is a vector of mainly zeros. Finally, the non-zero entries of ∆x are summed to the

corresponding entries of x(k) to update the solution to iteration x(k+1).
1When developing Randomized Block Kaczmarz (RBK) C.1, Needell and Tropp also found that sampling without replacement

is more effective.

15



Although AsyRK has good results when compared to ASYSCD, it is important to remember that this

method was developed for sparse matrices only and that linear speedup is only observed if the number

of processors, ρ, fulfills the requirement (2eλmax(ρ+1))/m ≤ 1, where λmax is the maximum eigenvalue

of ATA.

3.7 Summary

In this section, we summarize all the variations of the original Kaczmarz method analyzed so far in

Table 3.1.
Table 3.1: Summary of the variations of the Kaczmarz method. In the case of underdetermined consistent systems,

xLN refers to the least Euclidean norm solution. For overdetermined systems, x∗ refers to the unique
solution of consistent systems and xLS refers to the least-squares solution of inconsistent systems.

Name Abbreviation Year Convergence
xLN x∗ xLS

Cyclic Kaczmarz 2.3 CK 1937
√ √ ×

Randomized Kaczmarz 2.4 RK 2007
√ √ ×

Randomized Gauss-Seidel 3.1 RGS 2009 × √ √

Randomized Extended Kaczmarz 3.2 REK 2013
√ √ √

Greedy Randomized Kaczmarz 3.3 GRK 2018
√ √ ×

Non-Repetitive Selectable Set Randomized Kaczmarz 3.4 NSSRK 2021
√ √ ×

Gramian Selectable Set Randomized Kaczmarz 3.4 GSSRK 2021
√ √ ×

Randomized Kaczmarz with averaging 3.5 RKA 2021
√ √ ×

Component-Averaged Row Projections 3.6.1 CARP 2005
√ √ ×

Asynchronous Parallel Randomized Kaczmarz 3.6.2 AsyRK 2014
√ √ ×

The first seven rows of Table 3.1 correspond to sequential methods. In our simulation, we will use

overdetermined systems, which are more common in real-world problems than underdetermined sys-

tems. We will compare the RGS and REK methods for inconsistent systems, since they are the only

ones able to solve them, and the remaining sequential methods will be tested for consistent systems.
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Chapter 4

Sequential Version
In this chapter, we evaluate the performance of sequential implementations of the Kaczmarz method

and some of its variants. The chapter is organized as follows. Section 4.1 presents the implementation

details for the considered variants of the Kaczmarz method, as well as a description of the experimental

setup. Section 4.2 discusses the obtained experimental results.

Simulations were implemented in the C++ programming language; its source code and correspond-

ing documentation are publicly available 1. All experiments were carried out on the Accelerates Cluster 2.

This cluster has 1600 cores distributed over 80 nodes, each of them with two 2.8 GHz central processing

units (Intel Xeon E5-2680 v2 CPU) with 32 GB memory.

4.1 Implementation

The following sequential methods were implemented: Cyclic Kaczmarz method (CK - Section 2.3); Ran-

domized Kaczmarz method (RK - Section 2.4); Simple Randomized Kaczmarz method (SRK - Sec-

tion 2.5); Randomized Gauss-Seidel method (RGS - Section 3.1); Randomized Extended Kaczmarz

method (REK - Section 3.2); Greedy Randomized Kaczmarz method (GRK - Section 3.3); Gramian Se-

lectable Set Randomized Kaczmarz method (GSSRK - Section 3.4); and Non-Repetitive Selectable Set

Randomized Kaczmarz method (NSSRK - Section 3.4).

Furthermore, extending on the findings of Needell and Tropp presented in Section C.1 that sampling

without replacement is an effective row selection criterion, we also developed the Simple Randomized

Kaczmarz Without Replacement (SRKWOR) method. In sampling without replacement in the context of

row selection, if a row is selected, it is necessary that all other rows of matrix A are also selected before

this row can be selected again. A straightforward technique for sampling rows without replacement is to

randomly shuffle the rows of matrix A and then iterate through them in a cyclical manner. We consider

two variants of this method. In the first, which we called SRKWOR without shuffling, the matrix is shuffled

only once during preprocessing. In the second method, which we called SRKWOR with shuffling, the

matrix is shuffled after each cyclical pass. The first variant trades off less randomization for a smaller

shuffling overhead than the second variant.

Regarding the process of shuffling the rows of the matrix, we consider two possible approaches:

the first option is to work with a shuffled array of row indices, a technique we call two-fold indexing

1Code available here: https://github.com/inesalfe/Thesis-Kaczmarz.git
2http://epp.tecnico.ulisboa.pt/accelerates/

17

https://github.com/inesalfe/Thesis-Kaczmarz.git
http://epp.tecnico.ulisboa.pt/accelerates/


(Figure 4.1a); and the second option is to create a new matrix with the desired order (Figure 4.1b).

In the first option, the memory usage is diminutive but the access time to a given row can be more

significant since we first have to access the array of indices and then the respective matrix row. In the

second option, we access the matrix directly, while also taking advantage of spatial cache locality: the

fact that rows are stored sequentially in memory promotes more cache hits than in the first case. Both

options were implemented and compared.
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Figure 4.1: Example of how to reorder rows of a matrix with 8 rows.

To motivate the parallelization of the Kaczmarz method, it is worth showing that it can outperform the

celebrated Conjugate Gradient method. Therefore, other than the Kaczmarz method and its variants,

we will also use the CG 3 and Conjugate Gradient for Least-Squares (CGLS) 4 methods from the EIGEN

5 linear algebra library. For CG we used the default preconditioner (diagonal preconditioner) 6 and both

the upper and lower triangular matrices. 7 For CGLS we used also used the default preconditioner

(least-sqaures diagonal preconditioner). 8 Since the CG method can only be used for squared systems,

it was necessary to transform the system in Expression 2.1 into a squared system by multiplying both

sides of the equation by AT , such that the new system is given by AT Ax = AT b. The computation time

of AT A and AT b was added to the total execution time of CG.
3https://eigen.tuxfamily.org/dox/classEigen_1_1ConjugateGradient.html
4https://eigen.tuxfamily.org/dox/classEigen_1_1LeastSquaresConjugateGradient.html
5https://eigen.tuxfamily.org/index.php?title=Main_Page
6https://eigen.tuxfamily.org/dox/classEigen_1_1DiagonalPreconditioner.html
7The parameter UpLo was set to Lower—Upper.
8https://eigen.tuxfamily.org/dox/classEigen_1_1LeastSquareDiagonalPreconditioner.html
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To motivate the parallelization of the Kaczmarz method, it is worth showing that it can outperform the

celebrated Conjugate Gradient method. Therefore, other than the Kaczmarz method and its variants,

we will also use the CG 3 and Conjugate Gradient for Least-Squares (CGLS) 4 methods from the EIGEN

linear algebra library 5. For CG 6 we used the default preconditioner (diagonal preconditioner) and both

the upper and lower triangular matrices (the parameter UpLo was set to Lower—Upper ). For CGLS
7 we used also used the default preconditioner (least-squares diagonal preconditioner). Since the CG

method can only be used for squared systems, it was necessary to transform the system in (2.1) into a

squared system by multiplying both sides of the equation by AT , such that the new system is given by

ATAx = AT b. The computation time of ATA and AT b was added to the total execution time of CG.

4.1.1 Stopping Criterion

Since the Kaczmarz method and its variants are iterative methods, it is required to define a stopping

criterion. For the implemented methods that solve consistent systems, the chosen stopping criterion is

made up of two conditions:

3https://eigen.tuxfamily.org/dox/classEigen_1_1ConjugateGradient.html
4https://eigen.tuxfamily.org/dox/classEigen_1_1LeastSquaresConjugateGradient.html
5https://eigen.tuxfamily.org/index.php?title=Main_Page
6https://eigen.tuxfamily.org/dox/classEigen_1_1DiagonalPreconditioner.html
7https://eigen.tuxfamily.org/dox/classEigen_1_1LeastSquareDiagonalPreconditioner.html
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• Condition 1 - The squared norm of the difference between the current and previous iterations must not

surpass a certain threshold ε1, that is, ∥x(k)−x(k−1)∥2 < ε1. This means that we have reached a point

where barely any changes are being made to the estimate of the solution. This condition by itself is

not enough since, in the randomized versions, there is a chance that the same row is chosen in two

consecutive iterations, meaning that the estimate of the solution is not going to change between those

iterations and thus ∥x(k) − x(k−1)∥2 = 0.

• Condition 2 - If the first condition holds, a second test is made to confirm that the solution has been

found. Since the residual r = b− Ax(k) should be zero for the solution, we check if the squared norm

of the residual is also inferior to a certain threshold ε2, that is, ∥r∥2 < ε2. This parameter describes

how accurate the solution is.

Note that both conditions need additional computations apart from those required in each iteration.

Furthermore, the computation of the residual in the second condition is a very computationally expen-

sive task, since it requires computing Ax(k). To make the stopping criteria as efficient as possible two

modifications were introduced. Firstly, since the number of iterations for the Kaczmarz method is usually

very high, especially for large systems, the first condition of the stopping criteria is only verified every

step iterations. Second, to reduce the number of times that the residual is calculated, the first condition

was defined to be more strict that the second one.

The desired accuracy of the solution is defined to be ε2 = 10−10. Given this parameter, we need

to find an optimal value for ε1. If ε1 is very small, then we may be needlessly computing extra iter-

ations while sooner iterations could already satisfy the second condition. If ε1 is very large, a lot of

time will be spent computing the residual. So, given ε2, we tested the Kaczmarz method for ε1 =

{10−15, 10−20, 10−20, 10−25} and step = {5, 10, 20, 100, 1000, 10000}. Since the goal is to apply the Kacz-

marz method to large systems, we chose the parameters that worked best for them, ε1 = 10−25 and

step = 1000.

CG and CGLS have a different stopping criterion than RK, based on a maximum number of iterations

and/or an upper bound for the relative residual error (∥Ax(k) − b∥/∥b∥). To ensure a fair comparison

between the EIGEN methods and RK we must make a few changes. First, we determine the number

of iterations that the different methods take to achieve a given error. Then we use those numbers as

the maximum number of iterations and measure the execution time of the methods. With this procedure

not only do we guarantee that the solutions given by the methods have similar errors but we also only

measure the time spent computing iterations, without taking into account the stopping criteria.

Computing the number of iterations needed to achieve a solution that satisfies a given error is simple

for RK since the implemented method already computes the iterations necessary to achieve a solution

with a given residual upper bound. We only need to create a simpler version of the method that uses a

given number of iterations as a stopping criterion to measure the execution time of the method without
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the computations related to the stopping criteria. For EIGEN methods, the process of computing the

maximum number of iterations is slightly more complicated and is the following: we start by setting the

maximum number of iterations to 1. We then compute the solution and the norm of the residual - if

it falls below the upper bound defined for RK we have found the number of iterations. Otherwise, we

keep increasing the maximum number of iterations until we find one that satisfies the previous condition.

Although this process might be seen as extremely slow note that methods such as CG and CGLS have

typically a much smaller number of iterations when compared with row or column action methods like

the Kaczmarz method.

The methods that solve least-squares problems (REK and RGS) also require different stopping crite-

ria: for overdetermined inconsistent systems the residual is never zero and the second condition cannot

be used. Since we will also want to compare REK and RGS with CGLS we followed a similar procedure

to the one previously described for comparing RK with CG and CGLS. In summary, we compute the

number of iterations for RK, CG, and CGLS to reach the error upper bound ∥x(k) − xLS∥2 < ϵ3 and then

measure the execution time of those iterations. ϵ3 was chosen to be 10−10

4.1.2 Data Structures for Matrix Storage

The linear systems that arise in many applications are represented by sparse matrices. A sparse matrix

is a matrix where the vast majority of elements are zero. By contrast, if most elements in the matrix

are non-zero, the matrix is said to be dense. In computer programs, matrices are typically stored as a

two-dimensional array. This format is not appropriate for sparse matrices since we would be ”wasting”

a lot of memory storing zeros. A better approach is to only store the non-zero elements of a sparse

matrix. We call the number of non-zero elements NNZ. Among the efficient formats, there are two

formats that are efficient in both access and matrix operations: the Compressed Sparse Row (CSR) and

the Compressed Sparse Column (CSC) formats. The CSR format uses three arrays to store non-zero

elements: the first contains all the values of the non-zero elements and, by consequence, has a size

equal to NNZ; the second has the column indices of those elements and also has size NNZ; the last vector

has size m+ 1 and stores the cumulative number of non-zero elements up to, but not including, the i-th

row. In the first and second arrays the values appear as if we were traversing the matrix row-by-row.

The CSC format is very similar to the previous one but instead of traversing the matrix row-by-row, we

do it column-by-column. The first array is the same, the second array has row indices, and the last array

stores the cumulative number of non-zero elements by column. Since the matrices can be either sparse

or dense, two versions of each variation of the algorithm were developed: one for dense matrices, using

a two-dimensional array to store matrix A; and another for sparse matrices, using the CSR, CSC or both

CSR and CSC formats, depending on whether the variation in question is a row action or column action

method (or both). The Cyclic Kaczmarz method and the variants where different row selection criteria
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are used (RK, GRK, GSSRK and NSSRK) are all row action methods, thus the versions for sparse

matrices were developed using the CSR format. Since the RGS method is a column action method,

the CSC format was used for the sparse matrices version. Finally, the REK method is both a row and

column action method, one column is used in the first step of the algorithm and then one row is used in

the second step; For this reason, there was the need to use both the CSR and the CSC format, hinting

that the memory usage for this algorithm is very inefficient when compared to other methods.

4.1.3 Data Sets

The Kaczmarz method and its variants were tested for dense and sparse matrices using artificial data

sets generated using C++. For dense systems, three main data sets were generated: one with contrast-

ing row norms, a second one with similar row norms, and a third one with coherent rows. The goal of the

first two was to evaluate how different row selection criteria perform against matrices with different row

norms distributions. The goal of the third dense data set was to compare the randomized versions with

the original version of the Kaczmarz method for a system similar to the one represented in Figure 2.3.

The purpose of also generating sparse systems is to determine the impact of using a two-dimensional

array versus the CSR / CSC format to store sparse matrices and they were generated also with con-

trasting row norms.

In the first dense data set matrix entries were sampled from normal distributions where the average µ

and standard deviation σ were obtained randomly. For every row, µ is a random number between−5 and

5 and σ is a random number between 1 and 20. For dense matrices, the matrix with the largest dimension

was generated and smaller-dimension matrices were obtained by ”cropping” the largest matrix. This

keeps some similarities between matrices of different dimensions for comparison purposes. Since the

focus of these methods is the resolution of overdetermined systems, row sizes of matrices can be, 2000,

4000, 20000, 40000, or 80000, and column sizes vary between 50, 100, 200, 500, 750, 1000, 2000, 4000

or 10000. To guarantee a unique solution for consistent systems the solution vector x is sampled from

a normal distribution with µ and σ using the same procedure as before, and vector b is calculated as

the product of A and x. The second data set was generated with the same procedure except that the

parameters of the normal distribution are the same for all rows µ = 0 and σ = 1. To verify that row norms

are indeed contrasting for the first data set and similar for the second one, Figure 4.2 shows a histogram

of row norms for the largest matrix of the first and second data sets. The goal of the third dense data set

is to have coherent rows. This can be achieved by having consecutive rows with few changes between

them. Just like in the previous two data sets, we compute the largest matrix and solution and the smaller

systems can be constructed by cropping from the biggest system. The generation of the largest matrix

was completed using the following steps: we start by generating the entries of the first row by sampling
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Figure 4.2: Histogram of row norms for the largest matrix of the first two data sets.

from a normal distribution N(2, 20) - these parameters ensure that the entries are not too similar; we

then define the next row as a copy of the previous one, randomly select five different columns, and

change the corresponding entries onto new samples of N(2, 20); this procedure is repeated until the

entire matrix is computed. In summary, we have a random matrix where every two consecutive rows

only differ in 5 elements.

Regarding the sparse data set, we generated systems with a single dimension, 80000 × 1000, but

different densities. We used a similar procedure to generate the matrix of each system as the one used

for the first dense data set. The difference is that only a limited number of entries for each row is sampled

using normal distributions since most entries should be set to 0. The number of non-zero entries in each

row was set to be 1, 2, 5, 8, 10, 20, 30, and 50, meaning that 8 systems were created with matrices with

densities ranging from 0.1% to 5%.

Finally, a data set with inconsistent systems was generated to test the methods that solve least-

squares problems (REK and RGS). This was accomplished by adding an error term to the consistent

systems from the first dense data set. Let b and bLS be the vectors of constants of the consistent and

inconsistent systems. The lesser was defined such that bLS = b +N(0, 1). The least-squares solution,

xLS , was obtained using the CGLS method.

