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for the valuable guidance, discussions, and support. I also would like to thank the DeepSPIN/MAIA

research group for providing the computational resources that allowed me to adequately experiment

with and evaluate the proposed methods.

I also would like to acknowledge the python community Van Rossum and Drake [1], for developing

the core set of tools that enables this work, including Pytorch from Li et al. [2], Numpy from Harris et al.

[3], matplotlib from Hunter [4], and seaborn Waskom [5].

v



vi



Resumo

Trabalhos recentes têm mostrado resultados promissores na descoberta de relações causais, através

de dados de intervenções com métodos baseados em redes neuronais, mesmo quando são descon-

hecidas as variáveis intervencionadas. No entanto, trabalhos anteriores pressupõem que a corre-

spondência entre amostras e intervenções é conhecida, o que muitas vezes é irreal. Consideramos

um cenário com um extenso conjunto de dados amostrados de múltiplas distribuições de intervenção

e uma distribuição observacional, no entanto, não sabemos qual distribuição originou cada amostra

e como a intervenção afetou o sistema; ou seja, as intervenções são inteiramente latentes. Desta

forma, proponho um método computacional, baseado em redes neuronais e inferência variacional,

que enquandra aprendizagem de estruturas causais como um problema de otimização continua com

restrições. Experências com dados sintéticos e reais mostram que a nossa abordagem e sua variante

semi-supervisionada são capazes de descobrir relações causais neste cenário desafiante.

Palavras-chave: Descoberta causal, intervenções latentes, inferência variacional, processo

Dirichlet
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Abstract

Recent work has shown promising results in causal discovery by leveraging interventional data with

gradient-based methods, even when the intervened variables are unknown. However, previous work as-

sumes that the correspondence between samples and interventions is known, which is often unrealistic.

We envision a scenario with an extensive dataset sampled from multiple intervention distributions and

one observation distribution, but where we do not know which distribution originated each sample and

how the intervention affected the system, i.e., interventions are entirely latent. We propose a method

based on neural networks and variational inference that addresses this scenario by framing it as learn-

ing a shared causal graph among an infinite mixture (under a Dirichlet process prior) of intervention

structural causal models . Experiments with synthetic and real data show that our approach and its

semi-supervised variant are able to discover causal relations in this challenging scenario.

Keywords: causal discovery, latent interventions, variational inference, Dirichlet process.
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Chapter 1

Introduction

1.1 Motivation

Even the most mundane activities in the everyday life of a human individual require planning and

decision making, using predictions of the consequences of actions. Since actions, by their very nature,

interact with reality and change the state of affairs, assessing the consequences of actions not yet taken

requires understanding realities’ true underlying mechanisms to some level of sophistication. This is

because only models of these underlying mechanisms can make sound predictions under unforeseen

circumstances. The connection between cause-effect relations and robust prediction under unexpected

circumstances makes discovering causal structures essential for intelligent planning, decision-making,

and model interpretation in numerous settings. This can be illustrated by considering a University of

Winnipeg study that showed that “shallowness” correlated with heavy text messaging in teens. As noted

in [6], media outlets jumped on this as proof that texting causes teenagers to be more shallow. Under

this reasoning, if we train a machine learning model that learns to predict the shallowness given how

prolific a teen is, if we then, for instance, transfer the student to a far off location without a cell phone

signal, our model should in principle generalize, and therefore accurately predict the teen’s expected

shallowness under this new conditions, right? The flaw with this reasoning should, hopefully, be evident.

The study proved nothing of the sort. Correlation is not causation. It might be the case that shallowness

makes teens more drawn to texting or that a common factor causes both (see Figure 1.1). In either case,

the value of learning causal mechanisms should be clear. We can capture principles with our models

that generalize for out-of-distribution data, in this case, catapulting the teen to a place without cell phone

towers, which for our model is an unprecedented scenario unseen in the training distribution.

1.2 Causal discovery

However, how can we obtain this causal knowledge? We could use experts’ domain expertise to

encode it in our model. Still, this is not generally possible for the big problems usually tackled with Ma-

chine Learning methods or small problems with insufficient domain expertise. An ambitious alternative

1



Figure 1.1: Causal hypothesis for the phenomena observed in the University of Winnipeg study.

is creating data-driven methods of discovering the causal structure. Not surprisingly, this is by itself a

tremendously difficult problem of fundamental interest in science in many fields of research and a hurdle

in integrating causality and machine learning. Data-driven causal discovery is a challenging problem.