4.1.4 Effect of Randomization

Since the row selection criterion has a random component in most variants of the algorithm, the solution

vector x, the maximum number of iterations, and the running time varies with the chosen seed for the

random number generator. To get a robust estimate of the number of iterations and execution times, for

each input, the algorithm is run several times with different seeds, and the solution x is calculated as

the average of the outputs from those runs. In every run, the initial estimate of the solution, x(0), was

set to 0. Execution times for the dense data sets correspond to the total of 10 runs of the algorithm with

step = 1000. For the sparse data, since the execution times are small, 100 runs were used instead of

10.
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In the RK, SRK, GRK, GSSRK, NSSRK, REK, and RGS methods, in each iteration, a row and/or

column is used, and these are sampled from a discrete probability distribution with probabilities that, for

example, for the RK method, depend on the norms of the rows of the matrix A. In the implementation of

these methods, sampling numbers that follow a discrete probability distribution was accomplished using

the class DISCRETE DISTRIBUTION from the STD library.

4.2 Results

4.2.1 Randomized Kaczmarz Algorithm

The simulations for the RK method in this section used the first dense data set. We start with the analysis

of the method’s convergence (described by (2.10)), shown in Figure 4.3. Note that the y-axis scale is

logarithmic, meaning that the error decreases exponentially with the number of iterations, proving that

the method exhibits linear convergence.
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Figure 4.3: Error as a function of the number of iterations for an 80000 × 1000 dense overdetermined system for
the Randomized Kaczmarz method. The error is given by the difference between the estimate of the
solution at the current iteration and the solution of the system.

The following analysis focuses on the number of iterations and execution time as functions of the

number of rows, m, and columns, n. From Figure 4.4a it is clear that the number of iterations increases

with n. Increasing n while maintaining m makes systems harder to solve since there are more variables

for the same number of restrictions. However, for a given value of n, there is not a clear correlation

between execution time and the number of rows. This is due to the connection between rows and

information: for overdetermined systems, more rows translate into more information to solve the system.

Figure 4.4b shows that the total computation time also increases with n due to the correlation with the

number of iterations. However, for a given value of n, systems with a larger number of rows may take

more or less time than systems with a smaller number of rows. To better understand the dependency

of the total time with n, the time per iteration was computed and is shown in Figure 4.4c. We can see

that the time per iteration increases with n and that iterations for systems with larger m take longer to

compute. This is expected since the work per iteration depends on n and since the stopping criteria

require computing the norm of the residual, which depends on m. For smaller n, since the number of
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Figure 4.4: Results for the Randomized Kaczmarz algorithm using a fixed number of rows and a varying number of
columns.

iterations is similar for all values of m, and iterations for larger m take longer to solve, the total time

is larger for larger m. When n increases, the number of iterations for smaller m increases in a larger

proportion than the time per iteration for larger m. The same analysis that was previously made for

systems with fixed row numbers is now repeated for systems with fixed column numbers. In terms of

iterations, as can be seen in Figure 4.5a, these decrease until they reach a stable value. This is again

due to the connection between a number of rows and information. Increasing the number of rows adds

restrictions to the system, making it easier to solve and lowering the number of iterations. However,

there is a point where the number of iterations needed to solve the system is less than the number of

rows of the system, after which an increase in m is no longer useful. The initial decrease in iterations

is accompanied by a decrease in time, as seen in Figure 4.5b. Then, time starts to increase since the

individual iterations for larger m require a higher computational effort.

Figure 4.6 presents the impact of the stopping criteria for a few systems with larger values of m

and n. Figure 4.6a shows the percentage of time spent computing the stopping criteria. As expected,

for a fixed n, the time computing the stopping criteria is greater for the system with a larger number of

rows, since the time spent computing the norm of the residual is proportional to m. To explain why the

percentage decreases with n, we fitted function y = β1x
β2 to the time per iteration with and without the
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Figure 4.5: Results for the Randomized Kaczmarz algorithm for dense systems using a fixed number of columns
and a varying number of rows.
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Figure 4.6: Efficacy of the stopping criteria for systems with a fixed number of rows and a varying number of
columns.

stopping criteria for m = 80000, shown in Figure 4.6b. The parameters of the fit, without the stopping

criteria, were β1 = 7.20 × 10−9 and β2 = 1.09, and, with the stopping criteria, β1 = 6.10 × 10−8 and

β2 = 8.71 × 10−1. 8 The values of the parameters β2 show that time without the stopping criteria is

slightly superlinear with n and the time with the stopping criteria is slightly sublinear with n. Since the

number of iterations increases with n, and so does the time per iteration, the total execution time will

also increase with n. Therefore, the quotient of time spent computing the stopping criteria and the total

execution time decreases with n, as seen in Figure 4.6a.

To finish the analysis of RK for dense systems, we show how this method can outperform CG and

CGLS. From both Figures 4.7a and 4.7b we can conclude that, regardless of matrix dimension, CGLS

is a faster method than CG for solving overdetermined problems. This is only normal since CGLS is

an extension of CG to non-square systems and the execution time of CG takes into account computing

ATA. From Figure 4.7a we can see that, except for the smallest system, RK is faster than CGLS.

Figure 4.7b shows that, although RK is faster for the matrix dimensions shown in the plot, the difference

8These results are presented with two significant figures.
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between this method and CGLS decreases when n increases, that is, when m and n get closer. In

summary, RK should be used to the detriment of CG and/or CGLS for very overdetermined systems.

However, it is important to note that, for the CG method, a very large portion of the execution time is

used to transform the system in (2.1) into a squared system. In fact, if we were to analyse the time spent

only in iterations of the CG method, this would be faster than RK. Nonetheless, we are working with

overdetermined systems and the computation time of ATA and AT b cannot be ignored.

So far we have shown the results of the simulations using the first data set. The previous plots in

this section were reproduced using the second dense data set instead of the first one, but, since the

conclusions are similar, we decided not to show them here. Finally, we intend to show how the use of

the CSR format for sparse matrices decreases the runtime of the algorithm. We applied the algorithm for

sparse matrices with dimensions 80000× 1000 with different densities and used both a two-dimensional

array and the CSR format to store matrix A. We then computed the speedup defined by

RatioCSR =
CPU time (two-dimensional array)

CPU time (CSR format)
. (4.1)

From Figure 4.8 it is clear that the difference between the two formats is larger for smaller densi-

ties. In fact, for a density of 0.1% (only one nonzero entry per row), using the CSR format results in

computational times 100 times smaller than using a two-dimensional array, while for a density of 5%

(fifty nonzero entries per row), using the CSR format is 6 times faster. These results are according to

intuition, as the number of multiplications necessary to compute a dot product between two vectors is

proportional to matrix density. The main result here is that using the CSR format for sparse matrices is

significantly faster than using a two-dimensional array.

4.2.2 Variants of the Kaczmarz Algorithm for Consistent Systems

We now compare several variants of the Kaczmarz method between themselves. In this section, we

will use analyze the results for the first dense data set using a fixed column number. We start with
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Figure 4.9: Results for some variants of the Kaczmarz algorithm for dense systems using a fixed number of columns
n = 1000 and a varying number of rows.

the methods introduced in Chapter 3 that, like RK, select rows based on their norms. Figure 4.9a

contains the evolution of the number of iterations while the right plot contains the total execution time

until convergence. From the number of iterations we can conclude that the GRK method has the most

efficient row selection criterion. However, this does not translate into a lower execution time, as observed

in Figure 4.9a, meaning that each individual iteration is more computationally expensive than individual

iterations of the other methods. This is due to two factors: first, there is the need to calculate the

residual in each iteration; second, since rows are chosen using a probability distribution that relies on

the residual, and since the residual changes in each iteration, there is the need to update, in each

iteration, the discrete probability distribution that is used to sample a single row. For other methods

the residual is only computed to check the second condition of the stopping criterion and the discrete

probability distribution used for row selection depends only on matrix A, and therefore, is the same for

all iterations of the algorithm. The RK, GSSRK, and NSSRK methods have an indistinguishable number

of iterations. In terms of time (Figure 4.9b), NSSRK and RK have similar performance while GSSRK

is a slower method. This happens since, for dense matrices, it is very rare that rows of matrix A are

orthogonal and the selectable set usually corresponds to all the rows of the matrix - this means that a

lot of time is spent checking for orthogonal rows and very few updates are made to the selectable set.

Before we move on to the analysis of the other Kaczmarz-based methods with different row selection

criteria, we would like to determine, for the SRKWOR, whether we should use the option with shuffling or

without shuffling. Furthermore, it is also useful to compare the performance between two-fold indexing

and creating a reordered copy of matrix A. These four variants of SRKWOR are presented in Figure 4.10.

Figures 4.10a and 4.10b show that, for most dimensions, the option without shuffling is faster than the

option with shuffling. For SRKWOR with shuffling, using two-fold indexing is better than creating a new

reordered matrix. The behavior of SRKWOR without shuffling is different since there appears to be little

difference between the execution times of the two methods. In summary, we conclude that SRKWOR
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is more efficient without shuffling and using two-fold indexing. From this point on, references to the

SRKWOR method correspond to the version without shuffling and with two-fold indexing.
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Figure 4.11: Results for some variants of the Kaczmarz algorithm for dense systems using a fixed number of
columns and a varying number of rows.

When Strohmer and Vershynin in [10] introduced the RK method, they compared its performance

to the CK and the SRK methods. Here, we make the same analysis with the addition of SRKWOR.

The results for the number of iterations and computational time are presented in Figure 4.11. The first

observation to be made is that CK yields very similar results to SRKWOR, which is expected when

working with random matrices. The SRK method, for smaller values of m, exhibits a lower number
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Figure 4.12: Results for some variants of the Kaczmarz algorithm for the coherent dense data set using a fixed
number of columns n = 1000 and a varying number of rows.

of iterations and time than the RK method, which shows that, for this data set, sampling rows with

probabilities proportional to their norms is not a better row sampling criterion than using a uniform

probability distribution. Furthermore, CK and SRKWOR outperform RK and SRK for most dimensions in

iterations and time. These results show that sampling without replacement is indeed an efficient way to

choose rows - this may happen since, when using a random approach with replacement, the same row

can be chosen many times which makes progress to the solution slower.

Contrary to the intuition provided by Strohmer and Vershynin [10], the RK inspired method from

Figure 4.11 does not outperform CK. As Wallace and Sekmen [29] refer, choosing rows in a random

way should only outperform the CK method for matrices where the angle between consecutive rows is

very small, that is, highly coherent matrices. To confirm this we also compare the results of the methods

used in Figure 4.11 for the third dense data set. Figure 4.12 shows that, for highly coherent matrices,

CK does have a slower convergence compared to RK and its random variants.

We finish this section with some simulations of the Kaczmarz method using quasirandom numbers,

described in Section 2.6. So far, it seems that, for the first dense data set, the fastest method is

SRKWOR. For this reason, we compare sampling rows using the quasirandom numbers generated

with the Sobol and Halton sequence with the Randomized Kaczmarz method and SRKWOR.

From the results presented in Figure 4.13, we can draw several main conclusions: firstly, the results

are similar for the Halton and Sobol sequence in terms of iterations and time; second, quasirandom

numbers can outperform RK in both iterations and time; finally, quasirandom numbers can have similar

execution times to SRKWOR, depending on the dimension of the problem.

From the analysis of the variants of the Kaczamrz algorithm for consistent systems, we can con-

clude that, for the data sets that we used, the only methods capable of outperforming the Randomized

Kaczmarz method are SRK (using random and quasirandom numbers) and SRKWOR. From all these

methods the SRKWOR appears to be the fastest.

The results using the second data set with similar row norms are in general very similar to the ones
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Figure 4.13: Results for some variants of the Kaczmarz algorithm for dense systems using a fixed number of
columns n = 10000 and a varying number of rows.

presented here for the first data set. The only major difference is that RK and SRK have similar results

since, by having rows with similar norms, the probability distribution used by RK will be similar to a

uniform probability distribution, used by SRK. A more in-depth analysis is presented in Appendix D.

4.2.3 Variants of the Kaczmarz Algorithm for Least-Squares Systems

In this section, we discuss the results for the REK and RGS methods. We will also show that, for

the data set that we generated, other benchmark methods are faster. In Section 4.2.1, we compared

the RK method with CG and CGLS and concluded that the CGLS is faster than the CG method for

overdetermined systems. For this reason, we will compare REK and RGS with CGLS. The execution

time of the three methods, presented in Figure 4.14, shows that, regardless of the dimension of the

problem, CGLS is faster than REK and RGS. Between REK and RGS, RGS is slightly faster than REK.

In conclusion, REK and RGS are not the most suitable methods for solving least-squares problems.
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Chapter 5

Parallel Implementations Using Shared

Memory
It is not a trivial task to parallelize the Kaczmarz algorithm, as it is an iterative algorithm where each it-

eration depends on the previous one. There are, nonetheless, two main strategies for the parallelization

of iterative algorithms (Section 3.6): block-sequential, where we parallelize the work inside each itera-

tion; and block-parallel, where several iterations are distributed and computed in parallel, after which the

results are combined. A block-sequential approach is only efficient if there is a substantial amount of

work in each iteration to make up for the overhead of parallelization. This is not the case for the Kacz-

marz algorithm, where the work in each iteration consists in computing the internal product ⟨A(i), x(k)⟩
and updating each entry of the solution, a relatively small task compared to methods that require, for

example, matrix-vector multiplication. Thus, as the amount of work in each iteration of the Kaczmarz

algorithm is proportional to the number of columns in matrix A, n, a block-sequential approach will be

inadequate for systems with small n. In this chapter, we present several shared memory approaches to

the parallelization of RK and SRKWOR using both block-sequential and block-parallel strategies.

The organization of the chapter is as follows. In Section 5.1, we discuss the implementation and

results of parallelization using a block-sequential approach. The remaining Sections in this chapter are

dedicated to block-parallel approaches. In Section 5.2 we parallelize the RKA method presented in

Section 3.5. In Sections 5.3 and 5.4, we discuss two new approaches, based on RKA. In Section 5.5,

we discuss an almost asynchronous parallel implementation of RK. Finally, in Section 5.6 we discuss

the application of some of these parallelization approaches to solving inconsistent systems.

The implementations of the several methods were accomplished using the OPENMP1 C++ API.

All the experiments and results reported throughout this chapter were conducted on the Accelerates

Cluster. Each node of the cluster has two central processing units (Intel Xeon E5-2680 v2 CPU) with 32

GB memory and each CPU has 10 cores. Our simulations use 1, 2, 4, and 8 cores from a given CPU.

Regarding the data sets that were used, the simulations in Sections 5.1 to 5.5 used consistent systems

taken from the first dense dataset discussed in Section 4.1.3. Only for the last section of the chapter,

Section 5.6, did we use inconsistent systems from the least-squares problems dataset.

1https://www.openmp.org/
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5.1 Parallelization of Each Iteration

Algorithm 1 Pseudocode for an iteration of the parallel implementation of RK. x corresponds to the
estimate of the solution in the current iteration, it . A(row)

i corresponds to the i-th column of a given row
of matrix A. D is a probability distribution that samples row indices with probability proportional to their
norms.

1: it ← it + 1

2: OMP single

3: row ← sampled from D
4: dot product ← 0

5: OMP for reduction (+:dot product) i = 0, ..., N do

6: dot product ← dot product +A
(row)
i × xi

7: OMP single

8: scale ← brow − dot product

∥A(row)∥22
9: OMP for i = 0, ..., N do

10: xi ← xi + scale ×A
(row)
i

In a first attempt at parallelization, we show that using a block-sequential approach that parallelizes

the work inside each iteration does not always exhibit speedup and, when it does, it is far from ideal,

which was somewhat expected due to the small workload per iteration. Algorithm 1 presents the pseu-

docode for an iteration of the parallel implementation of RK using a block-sequential approach. For the

purpose of comparison, the pseudocode for the sequential implementation of RK is in Algorithm 8 in

Appendix E. As previously mentioned, the main computations in each iteration are the calculation of the

internal product and the update of the solution. The former can be effortlessly parallelized using the

OPENMP reduce command with the sum operation (lines 4 to 6 of Algorithm 1). The latter is easily han-

dled by distributing the entries of the solution by the available threads using the OPENMP for command

since the update of the entries of x can be done independently (lines 9 and 10 of Algorithm 1).

Our goal is to evaluate the performance of the parallelization of iterations only and not take into

account the stopping criteria. To accomplish this, we run the sequential version of the algorithm and

compute the error, ∥x(k)−x∗∥, in each iteration. When the error drops below a given tolerance, ε = 10−5,

the algorithm is terminated and the number of completed iterations is saved. Then, both the sequential

and parallel versions of the algorithm are run for the number of iterations previously computed. This

allows us to have execution times for the sequential and parallel implementations that do not take into

account stooping criteria so that we can compute the corresponding speedup.

The block-sequential implementation of SRKWOR can also be described by Algorithm 1 with the

exception of the row selection (line 3). As previously described in Section 4.1, the row selection for

SRKWOR consists in shuffling an index array and going through it in a cyclical fashion. We have also
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Figure 5.1: Results for the parallel implementation of RK using a block-sequential approach.

implemented a block-sequential parallelization of SRKWOR. However, since the results and analysis

are identical to that of RK, we will not discuss it here.

This implementation of the parallelization of RK was run for 1, 2, 4, and 8 threads. Figures 5.1a

and 5.1b show the execution time and speedup for 8 threads, where speedup is defined as the quo-

tient of the sequential execution time and the parallel time using 8 threads. It is clear that the parallel

implementation is only faster than the sequential implementation for n = 10000. We can also note that

speedups are far from linear when compared to the number of threads and that they increase with the

number of columns, which was anticipated since increasing the workload per iteration attenuates the

overhead of parallelization. Figure 5.1c shows the speedup using other numbers of threads for larger

systems (n = 10000). It is clear that, although speedups are observed in all experiments, these are far

from the ideal value, equal to the number of threads.

5.2 Randomized Kaczmarz with Averaging

Given that it was shown in the previous section that it is not possible to implement an efficient block-

sequential parallelization of the Randomized Kaczmarz algorithm, we now move on to block-parallel

implementations. In this section, we implement the RKA algorithm (Section 3.5) and a variation of the

RKA algorithm using sampling without replacement.

In each iteration of RKA, each thread samples a row of the matrix, computes an updated version of

the estimate of the solution, and then the results for all threads are averaged. In this implementation, we

decided to use uniform row weights (wi = α), meaning that we can rewrite (3.12) such that

x(k+1) = x(k) +
α

q

∑
i∈τk

bi − ⟨A(i), x(k)⟩
∥A(i)∥22

A(i)T . (5.1)

where q is the number of threads. Note that, if q = 1, we recover the RK method. Using the previous

equation, we implemented a sequential version of RKA so that we could validate the results obtained by
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Algorithm 2 Pseudocode for an iteration of the parallel implementation of RKA.
1: it ← it + 1

2: OMP barrier

3: OMP for i = 0, ..., N do

4: x
(prev)
i ← xi

5: row ← sampled from D
6: scale ← α× brow − ⟨A(row), x(prev)⟩

q ∥A(row)∥22
7: OMP critical

8: for i = 0, ..., N do

9: xi ← xi + scale ×A
(row)
i

the authors of RKA and evaluate the effectiveness of the parallelization (Algorithm 9 in Appendix E). We

will now go through the details of the computations involved in each iteration of the parallel implementa-

tion of RKA, presented in Algorithm 2.

In lines 3 and 4 of Algorithm 2 we store the estimate of the solution from the previous iteration,

x(prev). This is necessary since, if the scale factor in line 6 was computed using the current estimate of

the solution, x, one thread could be computing the scale factor while another thread was updating x in

the critical section ahead and the scale factor would not have the correct value.

In line 5 of Algorithm 2 a row is sampled according to a probability distribution proportional to the

norms of the rows of matrix A. However, it does not make sense to have threads sampling the same

sequence of rows since we would be averaging identical results. This can be easily avoided by giving

each thread a different seed for the random number generator that samples rows. Nonetheless, it is

not only possible that different threads sample the same row, but also likely, if rows have very different

norms.

In lines 7 to 9 of Algorithm 2 the results are combined. To ensure that all threads update the estimate

of the solution and that no two threads are updating x simultaneously, a critical section must be created,

meaning that the gathering of results is done sequentially. To try to introduce some parallelism in this

step two other approaches were tested: in the first, different threads start updating x in a different entry,

and the atomic command is used; in the second we use the reduce command on the solution vector with

the sum operation, but this requires previously setting x to zero. Both approaches proved to be slower

than using the critical section. It is also important to mention that the time respective to combining the

results is directly proportional to the number of threads. Note that, since there is no implicit barrier at

the end of the critical section, a synchronization point was introduced in line 2, so that we avoid having

one thread updating x(prev) in line 4 while another thread is still in the previous iteration updating x in

line 9. We can already identify two problems in the parallel implementation of this algorithm: not only do

we have a synchronization point in each iteration, but also the averaging of results is done sequentially.
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Figure 5.2: Iterations for RK and RKA using 2, 4, and 8 threads for several overdetermined systems with n = 1000
with a varying number of rows.

As in Section 5.1, we do not consider the stopping criteria when measuring execution times. For that,

we measure the necessary number of iterations to reach convergence by running the sequential and

parallel algorithms until ∥x(k)−x∗∥ < 10−5 is verified. We then measure the execution time by rerunning

the algorithm for the previously computed number of iterations. Note that the number of iterations will

differ between RK and RKA. The discussion of the results for RKA is present in Section 5.2.1.

Since the RKA algorithm can improve the convergence of the RK method, we developed a variation

of RKA called Simple Randomized Kaczmarz with Averaging Without Replacement (SRKAWOR), with

the goal of increasing the rate of convergence of SRKWOR. An iteration of SRKAWOR can also be

described by Algorithm 2 with the exception of the row selection in line 5, since SRKAWOR samples

rows without replacement and not based on their norms. In Section 5.2.2 we test two approaches to

sampling without replacement and discuss the results for SRKAWOR.

5.2.1 Results for the Randomized Kaczmarz with Averaging Method

In this section, we discuss the results for the RKA method that samples rows based on their norm. Two

choices for the parameter α (5.1) were made: α = 1 and α = α∗, where α∗ is the optimal parameter for

RKA for consistent systems, given by (3.14). The sequential and parallel versions of RKA were tested

for 2, 4, and 8 threads (1 thread is the RK method). We start by showing how RKA can be used to

accelerate the convergence of RK.

Figure 5.2 shows the number of iterations using the two choices of α previously discussed. It is clear

that, regardless of α, the number of iterations of RKA is inferior to that of RK. Furthermore, when the

number of threads is increased, fewer iterations are needed for RKA to converge. However, the reduction

in the number of iterations is much more significant when using the optimal values for the weights. For

this reason, the results presented in the remainder of this section were obtained using the optimal row

weights α∗.

Figure 5.3 shows the execution time and speedup using optimal row weights α∗. Although Fig-
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Figure 5.3: Results for RK and the parallel implementation of RKA using 2, 4, and 8 threads for several overdeter-
mined systems with n = 1000 with a varying number of rows.

ure 5.2b shows that RKA requires fewer iterations to converge than RK, Figure 5.3a shows that, regard-

less of the number of threads, RKA is a slower method than RK. Note that, for RKA, regardless of the

number of threads, the work done by each thread during the computation of the results corresponding

to one row of matrix A is the same as RK (lines 5 and 6 of Algorithm 2). This means that the increase

in execution time for RKA can only be due to the averaging of results. Although the number of iterations

is smaller for a larger number of threads, this decrease is not enough to make up for the time spent in

updating x(k), which has to be done sequentially. Figure 5.3b represents the speedup computed as the

quotient between the execution time of RK and the execution time of the parallel implementation of RKA

for the several numbers of threads and shows that speedups are far from linear.

We now evaluate the parallelization of the RKA algorithm by comparing it with its sequential version.

Figure 5.4, contains the speedup calculated as the quotient between the total execution time of the

sequential and parallel implementations of RKA for several threads. Note that regardless of the number

of threads, speedups improve for data sets with larger n. This is expected since a larger number of

columns means that the work per iteration also increases and, consequently does the execution time.

However, speedups are still far from ideal and there are cases where the sequential version is faster than

the parallel version, for example, for almost all threads and all values of m using n = 1000 (Figure 5.4a).
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Figure 5.5: Results for the parallel implementation of RKA using a partition scheme for the rows of matrix A.

As previously mentioned several threads may sample the same row in a given iteration. To force

threads to sample different rows, we developed a variation of the RKA algorithm where matrix A is

distributed among threads. Therefore, the sequential and parallel implementation of this algorithm can

still be described by Algorithms 2 and 9 with the exception of line 5 where rows are sampled. To partition

the system between threads we used a distributed approach. For a given thread with identifier tid , its

block of rows spans from index low = ⌊tID m
q ⌋ to index high = ⌊(tID + 1)mq ⌋ − 1, inclusively. Figure 5.5

shows the difference between partitioning the matrix between 8 threads (or not). It is clear that there

is no advantage in using this partition scheme since the number of iterations and execution time suffer

minor changes when compared to each thread having access to the entire matrix.

In conclusion, it is not possible to efficiently parallelize RKA due to the large overhead in commu-

nication between threads, especially when averaging the results. For efficient parallelization, we need

to find a way to average the results in parallel or to decrease the number of times that the results are

averaged and, therefore, decrease the impact of communication. This last approach will be explored in

the next block-parallel approach, presented in Section 5.3.

5.2.2 Results for the Simple Randomized Kaczmarz with Averaging Without Re-

placement Method

In this section, we discuss the results for the SRKAWOR method that uses sampling without replace-

ment. In the previous section, we used two options for parameter α and concluded that using the optimal

values α∗ significantly decreases the number of iterations. However, the optimal values are only valid

for row sampling using a probability distribution that depends on row norms, meaning that it is not antic-

ipated that α∗ are the optimal values for SRKAWOR.

As previously mentioned, the implementation of the SRKAWOR method is identical to the RKA,

except for the technique used to sample rows. We will now explain in detail how to sample rows without

replacement while guaranteeing that, in a given iteration, no two threads are computing results based
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Figure 5.6: Two options for sampling without replacement using an example with 4 threads.

on the same row. Similarly to SRKWOR, we use a shuffled array of indices to represent a reordered

version of matrix A. There are two possible sampling schemes to select row indices for the shuffled

array. In the first option, represented in Figure 5.6a, entries of the array are used cyclically - in each

iteration threads selected entries according to their ID such that the index selected in iteration it is

idx = mod(q × it + tID ,m).

In the second option, represented in Figure 5.6b, the array is split between threads and then each

thread cyclically uses its block of entries. The index of the first entry of the block correspondent to a

thread with identifier tID is given by: Blow = ⌊tID × m
q ⌋ and the size of that block is given by Bsize =

⌊(tID + 1) × m
q ⌋ − ⌊tID × m

q ⌋. In summary, a thread with identifier tID uses, in iteration it , the row with

index idx = Blow +mod(it , Bsize).

To determine which sampling scheme is better, we ran the parallel implementation of SRKAWOR for

several numbers of threads, whose results are shown in Figure 5.7. Note that there is no distinguishable

difference between the two options for both choices of parameter α in terms of the number of iterations.

Regarding execution time, using α = 1, the difference between the two options is also minimal, as seen

in figure 5.7c. However, for α = α∗, using 8 threads, execution time using the second option is inferior to

the first option. In conclusion, there is only a thread for one of the options of α where there is a noticeable
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Figure 5.7: Results for SRKAWOR using 2, 4, and 8 threads for several overdetermined systems using a fixed
number of columns of n = 10000 and a varying number of rows.

difference in execution time. Since this is not enough to determine if there is a sampling option that has

better performance, we will use option one as the default sampling option from now on.

Now we compare the performance of the parallel implementation of SRKAWOR with the SRKWOR

method for both options of α. The results in Figure 5.8 show that contrary to RKA (Figure 5.2), for

parameters α = 1, the number of iterations is not necessarily smaller for a larger number of threads, as

seen in Figure 5.8a. For example, for a system, 40000 × 1000, the number of iterations using 8 threads

is larger than that for 4 threads. On the other hand, using α = α∗, regardless of the dimension of the
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with n = 1000 with a varying number of rows.
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Figure 5.9: Results for SRKWOR and the parallel implementation of SRKAWOR using 2, 4, and 8 threads for
several overdetermined systems with n = 1000 with a varying number of rows.

system, it is always beneficial to use more threads. This indicates that the optimal parameter α for

SRKAWOR is closer to the optimal parameter α∗ calculated for RKA than to α = 1. For this reason, the

results presented in the remainder of this section were obtained using α = α∗.

The execution time and speedup results in Figure 5.9 are very similar to the results in Figure 5.3.

Once more, although SRKAWOR (with α = α∗) requires fewer iterations to converge than SRKWOR,

that decrease in iterations is not enough to compensate for the time spent in averaging the results,

making SRKAWOR a slower method than SRKWOR.

The speedups calculated as quotient between the total execution time of the sequential and parallel

implementations of SRKAWOR for several threads exhibit very similar results to those from Figure 5.4,

so we will not show them here. The main conclusion for SRKAWOR is the same as for RKA: the

communication has a dominant impact on execution time and, therefore, efficient parallelization is not

possible.

5.3 Randomized Kaczmarz with Averaging with Blocks

Efficient parallelization of RKA is not possible due to the large cost of communication that happens in

every iteration. To decrease the impact of communication we developed a variation of the RKA method

called Randomized Kaczmarz with Averaging with Blocks (RKAB). In a single iteration of RKA, each

thread only processes one row of the matrix before the results are averaged. In RKAB, instead of

each thread only processing one row per iteration, the results corresponding to a block of several rows

are computed, meaning that the results from several threads are only gathered once in a while. We

can already identify one advantage and one disadvantage of RKAB in regards to RKA: on one hand,

communication will happen much more sporadically; on the other hand, since results are only shared

between threads after processing a block of rows, there is less shared information between threads.

Just like for RKA, we developed a sequential version of RKAB (Algorithm 10 in Appendix E). Here,
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Algorithm 3 Pseudocode for an iteration of the parallel implementation of RKAB.
1: it ← it + 1

2: OMP barrier

3: row ← sampled from D
4: scale ← α× brow − ⟨A(row), x⟩

∥A(row)∥22
5: for i = 0, ..., N do

6: x
(thread)
i ← xi + scale ×A

(row)
i

7: for b = 0, ..., block size − 1 do

8: row ← sampled from D
9: scale ← α× brow − ⟨A(row), x(thread)⟩

∥A(row)∥22
10: for i = 0, ..., N do

11: x
(thread)
i ← x

(thread)
i + scale ×A

(row)
i

12: for i = 0, ..., N do

13: x
(thread)
i ← x

(thread)
i − xi

14: OMP barrier

15: OMP critical

16: for i = 0, ..., N do

17: xi ← xi +
x
(thread)
i

q

we discuss a detailed explanation of the work inside a single iteration of the parallel implementation of

RKAB presented in Algorithm 3.

In Algorithm 3, instead of saving the previous iteration (Algorithm 2), every thread has a private

variable x(thread) that stores the current results for that thread. In the first row of the block, threads use

the estimate of the solution from the previous iteration (lines 3 to 6 of Algorithm 3). For the remaining

rows of the block, threads use their local estimative of the solution, x(thread), to compute the scale factor

(lines 7 to 11 of Algorithm 3). Note that the size of the block, block size, has to be determined by the user

and that using the RKAB method with block size = 1 is equivalent to the RKA method. Later on, we will

discuss how to choose block size.

The process of averaging the results is slightly different from RKA. In each thread, after the results

of the entire block are computed, we subtract x to x(thread) so that we can update x by summing the

changes. Another option would be setting x to 0 and summing the entirety of the results but the compu-

tational effort is the same. Note that we need the barrier in line 14 of Algorithm 3 so that we do not have

one thread updating x in the critical region while another thread is behind computing x(thread) in line 13.

The stopping criterion will be the same as the one used for RKA. We compute the number of

iterations necessary to have ∥x(k) − x∗∥ < 10−5 and then use it as a maximum number of iterations to
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measure the execution time of the algorithm.

Just like we developed a variation of RKA that uses sampling without replacement (SRKAWOR),

here we will also do the same with RKAB, with the Simple Randomized Kaczmarz with Averaging with

Blocks Without Replacement (SRKABWOR) method. Once more, SRKABWOR can be described with

the same pseudocode as RKAB (Algorithm 3), with the exception of lines 3 and 8 where the rows are

sampled.

In Section 5.3.1 we walk through the results for RKAB and compare it with the RK method. In Sec-

tion 5.3.2 we discuss the details of sampling without replacement and discuss the results for SRKABWOR.

5.3.1 Results for the Randomized Kaczmarz with Averaring with Blocks Method

During the implementation of RKA we used uniform row weights, α, and analyzed the results using α = 1

and α = α∗, where α∗ are the optimal parameters for consistent systems. However, RKAB is a different

algorithm than RKA and there is no calculated optimal value for α. For that reason, we will first analyze

the dependency of RKAB on other parameters like the block size using α = 1. At the end of this section,

we will evaluate how several choices of row weights, α, can impact the performance of RKAB.

We will start by analyzing how the execution time of RKAB depends on the size of the blocks by set-

ting block size = {5, 10, 50, 100, 500, 1000, 10000}. Similarly to the previous parallelization attempts, the

sequential and parallel versions of RKAB were tested for 1, 2, 4, and 8 threads. Figure 5.10 shows the re-

sults for RKAB for a system with dimensions 80000×1000. Figure 5.10a shows that, for all threads, when

we increase block size, the number of iterations decreases. This was expected since, by processing a

larger number of rows in each iteration, the estimate of the solution will converge faster than if only the

use row was used. Furthermore, for fixed block size, larger numbers of threads require fewer iterations.

However, that decrease is small, since the total number of used rows, shown in Figure 5.10b, increases

when more threads are used. Figure 5.10b also shows that, for a given number of threads, regardless of
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Figure 5.10: Results for the parallel implementation of RKAB using 2, 4, and 8 threads for an overdetermined
system 80000× 1000 for several values of block size.
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Figure 5.11: Results for the sequential version of RK and the parallel implementation of RKAB using 2, 4, and 8
threads for several overdetermined systems.

block size, the total number of used rows stays the same (with the exception of the block size = 10000).

The results in Figure 5.10c can be easily explained by using the number of iterations and the total num-

ber of rows. First, for blocks of a fixed size, time generally increases with the number of threads since,

although iterations decrease, that decrease is not large enough to make up for the overhead in synchro-

nization. Second, increasing the block size, in general, decreases time since, although the total amount

of work is similar between block sizes (see Figure 5.10b), the number of times that the threads have

to communicate to average the results is smaller. The larger block size is a special case since it is the

only one for which the total number of used rows and time increase. Note that this is the only value

for which block size > n. For a full rank matrix, using the same number of rows as columns is enough

information to solve the system. This means that using a block size much larger than n makes it so that

the individual solution estimates in each thread are already close to the real solution and, therefore, that

there is little to no benefit in averaging similar results.