Even if we disregard the practicality of solving it in finite time, only with strong assumptions can we

safeguard that we will always detect distinct causal structures by the observations they produce (even

with an infinite amount thereof). Yet, in science, tremendous progress has already been accomplished

through the application of the scientific method. Namely, generating hypotheses, doing experiments,

and collecting data. Which is to say, interventions (actions) themselves are a powerful beam of light that

enables us to distinguish causal structures. Therefore, countless works combine observations with data

obtained after performing interventions, and given enough interventions, they theoretically guarantee

and experimentally validate that it is possible to distinguish structures by the joint data they produce.

While many of the fields of science can perform interventions of the system of claim, for instance, in

genomics, recent advances in gene-editing technologies [7] have given rise to high-throughput methods

for interventional gene expression data, for the types of problems Machine Learning has been shown

to excel, performing interventions is complex, expensive and sometimes unethical. This motivates the

setup of this dissertation. We want to bridge the gap between the observational and joint observational

and interventional cases. We envision a scenario with an extensive dataset sampled from multiple

intervention distributions and one observation distribution, but where we do not know which distribution

originated each sample and how the intervention affected the system,i.e., interventions are entirely

latent.

1.3 Applicability

However, how realistic are latent interventions? There are a few scenarios where the system some-

how was intervened, and the samples generated under this condition were not properly identified. For

instance, consider a software platform that collects analytics regarding in-app user experience and regu-

larly performs small-scale new features tests. It is reasonable to assume that some information was lost,

and the platform no longer knows which samples were subject to the feature tests. Another scenario is

discovering causal relations in a historical dataset where there might be significant events ( interventions

) in the system of interest not yet uncovered. Nevertheless, from a machine learning perspective, we
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Figure 1.2: Illustrative example of the causal discovery scenario we consider.

pose the existence of latent interventions, primarily because we assume we are dealing with big datasets

collected across different geographic locations and times. Under these conditions, we are bound to deal

with what is generally considered a nuisance to the practitioner, changes in the distribution due to non-

stationarity, and uncontrolled external interventions. We aspire to use these non-stationarities as a

training signal in the search for the underlying causal relations in real-world problems.
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1.4 Contributions

This dissertation contributes to the field of causality by considering the problem of data-driven causal

discovery when we have a dataset from a system subjected to latent interventions. We identify the main

contributions of this dissertation as follows:

• We propose a method for identifying the latent interventions when given the correct causal graph.

• We formulate causal discovery under latent interventions as searching for the shared causal graph

among an infinite mixture of intervention structural causal models.

• We develop a semi-supervised variant of our method; for when we know the correspondence for a

subset of the samples.

• We open-sourced our Pytorch implementation; the code is available at https://github.com/

goncalorafaria/latent-causal-discovery.

• We creaded a package, named PyCausal. for defining, intervening, and sampling from structural

causal models; the code is available at https://github.com/goncalorafaria/PyCausal.

Part of this dissertation has originated a scientific paper submitted to the 1st Conference on Causal

Learning and Reasoning, currently under revision.

1.5 Dissertation Outline

This dissertation is organized as follows. Chapter 2 starts by reviewing causality and causal models;

then, we present the related work on causal discovery, particularly some of the methods we build upon;

and we finish with latent variable models and normalizing flows. Chapter 3 proposes a method based

on variational inference for identifying latent interventions when given the correct causal graph. Chapter

4 proposes a gradient-based data-driven causal discovery method for datasets with latent interventions

by building upon the method proposed in Chapter 3. Appendix A gives a derivation for the variational

inference lower bounds and the Kullback–Leibler divergences of the models proposed in this disserta-

tion. Appendix C presents the Python package we developed and open-sourced for defining structural

causal models, intervening on them, and sampling. Appendix D describes in detail how we generate the

synthetic data sets used for experiments.

4
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Chapter 2

Background and Related Work

This chapter provides the necessary background to understand both the problem and our main con-

tributions. We begin, in Section 2.1, by presenting the topic of causality, particularly structural causal

models, introducing the concepts of interventions and causal structure learning. Section 2.2, we pro-

vides a concise background on latent variable models, approximate inference, and gradient estimation

techniques; our goal is to present the theory behind these models and structured prediction using amor-

tized variational inference, tools used in this dissertation for causal discovery and estimation of latent

interventions.