To further validate the conclusions regarding the block size, Figure 5.11 shows the results for a

system with other numbers of columns and it also shows the sequential time of RK. Note that, once

more, for a system 80000×4000, time increases when we go from block size = 1000 to block size = 10000.

However, for the system with 80000×10000, time does not increase for the larger block size. In summary,

we can use the number of columns as a rule of thumb to select the block size. Still, just like RKA, for

most numbers of threads and for most block sizes, the parallel implementation is not faster than the

sequential implementation.

We will now evaluate the parallelization of the RKAB algorithm by comparing it with its sequential

version. Figure 5.12, contains the speedup calculated as the quotient between the total execution time

of the sequential and parallel implementations of RKAB for several threads using block size = n. The

results show much higher speedups than the ones obtained with RKA (see Figure 5.12).

In conclusion, although the parallelization of the RKAB can be done more effectively than the paral-
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Figure 5.12: Speedup for RKAB using 2, 4, and 8 threads for several overdetermined systems using a fixed number
of columns and a varying number of rows. block size was set to the number of columns.

lelization of RKA, the RKAB method, just like RKA, is not faster than the sequential RK for most systems

in our data set.

We now discuss how different row weights, given by parameter α, can affect the performance of

RKAB. For each number of threads, several values of α were chosen between 1 and the optimal value

of α, α∗, for RKA (5.1). Since the values of α∗ for a system 80000×1000 are 1.999, 3.992 and 7.962 for 2, 4,

and 8 threads, we choose α = {1.0, 1.2, 1.3, 1.5, 1.8, 1.999} for 2 threads; α = {1.0, 1.5, 2.0, 2.5, 3.0, 3.991}
for 4 threads; and α = {1.0, 2.0, 2.5, 3.0, 5.0, 7.962} for 8 threads. Figure 5.13 shows the results for the

system with dimensions 80000 × 1000. Note that, for 4 and 8 threads, there are a few values of α for

which the number of iterations is not shown (for example, 4 threads using block size = 500 and α = 3.0).

These cases are not shown because the RKAB does not converge for these values of α. This conclusion

was obtained by confirming that the error ∥x(k) − x∗∥ is increasing with each iteration, meaning that the

estimation of the solution is not approaching the solution of the system. Figure 5.13a shows that, for 2

threads, α∗ is not the optimal value of α for RKAB. Although, regardless of block size, RKAB converges

for α∗, there are other values of α for which the number of iterations is smaller (α = 1.8 for block size = 50,
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Figure 5.13: Number of iterations for the RKAB method as a function of parameter α for a system with dimensions
80000× 1000.
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α = 1.3 and α = 1.5 for block size = 500 and α = 1.2, α = 1.3 and α = 1.5 for block size = 1000). It

also appears that the optimal value of α for RKAB decreases with the increase of block size. For 4 and 8

threads (Figures 5.13b and 5.13c), not only is α∗ not the optimal value of α, but also, depending on the

block size, RKAB might not even converge. Just like for 2 threads, for a given number of threads, the

optimal α seems to decrease when the block size is increased.

In summary, RKA can converge for a given α while RKAB does not; the optimal values of α for RKA

are not the same as the ones for RKAB; the optimal value of α for RKAB depends on block size.

5.3.2 Results for the Simple Randomized Kaczmarz with Averaring with Blocks

Without Replacement Method

In this section, we discuss the SRKABWOR method, a variation of RKAB that uses sampling without

replacement. Similarly to the SRKAWOR method (Section 5.2.2), there are two possible approaches for

sampling blocks of rows without replacement, shown in Figure 5.14.

In the first option, represented in Figure 5.14a, entries of the array are used cyclically. Let idx (r, it , tID)

be the array index corresponding to r-th row of the block in iteration it for threads with ID. The array

entry of the first row that a thread with identifier tID uses in the first iteration is given by idx (0, 0, tID) =

block size × tID. During that iteration, the array index corresponding to the r-th row in the block is

idx (r, 0, tID) = mod(idx (0, 0, tID) + r,m). After each iteration, the first row of the block is incremented

such that idx (r, it + 1, tID) = idx (r, it , tID) + block size × q.

In the second option, represented in Figure 5.14b, the array is split between threads and each thread

cyclically uses its chunk of entries. As discussed in Section 5.2.2, the chunk of entries own by thread with

identifier tID starts at index Blow = ⌊tID m
q ⌋ and has size Bsize = ⌊(tID + 1)mq ⌋ − ⌊tID m

q ⌋. Therefore,

in iteration it , the array index corresponding to the r-th row in the block is given by idx (r, it , tID) =

Blow + mod(it × block size + r,Bsize). Figure 5.15 shows the execution time for the two sampling

options for several values of block size for two different systems. Note that just like for SRKAWOR, there

is no sampling option that is systematically better than the other. For this reason, we will use the first

sampling option as the default for this method. Moreover, the evolution of execution time for the several

block sizes in Figures 5.15a and 5.15b is very similar to the results for RKAB, in Figures 5.10c and 5.11a.

This means that we can adopt the same rule for choosing the block size as the one used for RKAB, that

is, using block size = n. Finally, Figure 5.15 shows that the parallel implementations of SRKABWOR are,

in general, slower than the sequential SRKWOR method.

We will now evaluate how the effectiveness of the parallelization of SRKABWOR, by comparing the

parallel implementation with the sequential implementation of SRKABWOR. The speedups calculated as

quotient between the total execution time of the sequential and parallel implementations of SRKABWOR

for several threads exhibit very similar results to those from Figure 5.12, so we will not show them
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Row 1-5 −→ Thread 1

Row 6-10 −→ Thread 2

Row 11-15 −→ Thread 3

Row 16-20 −→ Thread 4

Row 21-25 −→ Thread 1

Row 26-30 −→ Thread 2

Row 31-15 −→ Thread 3

Row 36-40 −→ Thread 4

Row 41-45 −→ Thread 1

Row 46-50 −→ Thread 2

Row 51-55 −→ Thread 3

Row 56-60 −→ Thread 4

...

Iteration 1

Iteration 2

Iteration 3

(a) In the first sampling option rows are
sampled cyclically.

Row 1-5 −→ Iteration 1

Row 6-10 −→ Iteration 2

Row 11-15 −→ Iteration 3

...

Row 26-30 −→ Iteration 1

Row 31-35 −→ Iteration 2

Row 36-40 −→ Iteration 3

...

Row 51-55 −→ Iteration 1

Row 56-60 −→ Iteration 2

Row 61-65 −→ Iteration 3

...

Row 76-80 −→ Iteration 1

Row 81-85 −→ Iteration 2

Row 86-90 −→ Iteration 3

...

Thread 1

Thread 2

Thread 3

Thread 4

(b) In the second sampling option the matrix
is divided between threads. Each thread
owns a block of 25 rows.

Figure 5.14: Two options for sampling without replacement using an example with 4 threads and a matrix with 100
rows.
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Figure 5.15: Results for the parallel implementation of SRKABWOR using 2, 4, and 8 threads for several overde-
termined systems.
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here. We conclude that, just like RKAB, the parallelization of SRKABWOR is more efficient than that of

SRKAWOR, but the SRKABWOR method is still generally slower than the sequential SRKWOR.

5.4 Randomized Kaczmarz with Averaging with Blocks with Rep-

etition

In an attempt to try and improve the RKAB method further, we designed a variation of the method where

each block of rows in each thread is processed several times before the results are combined.

There are two advantages to processing the same block more than one time: it increases the amount

of work in each iteration, which makes communication more sporadic; and by reusing the rows in the

block, we save time in memory access. The disadvantage is that, by reusing rows, we are reprocessing

information that has already been used. To implement this variation, since each row is sampled from

a probability distribution, we must store the indices of the rows used in each block to that they can be

reused. Furthermore, an additional parameter that controls the number of repetitions of each block is

needed.

This block repetition approach can also be used for the improvement of the SRKABWOR method

(Section 5.3.2). Since there is a direct correspondence between a given iteration and the row indices of

the block that will be used, there is no need to store the indices of used rows. However, since the results

are very similar to using block repetition for RKAB we will not discuss them here.

We now discuss some results, present in Figure 5.16, for the RKAB method with block repetition

for dimension 80000 × 4000, using 8 threads and block size = {50, 500, 1000, 4000, 10000}. The number

of repetitions was chosen as repeat = {1, 2, 5, 10}. Note that using this variation with repeat = 1 is

equivalent to using the RKAB method. Moreover, the row weights given by α were set to 1.

Figure 5.16a shows that, regardless of the size of the block, there is a slight decrease in the number

of iterations when the number of repetitions increases. Figure 5.16b shows the total number of used
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Figure 5.16: Results for the RKAB method with block repetition for a system with dimensions 80000× 4000 using 8
threads. The number of repetitions was set to 1, 2, 5, and 10 and the block size to 500, 1000, 4000,
and 10000.
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rows, given by the product of the number of iterations, threads, block size, and the number of repetitions.

It is clear that, for a given block size, the decrease in iterations is not big enough to compensate for the

increase in the total number of used rows. Furthermore, except for repeat = 1, larger blocks require

fewer rows to converge. This is due to the impact of the number of iterations in the total number of used

rows. For the case with no repetitions, since the difference between iterations for the several block sizes

is smaller, the block size will have a larger impact in computing the total number of used rows than the

number of iterations. In the cases where there is the same block of rows is reused, iterations have a

larger impact in computing the total number of used rows. The results in Figure 5.16b directly translate

into time, shown in Figure 5.16c.

In summary, there appears to be no advantage in repeating the blocks, regardless of the block size

used.

5.5 An Almost Asynchronous Parallel Implementation of the Ran-

domized Kaczmarz Method

The previous attempts at block-parallel implementation of RK such as RKA and RKAB have shown

that the synchronization overhead is the main obstacle in building an effective parallelization. To fully

eliminate the cost of communication, some methods have each thread update the solution vector at

will, like in the AsyRK method. In this section, we will discuss an attempt of creating an asynchronous

parallel implementation of RK.

To compute iterations in parallel, different threads must work on different rows of the matrix while

still sampling rows according to their norms. This can be easily accomplished by giving each thread a

different seed for the random number generator that samples the rows, just like in RKA.

The method for combining the results for this implementation is the following: the entries of the

solution vector are distributed among threads such that each thread can only update a different part

of x(k). This is to make sure that no two threads are updating the same position of the x(k). The

decomposition of the entries of x(k) among threads uses a distributed approach. Considering that x(k)

has size n and that the number of threads is t, a thread with identifier tID updates entries of x(k) starting

at index ⌊tID n
t ⌋ and ending at index ⌊(tID + 1)nt ⌋ − 1 inclusively.

To reduce synchronization, each thread updates x(k) at will, meaning that a thread may read the

entries of x(k) to compute ⟨A(i), x(k)⟩ while another thread is updating its segment of x(k). Consequently,

the results will be different every time we run the algorithm. Since the results are not reproducible, the

stopping criterion used in the previous Sections is unusable due to the fact that a given number of

iterations might be enough to achieve a given tolerance in one run of the algorithm but not another. To

solve this problem, to measure the execution times of this implementation, we opted for an alternative

where we measure the time necessary to achieve ∥x(k) − x∗∥ < 10−5. Just like in the sequential RK,
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this test is performed every 1000 iterations. Regarding the computation of ∥x(k) − x∗∥ in the parallel

implementation there are two options: first, we could introduce a synchronization point every 1000

iterations and parallelize the computation of the error; second, we could have only one thread computing

the error sequentially and have it communicate to the other threads whether they should continue or

stop working. We opted for the first option meaning there will still be some level of synchronization. In

summary, the execution times for this implementation will take into account the stopping criterion due

to the fact that, since this approach is asynchronous, the results for every run of the algorithm are not

reproducible.

5.5.1 Results for the Randomized Kaczmarz Method

The results using 1 and 8 threads are presented in Figure 5.17. Simulations using 2 and 4 threads

exhibit similar results so we will not discuss them here. Figure 5.17a shows that the parallel version

requires more iterations than the sequential version. This increase in iterations is also accompanied by

an increase in time. Several factors might be contributing to this ineffective parallelization: for starters,

although we let threads update x(k) at will, we still have a synchronization point for the stopping criteria

that happens every 1000 iterations, for which threads might be waiting on each other; furthermore, a

thread might be using x(k) with segments that still have not been updated by other threads in their

previous iteration, in other words, an older and out-of-date version of the estimation of the solution

vector.
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Figure 5.17: Results for a block-parallel implementation of Randomized Kaczmarz method using 8 threads for sev-
eral overdetermined systems using a fixed number of columns and a varying number of rows.

5.5.2 Results for the Simple Randomized Kaczmarz Without Replacement Method

In this section, we changed the row selection criterion to sample without replacement. As previously dis-

cussed in Section 5.2.2 there are two ways to sample without replacement that threads are not working
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on the same row (Figure 5.6). However, these variations do not always converge. Furthermore, it can

converge using the first sampling scheme from Figure 5.6 and not the second (or vice versa). An exam-

ple for which the method converges for one but not another sampling scheme is shown in Figure 5.18,

where we show the error evolution every 10 iterations. Note that, in the first sampling scheme, shown in

Figure 5.18a, although the error initially decreases, after it reaches a global minimum, it increases again

and the estimate of the solution gets progressively further away from the solution of the system. For

the second sampling scheme, shown in Figure 5.18b, the error gets closer to zero when the number of

iterations increases. In conclusion, this parallel implementation should not be used. Not only is it slower

than the sequential RK method, as shown in the previous section, but also, in the case of sampling

without replacement, the parallel implementation might not even converge.
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(a) Fist sampling scheme from Figure 5.6.
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(b) Second sampling scheme from Figure 5.6.

Figure 5.18: Error evolution for a block-parallel implementation of Simple Randomized Kaczmarz Without Replace-
ment method using 4 threads for a system 2000× 500. The data represented here was obtained for a
single run of the algorithm.

5.6 Application of RKA and RKAB to inconsistent systems

In Sections 5.2 and 5.3 we discussed the parallel implementations of RKA and RKAB using shared

memory. We concluded that, in general, neither RKA nor RKAB can consistently beat the sequential RK

in terms of execution time. However, RKA is able to decrease the convergence horizon for inconsistent

systems when more than one thread is used, something that is not possible for RK (Section 3.5). In this

section, we show that RKAB is also able to achieve this, which is relevant since the parallelization of

RKAB is more effective than that of RKA.

To show how the convergence horizon can change for several numbers of threads we will show the

evolution of the norm of the error, ∥x(k) − xLS∥, and the norm of the residual ∥Ax(k) − b∥. To obtain

these variables, we ran the RKA and RKAB algorithms with a maximum number of iterations and stored

the error and norm every step iterations. Since we will test numbers of threads between 1 and 50, that

are not supported by the cluster, and since the goal is not to measure execution time but only to get the

error and the residual, we used the sequential implementations of RKA and RKAB for the simulations in
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Figure 5.19: Results for RKA (with α = 1) for a system 80000× 1000. Here we show the first 30000 iterations and
the error and residual were stored every step = 100 iterations.

this Section. The inconsistent system used in this section has dimensions 80000 × 1000 and was taken

from the least-squares data set that was generated to test REK and RGS (Section 4.2.3).

Figure 5.19 shows the error and residual evolution for the RKA algorithm using unitary row weights

(α = 1 in (5.1)). Figure 5.19a shows that using a higher number of threads, q, decreases the error value

around which the method stabilizes. Figure 5.19b shows that the residual q = 20 and q = 50 stabilizes

around the residual for the least-squares solution. However, this does not mean that the solution given

using these numbers of threads is the least-squares solution since the error is not zero.

Figure 5.19 shows the error and residual evolution for the RKA algorithm using the optimal row

weights for consistent systems (α = α∗ from (3.14)). Note that, although it is not expected for α∗ to be

optimal for these systems since they are inconsistent, we would like to analyze the impact of different α

values in the convergence horizon. Figure 5.20a shows some big differences compared to Figure 5.19a.

Note that increasing q can decrease the final error but this is not true for all values of q. Furthermore, it

is not true that the error for q threads is smaller than that for q− 1 threads, something that was observed

5000 10000 15000 20000 25000
Iteration

10−1

100

101

‖x
(k

)
−
x
L
S
‖

q = 1

q = 2

q = 4

q = 8

q = 20

q = 50

(a) Error.

5000 10000 15000 20000 25000
Iteration

103

104

105

‖A
x

(k
)
−
b‖

q = 1

q = 2

q = 4

q = 8

q = 20

q = 50

‖AxLS − b‖

(b) Residual.

Figure 5.20: Results for RKA (with α = α∗) for a system 80000× 1000. Here we show the first 30000 iterations and
the error and residual were stored every step = 100 iterations.
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Figure 5.21: Results for RKA (with α = 1) for a system 80000× 1000. Here we show the first 30 iterations and the
error and residual were stored every step = 1 iterations.

for α = 1 in Figure 5.19a. Furthermore, the error values for α = 1 can be smaller up to one order of

magnitude than those for α = α∗. Figure 5.19b shows that the residual can decrease when using more

than one thread but that decrease is smaller than the one for α = 1. Although using α = α∗ does not

decrease the convergence horizon as significantly as α = 1, Figures 5.20a and 5.20b show that the

error and residual stabilize much earlier than for α = 1.

Figure 5.21 shows the error and residual evolution for the RKAB algorithm using block sizes equal to

the number of columns of the system (block size = 1000) and unitary row weights (α = 1). Figure 5.21

is very similar to Figure 5.19 in terms of the relationship between the error and residual for increasing

numbers of threads, which shows that the RKAB method, like RKA, can decrease the convergence

horizon. However, RKAB requires fewer iterations to converge since the work per iteration is much more

significant than the work in one iteration of RKA.

In conclusion, for inconsistent systems, the RKA and RKAB methods can be used to decrease the

convergence horizon. Furthermore, for RKA, unitary row weights (α = 1) can decrease more the con-

vergence horizon than using the optimal row weights for consistent systems (α = α∗). However, the

optimal values for consistent systems α = α∗ can increase convergence, that is, the stabilization of the

error and residual happen in fewer iterations than using α = 1.
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Chapter 6

Parallel Implementations

Using Distributed Memory
In the previous chapter, we concluded that it is not possible to achieve an efficient block-sequential

parallel implementation of RK using shared memory since none of our parallelization attempts can con-

sistently beat the execution time of the sequential RK. However, in Section 5.4, we have shown that

RKA and RKAB can be used to decrease the convergence horizon for inconsistent systems and that

this decrease is proportional to the number of used threads.

In parallel implementations using shared memory, one is limited by the number of cores in a single

machine. Distributed memory allows us to use more than one machine, and therefore, increase the

number of cores available. With more cores, we can use RKA and RKAB to obtain solutions for in-

consistent systems with smaller errors. Another advantage of using distributed memory is that we can

process data sets that cannot be stored in a single machine. However, there are also disadvantages to

using distributed memory in favor of shared memory. For example, when using distributed memory, data

is transmitted between different machines, leading to high communication costs. For these reasons, it is

also an option to combine both shared and distributed memory to optimize parallel implementations.

In this chapter, we implement and discuss the results for the RKA and RKAB methods using dis-

tributed memory only and the combination of distributed and shared memory. We decided not to im-

plement and analyze the variations using sampling without replacement (SRKAWOR and SRKABWOR)

since the results in the previous chapter proved them to have a similar performance to sampling rows

based on their norms.

The organization of this chapter is as follows: in Section 6.1 we walk through the implementation of

RKA for distributed memory only and for the combination of distributed and shared memory; Section 6.2

is identical to Section 6.1 but focusing on RKAB.

The implementations using distributed memory were accomplished using the C++ API MPI 1. Sim-

ilarly to the sequential versions and the parallel implementations for shared memory, experiments were

carried out on the Accelerates Cluster; the consistent systems used during the simulation were taken

from the first dense dataset discussed in Section 4.1.3; and execution times correspond to the total time

of 10 runs of the algorithm.

1https://www.mpi-forum.org/
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6.1 Distributed Memory Implementation of the Randomized Kacz-

marz with Averaging Method

In this section, we discuss the implementation and results for RKA for distributed memory only and for

both distributed and shared memory combined.

Since one of the advantages of using distributed memory is to be able to process data sets that

are not able to be stored in a single machine, in this implementation we divide matrix A and vector b

between the several available machines. This is similar to what we did in Section 5.2.1 by giving each

thread a chunk of the system, where we concluded that there is not a major difference in iterations

and time between partitioning the system or not. Like in Section 5.2.1, we developed a new sequential

implementation of RKA that simulates the partition of the system amongst the several processes. 2 The

implementation details of a single iteration of the parallel implementation of RKA for distributed memory

are shown in Algorithm 4.

Algorithm 4 Pseudocode for an iteration of the parallel implementation of RKA.
1: it ← it + 1

2: row ← sampled from D

3: scale ← α× brow − ⟨A(row), x(prev)⟩
∥A(row)∥22

4: for i = 0, ..., N do

5: xi ←
xi + scale ×A

(row)
i

np

6: MPI Allreduce (x,+)

Note that Algorithm 4 is much simpler than the implementation of RKA for OPENMP (Algorithm 2).

This is due to the fact that in distributed memory we do not need to worry about conflicts between

processes reading and writing in the same memory position. This eliminates the need for the storage

of the estimate of the solution from the previous iteration (x(prev) in Algorithm 2). The averaging of the

results was accomplished with the Allreduce command with the sum operation. In OPENMP we had to

update the solution sequentially using a critical section. The dependency of the communication time on

the number of processes in MPI is different than the relationship of the communication time with the

number of threads in OPENMP. In OPENMP the averaging of the results takes O(q) time, where q is

the number of threads, while here it takes O(log(np)) since the MPI Allreduce operation is implemented

2The sequential implementation of RKA for distributed memory can be described by Algorithm 9 with the exception of line 5. q
will represent the number of processes instead of the number of threads.
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Figure 6.1: Execution time for RKA using 20 MPI tasks for several overdetermined systems using a fixed number of
columns and a varying number of rows. Row weights, α, were chosen as the optimal values given by
(3.14).

with a hypercube topology. However, communication time has other dependencies. In MPI, the time

required to send messages between processors depends on the bandwidth, that is, the amount of data

that can be transmitted over the network in one unit of time. In OPENMP, communication time depends

on how fast threads can access memory. This means that, although communication in MPI has a smaller

dependency on the number of processes, it does not necessarily mean that communication is faster.

The stopping criterion was chosen to be the same used for the shared memory implementation of

RKA: we measure the necessary number of iterations to reach convergence by running the sequential

and parallel algorithms until ∥x(k) − x∗∥ < 10−5 is verified; execution time is measured by rerunning the

algorithm for the previously computed number of iterations.

Since a single node of the cluster has 2 central processing units with 10 cores each, we experimented

with 3 configurations for distributed memory. In the first option, we have one MPI process per node. In

the second, we have two MPI processes per node. Lastly, in the third option, we utilize all 20 cores in

each node and have one process per core.

In Figure 6.1 we show the results for 20 MPI processes for systems with different dimensions. It is

clear that, regardless of the dimension of the system, the last configuration has the smallest execution

times. This is due to the communication cost being smaller between cores of the same node than

between cores of different nodes. Since one of the goals of using MPI is to use several machines to

process large data sets, we will further analyze the results for the second configuration since it has

processes distributed amongst machines and is faster than the first configuration.

We now discuss the results of the RKA method by comparing it with the sequential RK present in

Figure 6.2.
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Figure 6.2: Results for RK and RKA using 2, 4, 8, and 20 MPI tasks for several overdetermined systems with
n = 1000 with a varying number of rows. Row weights, α, were chosen as the optimal values given by
(3.14).

Figure 6.2a shows similar results to the ones using shared memory (Figure 5.2b): increasing the

number of MPI processes decreases the number of iterations. However, the results for execution time in

Figure 6.2b do not follow the same tendency as the number of iterations. Although iterations decrease

for larger numbers of processes, time increases, meaning that the communication cost has a dominant

factor in the execution time. As a consequence, the speedups in Figure 6.2c, computed as the quotient

between the execution time of RK and the execution time of the parallel implementation of RKA, are very

small, even smaller than the ones obtained for shared memory, present in Figure 5.3b.

To conclude the analyses of the parallelization of RKA using distributed memory only, we calculated

the speedup as the quotient between the total execution time of the sequential and parallel implementa-

tions of RKA. The results, shown in Figure 6.3, show that speedups are far from ideal. Furthermore, the

speedups for the parallel implementation using shared memory only, in Figure 5.4, have higher values.

In conclusion, using distributed memory only, RKA cannot be efficiently implemented.

To benefit from the advantages of both shared and distributed memory we developed an implemen-

tation of RKA using MPI and OPENMP. The pseudocode with the implementation details is presented in

Algorithm 11 in Appendix F and was developed by putting together Algorithms 2 and 4 that contain the
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Figure 6.3: Speedup for RKA using 2, 4, 8, and 20 MPI tasks for several overdetermined systems using a fixed
number of columns and a varying number of rows. Row weights, α, were chosen as the optimal values
given by (3.14).
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Figure 6.4: Execution time for a total of 40 MPI + OPENMP tasks for two different systems. Row weights, α, were
chosen as the optimal values given by (3.14).

implementation of RKA for shared and distributed memory only.

We now analyze the results for 40 total tasks using different combinations of processes and threads.

Figure 6.4 shows the results for two systems using one or two processes per node. Note that, as

expected, two processes per node exhibit lower execution times than one process per node since the

communication time is lower inside the same node. Furthermore, note that we only show results for the

maximum of 10 threads since each CPU in the node has 10 cores. It is also expected that time decreases

when we use fewer processes and more threads, once more due to the communication time. However,

regardless of the dimension of the system, the parallel implementation using both distributed and shared

memory is still slower than the sequential version of the RKA algorithm, leading us to conclude that this

algorithm cannot be efficiently parallelized using a combination of distributed and shared memory.

6.2 Distributed Memory Implementation of the Randomized Kacz-

marz with Averaging with Blocks Method

In this section, we discuss the implementation and results for RKAB for distributed memory only and for

both distributed and shared memory combined. Similarly to the implementation of RKA (Section 6.1), the

system will be partitioned between the several processes, meaning that the sequential implementation of

RKAB for distributed memory can still be described by Algorithm 10 with the exception of lines 8 and 12

where the rows are sampled. Regarding the parallel implementation of RKAB for distributed memory,

the details of a single iteration of RKAB for distributed memory are shown in Algorithm 5.

Algorithm 5 is much simpler than the parallel implementation for RKAB using shared memory (Algo-

rithm 3) since we do not need the extra variable x(thread).

During the analyses of RKAB in Section 5.3, we concluded that a good option for the parameter

block size was the number of columns, n. However, since in this distributed memory implementation the

matrix is partitioned amongst processes, this conclusion might not hold. For that reason, we will analyze

the behavior of RKAB for several values of block size.
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Algorithm 5 Pseudocode for an iteration of the parallel implementation of RKAB.
1: it ← it + 1

2: for b = 0, ..., block size − 1 do

3: row ← sampled from D
4: scale ← α× brow − ⟨A(row), x⟩

∥A(row)∥22
5: for i = 0, ..., N do

6: xi ← xi + scale ×A
(row)
i

7: row ← sampled from D
8: scale ← α× brow − ⟨A(row), x⟩

∥A(row)∥22
9: for i = 0, ..., N do

10: xi ←
xi + scale ×A

(row)
i

np
11: MPI Allreduce (x,+)

The stopping criterion is the same as the one chosen for RKA. The value of the row weights was

chosen as α = 1 (see Section 5.3.1). Furthermore, we tested the same 3 configurations also used for

RKA. The results for 8 MPI processes for a system 80000 × 10000 for several values of block size are

shown in Figure 6.5. Firstly, contrary to the results for 8 threads using OPENMP (Figure 5.11b), time

does not monotonically decrease for increasing block sizes up to the number of columns. Note that by

partitioning the matrix by processes and using 8 processes, each will have a subsystem with dimensions

10000× 10000. For block size = 10000, since rows are chosen accordingly to their norms, it is likely that

some rows will be chosen more than once and that others will not be chosen at all. Using block sizes

that are equal to or larger than the number of rows in each process can lead to reusing information and,

consequently, decrease the rate of convergence. This can also be observed in Figure 6.5b where we see

that the number of total used rows has a larger increase from block size = 1000 to block size = 10000.

This means that the increase in the total amount of work needed for the algorithm to converge when
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Figure 6.5: Results for RKAB using 8 MPI processes for a system with dimensions 80000×10000. We also represent
the execution time for the sequential RKAB.
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Figure 6.6: Results for RKAB using 8 MPI processes for three systems. We also represent the execution time for
the sequential RKAB.

using larger block sizes has a larger impact on execution time than the decrease in communication. As

for the relationship between execution times for the three configurations, it is not always true that having

all the processes in one node is faster than distributing processes among nodes, something that was

observed for RKA. When the block size increases, the amount of communication decreases and so

does the execution time. However, for large block sizes, communication between processes in the same

node is slower than communication between processes in different nodes. This might mean that, for

large block sizes, cache phenomenons have a dominant impact on communication. Nonetheless, just

like for RKA, generally using two processes per node is faster than using only one.

Figure 6.6 shows the execution time for 8 processes for systems with other dimensions. Note that the

system in Figure 6.6a has the same number of columns as the system in Figure 6.5a and both show an

optimal block size of 1000. However, although the systems in Figures 6.6b and 6.6c both have n = 1000,

it is not true that they have the same optimal parameter for block size. When we partition the systems

in Figure 6.6b and 6.6c among processes, each will have a submatrix with dimensions 10000 × 1000

and 500 × 1000 respectively. Note that 10000 × 1000 is an overdetermined system that benefits from a

larger block size, contrary to 500× 1000 which is an underdetermined system. This leads us to conclude

that the optimal block size for the implementation of RKAB for distributed memory not only depends on

the number of columns but also on the relationship between the number of rows and columns of the

submatrices that are owned by each process.

Apart from the distributed memory implementation of RKAB, we also developed an implementation

using both MPI and OPENMP. The pseudocode with the implementation details, presented in Algo-

rithm 12 in Appendix F, was developed by combining the shared and distributed implementations in

Algorithms 3 and 5. Figure 6.7 shows the results for 40 tasks for a system 80000 × 10000 using one

or two processes per node where the block size was chosen to be 1000 (see Figure 6.5a). Note that

there is an unexpectedly large difference between the two configurations and that, contrary to what was

expected, time does not necessarily decrease using more threads and fewer processes. However, the
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Figure 6.7: Execution time for a total of 40 MPI + OPENMP tasks for two different systems.

chosen block size is only optimal for 8 processes. Here we are using 40 total tasks where just one

configuration uses 8 processes. A more thorough analysis is necessary to determine an effective way

to choose the block size for each combination of processes and threads so that we can better analyze

the performance for the RKAB method for distributed memory.

60



Chapter 7

Application of the Randomized

Kaczmarz Method to Computed

Tomography
In Chapter 4 we analyzed how the RK method and its variations behave when solving artificial systems.

However, we have yet to apply RK to a real-world problem. One of the many applications of RK is image

reconstruction using projection data originating from Computed Tomography (CT). When experimental

data is not noisy, linear systems derived from CT problems are consistent. However, most real-world

problems involve physical quantities that are measured with some error, meaning that the systems that

describe them are inconsistent.

In this chapter, we discuss how we can use some of the variations of the Kaczmarz method to solve

CT problems. We start by describing how to transform CT data into a linear system of equations in

Section 7.1. Section 7.2 contains the details of generating CT data using simulators. In Section 7.3 we

show how to use RK based methods to solve these systems. Furthermore, since CT problems have

some additional restrictions for the solution, we discuss how we can integrate the Kaczmarz method

with constraints that are described with linear inequalities. We finish that section by showing that RKA

and RKAB can be used to reduce the reconstruction error of CT images. Note that in the presence of

inconsistent systems, we cannot employ the stopping criteria used for the sequential version. For this

reason, in Section 7.4, we discuss different stopping criteria with the goal of obtaining solutions that

minimize the reconstruction error.

7.1 From projection data to linear systems

The geometry of a 2D CT scan, represented in Figure 7.1a, comprises an X-ray tube (radiation source),

and, on the opposite side, a panel of detectors (target). The source and the detectors are spun around

the area that is being scanned. For each position of the source and target, the radiation emitted by the

X-ray tube is measured by the detectors. After collecting measurements from several positions, the data

is combined and processed to create a cross-sectional X-ray image of the scanned object. So how does

one translate measurements of radiation onto an image? We should start by explaining the physical
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(a) Representation of the radiation source and detector
panel in a CT imaging system.
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(b) Spatial domain of a CT scan. The body that is being
scanned is represented in red and the projections of
each ray are represented in blue. θ is the rotation angle
of the source.

Figure 7.1: Geometry of a CT scan.

meaning of a radiation measurement. Figure 7.1b represents the spatial domain of a CT scan.

Let µ(r) be the attenuation coefficient of the object along a given ray. The damping of that ray through

the object is the line integral of µ(r) along the path of the ray, that is:

b =

∫
ray

µ(r)dr . (7.1)

This is the projection data that is obtained by each detector in the panel. In a CT problem the goal

is, using the projection data b, to find µ(r) since a reconstructed image of the scanned body can be

obtained using the attenuation coefficient of that object. To obtain µ(r) from b we make the following

assumptions. First, we assume that the reconstructed image has P pixels on each side, meaning that it

is a square of L2 pixels. Secondly, we assume that µ(r) is constant in each pixel of the image. We can

then denote the solution of the CT problem as a vector x with length L2, that contains the attenuation

coefficient of the scanned body in every pixel of the image. With these assumptions, we approximate

the integral in (7.1) with a finite sum, such that

b =

L2∑
l=1

alxl , (7.2)

where al is the length of the ray in pixel l. Note that al is 0 for pixels that are not intersected by the ray.

(7.2) corresponds to an approximation of the radiation intensity measured by a single detector. For a

given position of source and target, d projections are obtained, where d is the number of detectors in the
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panel. Considering that measurements are obtained for Θ angles of rotation, the experimental data is

made up of d×Θ projections. In summary, there are d×Θ equations like (7.2). With this setup, we are

finally ready to write the CT problem as a linear system.

The system’s matrix, Am×n, has dimensions m = d × Θ and n = L2. Each row describes how a

given ray intersects the image pixels. Note that we are considering that there is one ray per detector.

Calculating the entries of matrix A is not trivial and it can be a very time-consuming process. A vastly

used method for computing A is the Siddon method [30]. Since matrix entries are only non-zero for the

pixels that are intersected by a given ray, the system’s matrices are very sparse, meaning that we will

use the CSR during simulations. Regarding the other components of the system, the solution x has the

pixel’s values, and the constants vector b has the projection data.

7.2 Generation of CT data

The generation of linear systems from CT problems was achieved using the AIR TOOLS II software pack-

age for MATLAB 1 with a parallel beam geometry. To simulate projection data, we used the Shepp–Logan

phantom [31], a standard test image for image reconstruction algorithms, represented in Figure 7.2a.

(a) Original spirit.
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(b) Sampled phantom using 128 pixels for height and width.

Figure 7.2: Shepp–Logan phantom.

Throughout this chapter, we will discuss the two algorithms developed by Lith, Hansen, and Hochsten-

bach [32]. For this reason, we will use the same parameters that the authors used to generate their data

set. The number of pixels was then selected to be L = 128 and the projection angles vary between 0º

and 178.5º in increments of 1.5º, resulting in the sampled image in Figure 7.2b. The systems gener-

ated by the AIR TOOLS II package are consistent. To simulate measurement errors, the authors used a

Gaussian distribution. However, since projection data comes from a photon counting process, using a

Poisson distribution [33] to simulate errors in CT data is a more realistic approach. Therefore, we used
1http://people.compute.dtu.dk/pcha/AIRtoolsII/
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both Gaussian and Poisson distributions so that we can validate the results for different error distribu-

tions. We will now describe the process of generating errors and transforming the consistent systems

generated by the AIR TOOLS II package into inconsistent systems.

Let b be the error-free vector of constants and x be the respective solution. The consistent system

can then be written as Ax = b. We now introduce error e into the projections, such that b = b+ e.

To add white Gaussian noise [32] we use a normal distribution with zero mean, that is, e ∼ N(0, σ).

The standard deviation is chosen accordingly to the desired relative noise level, η, that can be computed

using (7.3). The relative noise level was chosen as η = {0.001, 0.002, 0.004, 0.008}.

η2 =
E(∥e∥2)
∥b∥2

=
mσ2

∥b∥2
=⇒ σ =

η∥b∥√
m

. (7.3)

To generate b accordingly to a Poisson distribution, we follow the procedure used in Reference [34].

The error-free vector of constants b is used to compute the X-ray intensities at the detectors such that

Ii = I0 exp−bi, with i = 1, ..,m, and where I0 is the source’s intensity. The noisy intensities are given

by Ii = P(Ii), where P(λ) is a Poisson distribution with expected value λ. The new vector of constants

b can now be obtained by converting the intensities to noisy projection data such that bi = −log(Ii/I0).
Just like for Gaussian generated error where we had several values for η, for Poisson generated error we

also chose several values for the sources intensity such that I0 = {1013, 4× 1013, 8× 1013, 1014}. Having

generated the error vector, e, the resulting inconsistent system can then be written as Ax+e = AxLS ≈ b.

Note that our goal is not to find the least-squares solution xLS , but to find the solution of the error-free

case x.

From a physical perspective, it does not make sense to have negative values for the projection data.

However, this can happen when adding noise. To avoid it, for a given entry in the projection data,

when sampling from the Poisson and Gaussian distributions, if bi < 0, we resample the value until the

projection value is non-negative.

To use the Kaczmarz algorithm in these systems a few more modifications have to be made. First,

rows that have all entries set to zero should be deleted, together with the corresponding entry in the

vector of constants. Second, there can be null projection values such that bi = 0. This can happen if a

ray only intersects pixels where the attenuation coefficient is zero, that is, pixels that do not contain the

scanned body. In this case, the entries of the solution corresponding to the non-zero entries of the A(i)

should be set to zero and those columns should be deleted from the system. Furthermore, row for which

bi = 0 should be deleted. With these procedures, we generated 4 linear systems with noise sampled

from a Poisson distribution and another 4 with noise sampled from a Gaussian distribution. All these

systems have the same dimension, 19558× 16384.
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Figure 7.3: Results for linear systems originated from CT problems. Matrix A has dimensions 19558× 16384. The
values for the error and residual were sampled every 10000 iterations.

7.3 Solving Inconsistent System with RK Based Methods

In this section, we describe the behavior of RK based methods for problems derived from Computed To-

mography. It has been proved [32] that the cyclical version of the Kaczmarz method (CK), can outperform

the Randomized version (RK). Furthermore, in Chapter 4, we showed that sampling without replace-

ment (SRKWOR method) can outperform both CK and RK. Therefore, we will analyze how these three

methods can be used to solve CT problems. We start by discussing the impact of parameters η and I0

that control the noise level for Gaussian and Poisson-generated errors by analyzing the results for RK.

Figure 7.3 shows the evolution of the residual and reconstruction error, ∥x(k)−x∥, for the RK method.

Note that, in Figures 7.3a and 7.3c, the reconstruction error decreases until a minimum is reached

(marked with a circle), after which it starts increasing. This is expected since the estimate of the solution

given by RK will try to minimize the residual, Ax(k) − b, which is obtained by the least-squares solution,

not by the error-free solution, x. However, to obtain a solution as close as possible to x, we need to find

the solution estimate at the minimum of the reconstruction error. Figures 7.3b and 7.3d show that the

residual decreases and stabilizes around the convergence horizon.

Figure 7.3a shows that, for Gaussian-generated noise, systems with larger relative noise (η) have a

larger value for the minimum reconstruction error. However, that minimum is reached in fewer iterations

when compared to systems with larger η. Furthermore, systems with a larger relative noise also have a
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(b) Evolution of the residual and recon-
struction error for a system with Gaus-
sian generated noise (η = 0.004) us-
ing the CK method.
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(c) Evolution of the residual and recon-
struction error for a system with Gaus-
sian generated noise (η = 0.004) us-
ing the SRKWOR method.
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(d) Evolution of the residual and recon-
struction error for a system with Pois-
son generated noise (I0 = 8 × 1013)
using the RK method.
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(e) Evolution of the residual and recon-
struction error for a system with Pois-
son generated noise (I0 = 8 × 1013)
using the CK method.
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(f) Evolution of the residual and recon-
struction error for a system with Pois-
son generated noise (I0 = 8 × 1013)
using the SRKWOR method.

Figure 7.4: Results for two linear systems originated from CT problems. Matrix A has dimensions 19558 × 16384.
The values for the error and residual were sampled every 10000 iterations.

larger value for the convergence horizon, as seen in Figure 7.3b.

Figures 7.3c and 7.3d show that systems with smaller I0 are noisier than systems with larger I0.

For a Poisson distribution P(λ) with expected value λ, smaller values of I0 will lead to smaller values of

Ii. Consequently, since − log(x) is a decrescent function, smaller values of I0 will lead to larger errors.

Figure 7.3c shows that, for Poisson-generated data, although the value of the minimum reconstruction

error is larger for more noisy systems, the number of iterations needed to reach that minimum is not as

distinct between systems with different I0 as it is for systems with different η (Figure 7.3a).

We now focus on two systems, one for each type of noise, and compare the RK method with the

CK and SRKWOR method. We chose, for the Gaussian distribution, the system with η = 0.004 and, for

the Poisson distribution, the system with I0 = 8× 1013 since they have similar values of the minimum of

the reconstruction error and that minimum is obtained with a similar number of iterations. The evolution

for the residual and reconstruction error is shown in Figure 7.4 and the values of the minimum of the

reconstruction error are present in Table 7.1.

From the results in Figure 7.4 we can conclude that CK and SRKWOR have the same behavior as

RK for inconsistent systems, that is, the reconstruction error exhibits a minimum value and the residual

decreases until it stabilizes in the convergence horizon. Regarding the relative performance between

the methods, Table 7.1 shows that RK is the method for which the reconstruction value has the smaller
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Table 7.1: Value of the minimum of the reconstruction error and respective iterations for the RK, CK and SRKWOR
method for systems perturbed with noise sampled from Poisson and Gaussian distributions.

Method Gaussian Poisson
Iterations Values Iteration Value

RK 2220000 3.80 2240000 3.77
CK 960000 4.45 1640000 3.91

SRKWOR 700000 4.67 1400000 3.88

value for both types of addictive noise. However, the other two methods require fewer iterations to reach

their minimum error. For the Poisson generated noise, the values of the minimum error are quite similar.

Is it worth it to use more iterations and have a smaller error value? Or is the error difference so small

that it is not noticeable in the reconstructed images?

Figure 7.5 shows the reconstructed images for the three methods using Gaussian noise. Note that

there is not a noticeable difference between the CK and SRKWOR methods (Figures 7.5b and 7.5c).

However, the reconstructed image using the RK method is more similar to the original (Figure 7.2b) than

the two previously discussed - the image scale for RK does not admit such low values has those for

CK and SRKWOR. Using the image scale we also notice an important detail: although the pixels in

the original image only admit values between 0 and 1, the solutions obtained with RK based methods

have values outside that range. Furthermore, there are negative pixels, which do not make sense from

a physical perspective. This is due to the fact that, just because the solution of the consistent problem

does not have negative pixels, that does not mean that, after adding noise to the vector of constants, the

least-squares solution of the inconsistent problem will have only positive values. To solve this problem

we will introduce the restriction of no negative pixels into the problem. The reconstructed images using

Poisson noise are very similar between the three methods so we will not show them here. This was

expected since the difference between the minimum values of the reconstruction error is very small.

Requiring that the reconstruction image does not have negative pixels is equivalent to stating that
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(a) Solution given by the RK method at it-
eration 2220000.
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(b) Solution given by the CK method at it-
eration 960000.
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(c) Solution given by the SRKWOR
method at iteration 700000.

Figure 7.5: Reconstructed images using the solution at the minimum of the reconstruction error for a system
19558× 16384 perturbed with Gaussian generated noise with parameter η = 0.004.
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x ≥ 0. Our new goal is to solve the following problem:

Ax = b subject to x ≥ 0 . (7.4)

This problem can be rewritten has [
A
I

]
x

=
≥

[
b
0

]
, (7.5)

Meaning that we have a linear system where the first m equations are equalities and the last n equa-

tions are inequalities. There is a simple way to adapt the Kaczmarz method to solve systems with

inequalities [12]. Suppose that, in a given iteration, the chosen row corresponds to an inequality. If that

inequality is satisfied by the current estimate of the solution, we move on to the next iteration; if the pre-

vious condition is not verified we project the current estimate of the solution onto the equation defined

by the inequality, just like a normal iteration of the Kaczmarz method for equalities.

Table 7.2: Value of the minimum of the reconstruction error and respective iterations for the RK, CK and SRKWOR
method for systems perturbed with noise sampled from Poisson and Gaussian distributions using the
restriction x ≥ 0.

Method Gaussian Poisson
Iterations Values Iteration Value

RK 4470000 3.09 5060000 3.08
CK 2230000 1.64 2230000 1.41

SRKWOR 1150000 2.11 2370000 1.51

We implemented this restriction into the CK, RK, and SRKWOR methods, and the obtained results

of the minimum values of the reconstruction error are present in Table 7.2. Note that, regardless of

the method, the minimum values for the reconstruction error are smaller with the x ≥ 0 restriction than

without it (Table 7.1). This is in agreement with intuition since we are adding restrictions to the system

that we know are satisfied by the error-free solution, making the solutions obtained with the restriction

closer to x. However, the decrease in the minimum values is larger for some methods than others. It

is clear that the decrease is not as significant for RK as it is for the other methods. This is expected

since, by adding rows with unit norms, if the norms of the rows corresponding to the equalities are

larger, the rows encoding the restriction are sampled less frequently. On the other hand, for the other

two methods, since rows are chosen cyclically, rows corresponding to the restrictions will mandatorily be

used. Between CK and SRKWOR, CK appears to have the smalest values for the reconstruction error.

From the methods discussed so far, using the restriction x ≥ 0, CK is the method for which the

minimum of the reconstruction error has the smallest values for both types of noise. In Section 5.6 we

have shown that RKA and RKAB can decrease the convergence horizon for noisy systems. However,

RKA and RKAB use row selection criteria based on row norms, which we have just saw is not beneficial
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Table 7.3: Value of the minimum of the reconstruction error and respective iterations for CK, SRKAWOR and
SRKABWOR for systems perturbed with noise sampled from Poisson and Gaussian distributions us-
ing the restriction x ≥ 0.

Gaussian Poisson
Iteration Value Iteration Value

CK 2230000 1.64 2230000 1.41

SRKAWOR

q = 1 1150000 2.11 2370000 1.50
q = 2 2030000 1.67 2820000 1.39
q = 4 2480000 1.50 3090000 1.36
q = 8 2790000 1.44 3230000 1.35

SRKABWOR

q = 1 79 2.11 153 1.50
q = 2 85 1.96 183 1.40
q = 4 103 1.93 179 1.39
q = 8 106 1.98 197 1.39

when using the restriction x ≥ 0. On the other hand, the variations of RKA and RKAB using sampling

without replacement, SRKAWOR and SRKABWOR use every row of the system. For these reasons,

we will now investigate if SRKAWOR and SRKABWOR can decrease the minimum of the reconstruction

error and compare the results with the overall best method discussed so far, the CK method. We will

not discuss the results for the case without the x ≥ 0 restriction, since we have concluded that using

it is always beneficial. For SRKABWOR, we use block size = 15000 since we concluded in Section 5.3

that the size of the blocks should be similar to the number of columns. Since we are only analyzing

the numerical results, we used the sequential implementations of SRKAWOR and SRKABWOR with

q = {1, 2, 4, 8} (Algorithms 9 and 10). Furthermore, row weights were chosen as α = 1, an option

that we concluded in Section 5.3 was better for inconsistent systems. The results for SRKAWOR and

SRKABWOR are shown in Table 7.3.

Note that the results for q = 1 are identical to those for SRKWOR in Table 7.2 since SRKAWOR

and SRKABWOR are reduced to the SRKWOR method using one thread. For SRKAWOR note that

the minimum reconstruction error does decrease for increasing numbers of threads. However, similarly

to what happened for the shared memory implementation results for consistent systems using α = 1

(Figure 5.2a), that decrease gets smaller when q increases. This might mean that the chosen row

weights are inadequate for larger numbers of threads. Still, the SRKAWOR method with q = 8 has

a smaller minimum than using the CK method. The performance of SRKABWOR is worse than that

of SRKAWOR since the decrease for the minimum is much smaller than that for SRKAWOR. Once

more, changing parameters like the block size or α could improve the results but that requires a more

in-depth analysis than the one we do here. To conclude this analysis note that, although SRKAWOR

and SRKABWOR are able to decrease the minimum of the reconstruction error, the iteration for which

that minimum is obtained increases with the number of threads, meaning that, even if the SRKAWOR

and SRKABWOR could be parallelized, there is a trade-off between execution time and the minimum of
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the reconstruction error.

So far we have shown how several methods compare in regards to the analytical value of the min-

imum of the reconstruction error. However, in the real-world situation, we do not have access to the

original image that is being reconstructed. We need a stopping criterion that terminates these methods

as close as possible to the minimum of the reconstruction error.

7.4 Stopping Criteria for Inconsistent Systems

In this section, we tackle the problem of finding a stopping criterion that gives a solution that is close

in iterations to the minimum of the reconstruction error. Furthermore, the stopping criterion should not

be dependent on the statistical properties of the noise. One option would be to try to find where the

value of the residual stabilizes. However this option is not viable for two reasons: the first is that the

residual is computationally expensive and computing it many times would be counterproductive for the

Kaczmarz algorithm which has a very small workload per iteration; the second is that the stabilization

of the residual does not necessarily correspond to the minimum of the reconstruction error, shown by

Figures 7.4b and 7.4e.

Lith, Hansen, and Hochstenbach [32] developed two methods to solve CT problems based on CK.

Both methods use an error gauge that can be computed by using both a standard down-sweep Kaczmarz

method (CK) and an up-sweep version. In an up-sweep Kaczmarz method, the system’s matrix is still

used ciclycally but rows are selected from the bottom to the top of the matrix. The stopping criterion

is defined by testing if the error gauge has achieved a minimal value. Not only do these methods not

require any information about the statistical properties of the noise, but they also do not require the

computation of the residual.

Let K↓(x) be a down-sweep Kaczmarz starting with x as the solution estimate and let K↑(x̃) be the

the analogous of K↓(x) for an up-sweep. The error gauge is given by ∥x − x̃∥ and the Twin Algorithm

can be described by Algorithm 6. In line 6 of Algorithm 6, the authors refer that finding a minimum can

be done by checking if the values of the error gauge stopped decreasing for 7 consecutive iterations.

Algorithm 6 Twin Algorithm
1: x← 0

2: x̃← 0

3: for i = 0, ...,maxits do

4: x← K↓(x)

5: x̃← K↑(x̃)

6: if ∥x− x̃∥ if at a minimum then

7: break

8: return
1

2
(x+ x̃)
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(a) Evolution of the residual, reconstruction error and
error gauge for a system with Gaussian generated
noise (η = 0.004) using the Twin Algorithm.
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(b) Evolution of the residual, reconstruction error and
error gauge for a system with Gaussian generated
noise (η = 0.004) using the Twin Algorithm with the
restriction x ≥ 0.
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(c) Evolution of the residual, reconstruction error and
error gauge for a system with Poisson generated
noise (I0 = 8× 1013) using the Twin Algorithm.
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(d) Evolution of the residual, reconstruction error and
error gauge for a system with Poisson generated
noise (I0 = 8× 1013) using the Twin Algorithm with
the restriction x ≥ 0.

Figure 7.6: Results for two linear systems originated from CT problems. Matrix A has dimensions 19558 × 16384.
The values for the error, residual, and error gauge are shown for every iteration.

We implemented two versions of Algorithm 6: with and without the restriction x ≥ 0, just like for the

Kaczmarz-based method discussed in the previous Section. The results are shown in Figure 7.6 where

the black dot marks the stopping iteration for the Twin Algorithm, coincident with a minimum of the error

gauge.

Note that, by comparing Figures 7.6a and 7.6b and Figures 7.6c and 7.6d, integrating the Twin

Algorithm with the restriction x ≥ 0 decreases the minimum of the reconstruction error. However, there

seems to be a considerable difference in iterations between the iteration given by the stopping criterion

of the Twin Algorithm and the minimum error value. Nonetheless, this difference in iterations might not

translate into a large difference in the value of the reconstruction error. For a more rigorous analysis, we

constructed a summary of the results for the Twin Algorithm in Table 7.4.

The first conclusion to draw from Table 7.4 is that the numerical values of the minimum of the recon-

structor error are smaller for the Twin Algorithm than for CK, RK, and SRKWOR, whose results are in

Tables 7.1 and 7.2 (with the exception of the value of RK for the Gaussian generated error without using
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Table 7.4: Value of the minimum of the reconstruction error and respective iterations for the Twin Algorithm for
systems perturbed with noise sampled from Poisson and Gaussian distributions using the restriction
x ≥ 0.

w/o x ≥ 0 w/ x ≥ 0

Gaussian

Iteration (Minimum) 54 61
Value (Minimum) 4.14 1.50
Stop Iteration 13 15
Stop Value 4.46 1.71

Poisson

Iteration (Minimum) 94 68
Value (Minimum) 3.77 1.38
Stop Iteration 26 24
Stop Value 4.01 1.49

the x ≥ 0 error). Furthermore, using the restriction x ≥ 0 significantly decreases the reconstruction

error. Finally, note that the difference for the reconstruction error at the stopping iteration and at the

analytical minimum is not significant, especially using the restriction.

The second method developed in Reference [32], the Mutual-Step algorithm, uses the error gauge

to determine approximately optimal step sizes for every iteration and eliminates the need for a stopping

rule. The pseudocode is present in the Algorithm 7.

Algorithm 7 Mutual-Step Algorithm

1: x0 ← K↓(0)

2: x̃0 ← K↑(0)

3: x← x0

4: x̃← x̃0

5: for i = 0, ...,maxits do

6: s← K↓(x)− x

7: s̃← K↑(x̃)− x̃

8: Solve (7.6) to determine α and β

9: cond1 =
{ |sT (x− x̃)|
∥s∥ ∥x− x̃∥ ≤ ε1 and

|s̃T (x− x̃)|
∥s̃∥ ∥x− x̃∥ ≤ ε1

}
10: cond2 =

{
|α| ∥s∥∥x∥ + |β|

∥s̃∥
∥x̃∥ ≤ ε2

}
11: if cond1 or cond2 then

12: break

13: x← x+ αs

14: x̃← x̃+ βs̃

15: return
1

2
(x+ x̃)
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(a) Results for a system with Gaussian gener-
ated noise (η = 0.004) using the Mutual-Step
algorithm.
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(b) Results for a system with Gaussian gener-
ated noise (η = 0.004) using the Mutual-Step
algorithm with the restriction x ≥ 0.
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(c) Results for a system with Poisson generated
noise (I0 = 8 × 1013) using the Mutual-Step
algorithm.
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algorithm with the restriction x ≥ 0.

Figure 7.7: Results for the Mutual-Step algorithm for two linear systems originated from CT problems. Matrix A
has dimensions 19558× 16384. The values of the quantities involved in the stopping conditions and the
reconstruction error are shown for every iteration.

The paramters ε1 and ε2 were set to 10−4 to match the values used in [32]. Regarding line 8 of

Algorithm 7, (7.6) can be easily solved using the formula for the inverse of a 2× 2 matrix.

[
∥s∥2 −sT s̃
−sT s̃ ∥s̃∥2

] [
α
β

]
=

[
−sT (x− x̃)
−s̃T (x− x̃)

]
(7.6)

Just like for the Twin algorithm, we implemented the Mutual-Step algorithm with and without the

restriction x ≥ 0, whose results are shown in Figure 7.7. Cond 11 and Cond 12 correspond to the two

quantities involved in the first stopping condition (line 9 of Algorithm 7); Cond 2 corresponds to the values

used in the second stopping condition (line 10 of Algorithm 7). We will start by analyzing the results for

the system perturbed with Gaussian noise presented in Figures 7.7a and 7.7b.

Figure 7.7a shows that the stopping iteration does not correspond exactly to the minimum of the

reconstruction error. However, the value of the error at the stopping iteration, 4.98, is very close to the

value at the minimum, 4.88. Still, both these values are higher than those given by the Twin algorithm at

the minimum and at the stopping iterations (4.14 and 4.46). In Figure 7.7b we do not show the stopping

iteration since this method did not converge using the parameters ε1 and ε2 used in the case without the

restriction x ≥ 0. Furthermore, the value of the minimum of the reconstruction error, 1.51, is not smaller
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than that for the Twin algorithm, 1.50. Overall, changing the parameters to ε1 = ε2 = 10−3 for this system

would have been a more adequate choice.

Regarding the results for the system perturbed with Poisson generated noise, for the case without the

restriction x ≥ 0 (Figure 7.7c), the stopping iteration corresponds to a local minimum of the reconstruc-

tion error instead of a global minimum. The results, using the restriction x ≥ 0, shown in Figure 7.7d, are

similar to the ones for the Gaussian noise (Figure 7.7b) where the method does not converge. Moreover,

the values of the reconstruction error for the local minimum in Figure 7.7c and for the global minimum in

Figure 7.7d, 4.65 and 1.39, are larger than those for the Twin algorithm, 3.77 and 1.38.

In conclusion, adding the restriction x ≥ 0 improves the performance of the Twin algorithm by de-

creasing the minimum error of reconstruction. However, using x ≥ 0, the Mutual-Step algorithm does not

converge with the same parameters used for the case without restriction. Moreover, the reconstructor

error is smaller for the Twin algorithm.

We finish this section by attempting to merge the Twin Algorithm, that has an effective stopping

criteria, with the SRKAWOR algorithm, which can further decrease the reconstruction error. We can call

this method the Twin Algorithm with Averaging. This algorithm can still be described by Algorithm 6,

except that the downwards and upwards Kaczmarz sweeps are slightly different. We now explain the

process of downwards Kaczmarz sweeps since the upwards sweep is analogous.

In a standard Kaczmarz sweep, there are m steps. In each step we use a row of the matrix, selected

cyclically, to compute a new estimative of the solution. When we use averaging, instead of processing a

single row per step, we process q rows whose results are averaged before moving on to the next step.

This means that, if we are using the matrix sequentially, each Kaczmarz sweep of the Twin Algorithm

with Averaging will have m/q steps. The assignment of each row to each thread is similar to the process

shown in Figure 5.6a, except that we do not need a shuffled array of indices. Note that the Twin Algorithm

with Averaging is equivalent to the Twin Algorithm if only one thread is used (q = 1).
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Figure 7.8: Results for the Twin Algorithm with Averaging for a linear system originated from CT problems perturbed
with Gaussian noise. Matrix A has dimensions 19558 × 16384. The values for the error, residual, and
error gauge are shown for every iteration.
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Figure 7.8 shows the results for the system with Gaussian noise (the results for Poisson noise are

similar and we will not discuss them here). Figures 7.8a and 7.8b show a clear problem with this

approach: when q increases, the minimum of the error gause gets progressively further (in iterations)

from the minimum of the reconstruction error.

Table 7.5: Reconstruction error at its analytical minimum and at the minimum of the error gauge for the Twin Algo-
rithm with Averaging for systems perturbed with noise sampled from a Gaussian distribution using the
restriction x ≥ 0.

q
Stopping Criteria Analitically
Iterations Value Iteration Value

1 15 1.71 61 1.50
2 22 2.01 136 1.47
4 20 2.85 271 1.53
8 77 2.44 664 1.46

Table 7.5 shows the value of the reconstruction error at the analytical minimum and at the minimum

of the error gauge. Note that, although using q > 1 can decrease the analytical value of the minimum of

the reconstruction error, using the number of iterations given by the stopping criteria gives progressively

worse estimates for the point of semi-convergence. We conclude that this algorithm, at least with unitary

uniform row weights (α = 1), does not correctly estimate the number of iterations needed to have a good

reconstructed image.
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Chapter 8

Conclusion

8.1 Summary of Contributions

In this dissertation, we have implemented several algorithms based on the Kaczmarz method, includ-

ing variations for consistent and inconsistent systems. We concluded that, although there are some

variations that can outperform RK like the SRK method and sampling based on quasirandom numbers,

the SRKWOR method is the fastest Kaczmarz-based method for consistent systems. For inconsistent

systems, we concluded that, although RGS is faster than REK, the CGLS method is significantly faster

than both methods.

We explored multiple approaches to parallelize the Kaczmarz method using shared and distributed

memory and concluded that, in general, it is not possible to efficiently parallelize it. More specifically,

we implemented the Randomized Kaczmarz with Averaging (RKA) algorithm and showed that its par-

allelization is not effective since, although the number of iterations is smaller for RKA, that decrease is

not enough to make up for the cost of communication. Nevertheless, we introduced a new method, a

blocked version of the RKA algorithm (RKAB), that can have the same effect that RKA has in decreasing

the convergence horizon for inconsistent systems. Although the parallel implementation of RKAB cannot

consistently beat the execution times of the sequential RK, the speedups regarding its sequential ver-

sion are much improved compared to those of RKA. For the shared memory implementation of RKAB,

we show that a good choice for the block size parameter is to use a number similar to the number of

columns of the matrix of the system.

Lastly, we applied the Kaczmarz method to solving linear systems from CT problems. We show

that the RK, CK, and SRKWOR methods exhibit semi-convergence, and that adding the constraint that

all image pixels must have non-negative values decreases the minimum of the reconstruction error.

However, these methods do not have a stopping criterion for inconsistent systems. For this reason,

we implemented the Twin and Mutual-Step algorithms, based on the CK, that have a stopping criterion

designed to get a solution close to that with the minimum reconstruction error. The incorporation of the

previously discussed constraint with the Twin algorithm shows major improvements in the error of the

reconstructed images.
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8.2 Future Work

In Section 5.3.1, we analyzed how RKAB behaves for different uniform row weights for a consistent

system. However, contrary to RKA, there is no formula for the optimal value of α. An improvement to

the RKAB method would be to find this optimal α as a function of the block size.

When analyzing how the RKA method can be used to solve inconsistent systems in Section 5.6, we

showed that using α = 1 can decrease the convergence horizon proportionally to the number of threads.

Moreover, we have shown that, although the optimal value of parameter α for consistent systems, α∗,

is not optimal for inconsistent systems, it can still increase the rate of convergence of RKA. It would be

interesting to find a parameter that can decrease the convergence horizon for an increasing number of

threads, q, and the number of iterations needed to find that horizon.

To analyze the implementation of RKAB for both shared and distributed memory we need to first find

the optimal block size for RKAB, which we concluded in Section 6.2 depends not only on the dimensions

of the system but also on the number of processors. We leave a more comprehensive analysis of this

behavior for future work.

In Chapter 7 we have compared how several different variations of the Kaczmarz method can be used

to solve linear systems derived from CT problem. However, we focused on 2D tomographies with a single

detector geometry (parallel beam) and used only one set of angles and a number of pixels. We leave a

similar analysis for systems generated with other detection geometries, including 3D configurations, for

future work.

Finally, in Section 7.4, we have shown that, for the Mutual-Step algorithm, using the parameters ε1

and ε2 defined by the authors, the method does not converge when integrated with the x ≥ 0 constraint.

We have yet to test this method with other values for these parameters.
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[28] J. Liu, S. Wright, C. Ré, V. Bittorf, and S. Sridhar, “An asynchronous parallel stochastic coordinate

descent algorithm,” in International Conference on Machine Learning. PMLR, 2014, pp. 469–477.

[29] T. Wallace and A. Sekmen, “Deterministic versus randomized kaczmarz iterative projection,” arXiv

preprint arXiv:1407.5593, 2014.

[30] R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional ct array,” Medi-

cal physics, vol. 12, no. 2, pp. 252–255, 1985.

[31] L. A. Shepp and B. F. Logan, “The fourier reconstruction of a head section,” IEEE Transactions on

nuclear science, vol. 21, no. 3, pp. 21–43, 1974.

[32] B. S. van Lith, P. C. Hansen, and M. E. Hochstenbach, “A twin error gauge for kaczmarz’s iterations,”

SIAM Journal on Scientific Computing, vol. 43, no. 5, pp. S173–S199, 2021.

[33] Y. Zhu, M. Zhao, Y. Zhao, H. Li, and P. Zhang, “Noise reduction with low dose ct data based on a

modified rof model,” Optics express, vol. 20, no. 16, pp. 17 987–18 004, 2012.

[34] P. C. Hansen, J. S. Jørgensen, and P. W. Rasmussen, “Stopping rules for algebraic iterative recon-

struction methods in computed tomography,” in 2021 21st International Conference on Computa-

tional Science and Its Applications (ICCSA). IEEE, 2021, pp. 60–70.

[35] D. Needell, R. Ward, and N. Srebro, “Stochastic gradient descent, weighted sampling, and the ran-

domized kaczmarz algorithm,” Advances in neural information processing systems, vol. 27, 2014.

[36] D. Needell and J. A. Tropp, “Paved with good intentions: analysis of a randomized block kaczmarz

method,” Linear Algebra and its Applications, vol. 441, pp. 199–221, 2014.

[37] L. Wang, W. Wu, Z. Xu, J. Xiao, and Y. Yang, “Blasx: A high performance level-3 blas library

for heterogeneous multi-gpu computing,” in Proceedings of the 2016 International Conference on

Supercomputing, 2016, pp. 1–11.

80



Appendix A

Mathematical Definitions

Throughout this document, we will refer to the ith row of a matrix A as A(i) and, to the jth column, as

A(j). The conjugate transpose of a m× n matrix with complex entries is the n×m matrix obtained by

taking the transpose and then taking the complex conjugate of each entry. It is denoted by

A∗ = (A)T . (A.1)

The euclidean norm or L2 norm of a vector in Rn can be written as ∥x∥2 =
(∑n

i x
2
i

)1/2

, and measures

how much a vector extends in space. The spectral norm of a matrix measures how much the matrix

can ”scale” or ”stretch” a vector and is defined by

∥A∥2 = max
x ̸=0

∥Ax∥2
∥x∥2

= max
∥x∥2=1

∥Ax∥2 . (A.2)

Matrix A can be decomposed using singular value decomposition such that A = UΣV T . Using the fact

that U is an unitary matrix, meaning that ∥Ux0∥2 = ∥x0∥2, we have that

∥A∥2 = max
∥x∥=1

∥Ax∥2 = max
∥x∥2=1

∥UΣV Tx∥2 = max
∥x∥2=1

∥ΣV Tx∥2 . (A.3)

We will now define that y = V Tx, and, since V T is also a unitary matrix,

∥y∥2 = ∥V Tx∥2 = ∥x∥2 = 1 . (A.4)

The definition of the spectral norm can now be rewritten as ∥A∥2 = max∥y∥2=1 ∥Σy∥2 . Note that Σ =

diag(σ1, ..., σn), where σ1 is the largest singular value of matrix A. Maximizing ∥Σy∥2 subject to ∥y∥2 =

1 yields y = (1, 0, 0, ..., 0)T and, subsequently, ∥A∥2 = σmax(A) =
√
λmax(A∗A). In summary, the

spectral norm of a matrix A is given by the largest singular value of A, that is, the square root of the

largest eigenvalue of matrix A∗A, where A∗ denotes the conjugate transpose defined in (A.1). It is also

important to measure how much a matrix can shrink vectors, that is

min
x̸=0

∥Ax∥2
∥x∥2

= min
∥x∥2=1

∥Ax∥2 . (A.5)
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Using the same reasoning as before, we can easily conclude that

min
x ̸=0

∥Ax∥2
∥x∥2

= σmin(A) = σmax(A
−1) =

1

∥A−1∥2
(A.6)

The spectral norm measures how much can a matrix possibly increase the norm of a vector, similar to a

”worst-case” norm. The Frobenius norm describes an ”average case” norm such that

∥A∥F =

√
E
∥Ax∥22
∥x∥22

. (A.7)

The Frobenius norm is often easier to compute than the spectral norm since it is just the Euclidean norm

of the matrix, that is,

∥A∥F =

√√√√ m∑
i=1

∥Ai∥22 =

√√√√ m∑
i=1

n∑
j=1

a2ij =

√∑
i

(∑
j

aTjiaij

)
=

√∑
i

[
A∗A

]
ii

=
√
tr(A∗A) =

√√√√min{m,n}∑
i=1

σ2
i (A) .

(A.8)

A useful property satisfied by the L2 norm is that, if the product Ax exists, then

∥Ax∥2 = ∥b∥2 ≤ ∥A∥2 ∥x∥2 . (A.9)

Since x = A−1b, another result is that

∥x∥2 ≤ ∥A−1∥2 ∥b∥2 . (A.10)

A.1 Least-Squares Solution of an Overdetermined Linear System

In this section we show how to obtain the normal equations that satisfy (2.2). Let us begin by simplifying

the cost function, such that

∥Ax−b∥22 = (Ax−b)T (Ax−b) = (Ax)T (Ax)−(Ax)T b−bT (Ax)+bT b = xTATAx−2bTAx+bT b. (A.11)

If u and x are two column vectors, then
∂

∂x
(uTx) = uT . (A.12)

If x is a column vector and A is a matrix, then

∂

∂x
(xTAx) = xT (A+AT ) . (A.13)
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With both (A.12) and (A.13) we can calculate the gradient of the cost function:

∇∥Ax− b∥22 = xT (ATA+ (ATA)T )− 2bTA = 2xTATA− 2bTA . (A.14)

The x value for which the cost function is minimum can be computed by finding where the gradient of

the cost function is 0, that is,

∇∥Ax− b∥22 = 0 ⇐⇒ xTATA = bTA ⇐⇒ ATAx = AT b⇒ xLS = (ATA)−1AT b. (A.15)

A.2 Least Euclidean Norm Solution of an Underdetermined Linear

System

Using Lagrange multipliers, the optimization problem in (2.3) can be redefined, such that x is the value

that minimizes the quantity

L(x, λ) = xTx+ λT (Ax− b) . (A.16)

To find the minimum, the zeros of the partial derivatives of L(x, λ) must be computed:

∂

∂x
= 2x+ATλ = 0⇒ x = −ATλ/2 ; (A.17)

∂

∂λ
= Ax− b = 0 . (A.18)

Substituting (A.17) onto (A.18), we get that

λ = −2(AAT )−1b , (A.19)

and, subsequently,

xLN = AT (AAT )−1b (A.20)

A.3 Condition Number and Scaled Condition Number

The solution of a linear squared system Ax = b can be simply computed as x = A−1b. If there is some

induced error in b due to imprecisions in the measurements or due to errors in previous calculations, it is

useful to know how much those errors will affect the solution. This is where the condition number comes

in: its goal is to measure how much the output value changes when small changes are made to the input

value. Suppose that b is perturbed by ∆b, such that b → b + ∆b. The new solution will be x + ∆x and

the change in x is given by:

∆x = A−1∆b . (A.21)
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If small changes in b result in small changes in x, we say that the system is well-conditioned. Otherwise,

if a small ∆b results in a large ∆x, the system is said to be ill-conditioned. From (A.10), we get that

∥∆x∥2 ≤ ∥A−1∥2 ∥∆b∥2 , (A.22)

and, from (A.9), one can obtain
1

∥x∥2
≤ ∥A∥2∥b∥2

. (A.23)

Finally, both (A.22) and (A.23) yield

∥∆x∥2
∥x∥2

≤ ∥A∥2 ∥A−1∥2
∥∆b∥2
∥b∥2

. (A.24)

In summary, if ∥A∥2∥A−1∥2 is small, ∥∆x∥2/∥x∥2 will be small when ∥∆b∥2/∥b∥2 is small; on the contrary,

if ∥A∥2 ∥A−1∥2 is large, ∥∆x∥2/∥x∥2 can be much larger than ∥∆b∥2/∥b∥2. It is now useful to define the

condition number as

k(A) = ∥A∥2 ∥A−1∥2 . (A.25)

When k(A) is small, the matrix A is well-conditioned and, when k(A) is large, the matrix A is badly

conditioned or ill-conditioned. The scaled condition number uses the Frobenius norm of the matrix

instead of the spectral norm, meaning that

κ(A) = ∥A∥F ∥A−1∥2 . (A.26)

The relationship between both numbers is

1 ≤ κ(A)√
n
≤ k(A) . (A.27)
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Appendix B

Relationship with Stochastic Gradient

Descent
The Stochastic Gradient Descent (SGD) is a particular case of the more general gradient descent

method. The (Gradient Descent (GD)) method is a first-order iterative algorithm for finding a local

minimum of a differentiable function, the objective function, by taking repeated steps in the opposite

direction of the gradient, that is, the direction of the steepest descent. Each iteration of the gradient

descent method can be written as

x(k+1) = x(k) − αk∇F (x(k)) (B.1)

where αk is the step and F (x) is the objective function to minimize. F (x) is a sum of functions associated

with each data entry, represented by fi(x). In the context of machine learning, the GD method is used

to minimize an objective function that usually depends on a very large set of data, which makes it very

computationally expensive. The difference between SGD and GD is that in SGD the gradient of the

objective function is estimated by using a random subset of data, instead of using the entire data set.

The size of the subset is called the minibatch size. If each function, fi(x), has an associated weight,

w(i), that influences the probability of that data entry being chosen, we say that 1

f
(w)
i (x) =

1

w(i)
fi(x) , (B.2)

and the objective function is written as an expectation

F (x) = E(w)[f
(w)
i (x)] . (B.3)

If the minibatch size is one, that is, if we only use one data entry per iteration, the gradient of the objective

function can be written as ∇F (x) ≈ ∇fw
i (x) = ∇ 1

w(i)fi(x), and the algorithm can now be written as

x(k+1) = x(k) − αk

w(ik)
∇fik(xk) (B.4)

1For more a more detailed explanation see Section 3 of [35].
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where ik is the chosen data entry in iteration k. Chen [12] showed that the Randomized Kaczmarz

method is a special case of SGD using one data entry per iteration. If the objective function is F (x) =

1
2∥Ax− b∥2, then fi(x) =

1
2 (bi − ⟨A(i), x(k)⟩)2. The associated weight is the probability of choosing row

i, that is, ∥A(i)∥2/∥A∥2F . Substituting this definition in (B.4), we have that

x(k+1) = x(k) + αk∥A∥2F
bi − ⟨A(i), x(k)⟩
∥A(i)∥2 A(i)T , (B.5)

and the (2.4) is recovered if the step is set to αk = 1
∥A∥2

F
.
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Appendix C

Variations of the Kaczmarz Method with

Blocks

C.1 Randomized Block Kaczmarz Method

Needell and Tropp [36] were the first to develop a randomized block version of the Kaczmarz method,

the RBK method. Each block is a subset of rows of matrix A chosen with a randomized control scheme.

The idea behind the Randomized Block Kaczmarz method is to speed up the process by enforcing

many constraints at once. Let us consider that, in each iteration k, we select a subset of row indices of

A, τk. The current iterate x(k+1) is computed by projecting the previous iterate x(k) onto the solution of

Aτkx = bτk , that is

x(k+1) = x(k) + (Aτk)
†(bτk −Aτkx

(k)) , (C.1)

where (Aτk)
† denotes the Moore–Penrose inverse (pseudoinverse) and the block τk is chosen from a

partition T = {τ1, ..., τl}, where l is the number of blocks. If l = m, that is, if the number of blocks

is equal to the number of rows, each block consists of a single row and we recover the Randomized

Kaczmarz method. The block τk can be chosen from the partition using one of two methods: it can be

chosen randomly from the partition independently of all previous choices, or it can be sampled without

replacement, an alternative that Needell and Tropp found to be more effective. In the latter, the block

can only contain rows that have yet to be selected. Only when all rows are selected can there be a

reusage of rows. The partition of the matrix into different blocks is called row-paving. The calculation

of the pseudoinverse (Aτ )
† in each iteration is a computationally expensive step. But, if the submatrix

(Aτ ) is well-conditioned, we can use algorithms like CGLS to efficiently calculate it. Similarly to RK, the

Randomized Block Kaczmarz method exhibits an expected linear rate of convergence. It is important to

determine in which cases it is beneficial to use the Randomized Block Kaczmarz method to detriment

of the Randomized Kaczmarz method. The first case is if we have matrices with good row paving, that

is, the blocks are well conditioned. One example of matrices with good row paving is row-standardized

matrices. In the presence of good row paving, the matrix-vector multiplication and the computation of

the pseudoinverse can be very efficient, meaning that one iteration of the block method has roughly the

same cost as one iteration of the standard method. A second case is connected with the implementation
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of the algorithm: the simple Kaczmarz method transfers a new equation into working memory in each

iteration, making the total time spent in data transfer throughout the algorithm excessive; on the other

hand, not only does the block Kaczmarz algorithm move large data blocks into working memory at a

time, but it also relies on matrix-vector multiplication that can be accelerated using basic linear algebra

subroutines (BLASx) [37].

C.2 Randomized Double Block Kaczmarz Method

We have seen in Section 3.2 that the Randomized Extended Kaczmarz method is a variation of the

Randomized Kaczmarz method that converges to the least squares solution xLS . In Section C.1 we

described situations where the Randomized Block Kaczmarz for consistent systems can outperform the

Randomized Kaczmarz method. Needell, Zhao, and Zouzias [18] developed a new algorithm called

Randomized Double Block Kaczmarz (RDBK) method that combines both the REK and the RBK algo-

rithm with the goal of developing a method that solves inconsistent systems with accelerated conver-

gence. Recall that in REK there is a projection step that makes use of a single column of matrix A and

there is the Kaczmarz step that utilizes a single row. This means that, in a block version of REK, we

need both a column partition for the projection step and a row partition for the Kaczmarz step, hence

the name ”Double Block”. In each iteration k we select a subset of row indices of A, τk, and a subset of

column indices of A, vk. The projection step and the Kaczmarz step can then be written as

z(k+1) = z(k) −Avk(Avk)
†z(k) , and (C.2)

x(k+1) = x(k) + (Aτk)
†(bτk − z(k+1)

τk
−Aτkx

(k)) . (C.3)

The initialization variables are x(0) = 0 and z(0) = b. This method can then have an accelerated

convergence when compared to other methods that converge to the least-squares solution of a given

system, if the block matrices are well-conditioned and fast multiplication for matrix-vector can be used;

even if the blocks are not well-conditioned, transferring large data blocks at a time can improve the

runtime.
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Appendix D

Results for the Sequential Version

Using the Second Dense Data Set
In this appendix, we discuss the results of the variations of the Kaczmarz method for the second dense

data set. This data set contains matrices with rows with similar norms, in contrast with the first dense

data set that has rows with very distinct norms, whose results were analyzed in Chapter 4. The goal

of this analysis is to determine how row norms affect the relative performance between methods since

many of them use row selection criteria based on probability distribution dependent on row norms.
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Figure D.1: Comparison between RK, CG and CGLS for dense overdetermined systems.

We start with the comparison between RK, CG and CGLS. Figure D.1 shows very similar results to

the ones from Figure 4.7, meaning that RK can also outperform CG and CGLS for dense systems that

have rows with similar norms.

Figure D.2 shows the results for methods GSSRK, NSSRK, GRK, and RK. Just like before, results

are very similar to Figure 4.9. This is expected since all these methods rely on the same probability

distribution for row sampling, so their relative performance should be the same for datasets with different

distributions of row norms.

Figure D.3 shows the results for methods RK, CK, SRK, and , SRKWOR. These results are the same

as the ones from Figure 4.9 with one exception: for this dataset, RK and SRK have similar iterations
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Figure D.2: Results for some variations of the Kaczmarz algorithm for dense systems using a fixed number of
columns n = 1000 and a varying number of rows.
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Figure D.3: Results for some variations of the Kaczmarz algorithm for dense systems using a fixed number of
columns and a varying number of rows.
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Figure D.4: Results for some variations of the Kaczmarz algorithm for dense systems using a fixed number of
columns n = 10000 and a varying number of rows.

and execution times. This is in accordance with intuition since, having rows with very similar norms, the

probability distribution used by RK will be very similar to a uniform probability distribution, the one used

by SRK.

Finally, Figure D.4 shows the results for the quasirandom numbers. These results are once more

similar to the ones for the first dense data set, shown in Figure 4.13, with a slight difference in the

relative performance between both sequences of quasirandom numbers: for this dataset, the Halton

sequence seems faster in both iterations and time than the Sobol sequence.
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Appendix E

Pseudocode of Sequential

Implementations

Algorithm 8 Pseudocode for an iteration of the sequential implementation of RK. x corresponds to the
estimate of the solution in the current iteration, it . A(row)

i corresponds to the i-th column of a given row
of matrix A. D is a probability distribution that samples row indices with probability proportional to their
norms.

1: it ← it + 1

2: row ← sampled from D
3: scale ← brow − ⟨A(row), x(prev)⟩

∥A(row)∥22
4: for i = 0, ..., N do

5: xi ← xi + scale ×A
(row)
i

Algorithm 9 Pseudocode for an iteration of the sequential implementation of RKA. x(prev) and x corre-
spond to the estimates of the solution in the previous and current iteration, it . A(row)

i corresponds to the
i-th column of a given row of matrix A. The number of threads is given by q. D is a probability distribution
that samples row indices with probability proportional to their norms. Row weights are uniform and given
by α.

1: it ← it + 1

2: for i = 0, ..., N do

3: x
(prev)
i ← xi

4: for k = 0, ..., q do

5: row ← sampled from D
6: scale ← α× brow − ⟨A(row), x(prev)⟩

∥A(row)∥22
7: for i = 0, ..., N do

8: xi ← xi +
scale ×A

(row)
i

q

92



Algorithm 10 Pseudocode for an iteration of the sequential implementation of RKAB. x(thread) corre-
sponds to the estimate of the solution in each thread. x(prev) and x correspond to the estimate of the
solution in the previous and current iterations. A

(row)
i corresponds to the i-th column of a given row of

matrix A. The number of threads is given by q. D is a probability distribution that samples row indices
with probability proportional to their norms.

1: it ← it + 1

2: for i = 0, ..., N do

3: x
(prev)
i ← xi

4: for k = 0, ..., q do

5: for i = 0, ..., N do

6: x
(thread)
i ← x

(prev)
i

7: for b = 0, ..., block size − 1 do

8: row ← sampled from D
9: scale ← α× brow − ⟨A(row), x(thread)⟩

∥A(row)∥22
10: for i = 0, ..., N do

11: x
(thread)
i ← x

(thread)
i + scale ×A

(row)
i

12: row ← sampled from D
13: scale ← α× brow − ⟨A(row), x(thread)⟩

∥A(row)∥22
14: for i = 0, ..., N do

15: x
(thread)
i ← x

(thread)
i + scale ×A

(row)
i − x

(prev)
i

16: for i = 0, ..., N do

17: xi ← xi +
x
(thread)
i

q
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Appendix F

Pseudocode of Parallel Implementations

Combining Shared and Distributed

Memory

Algorithm 11 Pseudocode for an iteration of the parallel implementation of RKA using both shared and
distributed memory. x(prev) and x correspond to the estimates of the solution in the previous and current
iteration, it . A(row)

i corresponds to the i-th column of a given row of matrix A. The number of threads is
given by q and the number of processes/tasks is given by np. D is a probability distribution that samples
row indices with probability proportional to their norms. Row weights are uniform and given by α.

1: it ← it + 1

2: OMP for i = 0, ..., N do

3: x
(prev)
i ← xi

4: xi ← 0

5: row ← sampled from D
6: scale ← α× brow − ⟨A(row), x(prev)⟩

∥A(row)∥22
7: OMP critical

8: for i = 0, ..., N do

9: xi ←
x
(prev)
i + scale ×A

(row)
i

np× q
10: OMP barrier

11: OMP single

12: MPI Allreduce (x,+)
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Algorithm 12 Pseudocode for an iteration of the parallel implementation of RKAB using both shared and
distributed memory. x(thread) corresponds to the estimate of the solution in each thread. x corresponds
to the estimate of the solution in the current iteration, it , computed using the results from all threads.
A

(row)
i corresponds to the i-th column of a given row of matrix A. The number of threads is given by

q and the number of processes/tasks is given by np. D is a probability distribution that samples row
indices with probability proportional to their norms.

1: it ← it + 1

2: row ← sampled from D
3: scale ← α× brow − ⟨A(row), x⟩

∥A(row)∥22
4: for i = 0, ..., N do

5: x
(thread)
i ← xi + scale ×A

(row)
i

6: for b = 0, ..., block size − 1 do

7: row ← sampled from D
8: scale ← α× brow − ⟨A(row), x(thread)⟩

∥A(row)∥22
9: for i = 0, ..., N do

10: x
(thread)
i ← x

(thread)
i + scale ×A

(row)
i

11: for i = 0, ..., N do

12: x
(thread)
i ← x

(thread)
i − xi

13: OMP barrier

14: OMP critical

15: for i = 0, ..., N do

16: xi ← xi +
x
(thread)
i

q
17: OMP barrier

18: OMP for i = 0, ..., N do

19: xi ←
xi

np
20: OMP single

21: MPI Allreduce (x,+)
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