2.1 Causality and Causal Models

The simplest and most popular causal model is the Markovian model. It consists of a directed

acyclic graph (DAG) G, called a causal graph, over a set of vertices X = {x1, x2, . . . , xd}, representing

the variables of interest, and a set of directed edges connecting these vertices (see Fig. 2.1 for an

example). This model has both a probabilistic and a causal interpretation. The former builds upon

the framework of Bayesian networks and views the graph structure as a representation of conditional

independence statements, and hence it is a description of a compact factorization of the joint distribution

of the variables. On the other hand, the latter entails viewing the arrows as a representation of a

cause-effect relation, where the compact factorization still holds, but the factors are further assumed to

represent autonomous data-generating processes.

In this dissertation, we will use an extension of the Markovian model, denominated structural causal

x2

x1

x3

Figure 2.1: Example of a causal graph.
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G

x2

x1

x3


x1 := ε1

x2 := 4x1 + 1 + ε2

x3 := 5 sin(x1) + x2 + ε3

, ε1, ε2, ε3 ∼ N (0, 1)

Figure 2.2: Example of an SCM and the corresponding causal graph.

models (SCM) [8, 9], which considers, more concretely, the functional form of the autonomous data-

generating processes. We will use SCMs to relate causal and probabilistic statements. The notation

and terminology used in this section is heavily inspired by the one presented in [9].

2.1.1 Structural Causal Models

Let X = {x1, . . . , xd} be a set of d endogenous variables of interest, E = {ε1, . . . , εd} be a set of d

exogenous variables, F be a set d of functions F = {ζ1, ζ2, . . . ζd}, G a DAG, and PAGj ⊆ X\{xj} be the

set of parents of xj according to G, i. e., xi ∈ PAGj if and only if there is a directed edge xi → xj in G.

We define a collection of d assignments S as

xj := ζj(PAGj , εj) , j = 1, . . . , d. (2.1)

An SCMM := (S, p(E)) consists of a collection S of d assignments and a independent noise distri-

bution, of exogenous variables p(E) =
∏d
j=1 p(εj). An SCMM defines a unique joint distribution for X,

usually referred to as the entailed distribution pM(X), which can be factorized as

pM(X) =

d∏
j=1

pM(xj |PAGj ), (2.2)

where pM(xj |PAGj ) is the conditional distribution of xj , given its parents. The particular case where the

SCM has only two variables (d = 2) is often called a cause-effect pair. Figure 2.2 contains an example

of an SCM with three variable and its corresponding causal graph. We can sample from SCMs via

ancestral sampling. In this case, we start with the root node x1, then compute x2, given x1, followed by

x3, given x1 and x2.

6



2.1.2 Interventions

An ubiquitous tool for describing statistical models is the concept of conditional probability. For in-

stance, given the SCM described in Figure 2.2, pM(x3|x2 = 2) denotes the conditional distribution of

the variable x3, given x2 = 2. Which is to say: if we restrict our focus to samples where x2 = 2,

pM(x3|x2 = 2) encodes the distribution of the observed values of x3. However, how can we describe

perturbing a system in such a way as forcing the entire population to have the value x2 be 2? In-

terventions and the mathematical operator “do” ( introduced by Pearl [10] ) allow doing precisely that:

acting (intervening) on the data generating process and finding the resulting distribution of the system’s

variables. In the previous example ( Figure 2.2 ), we denote by pM
(
x3|do(x2 = 2)

)
the intervention dis-

tribution of x3 if we force x2 to be 2. In general, the intervention distributions and conditional distributions

will be distinct. For instance, since x1 is a common cause of x2 and x3, conditioning on x2 = 2 gives

information about the distribution of x1. By intervening, this will not be the case: just by forcing x2 to be

2 “says” nothing about the distribution x1 and, in fact, x1 and x2 actually become independent from each

other, since the intervention block the effect of x1 on x2.

The foundations of interventions rest on Judea Pearl’s seminal work on do-calculus [10–12] . They

are a mathematical construction that describes performing idealized experiments in a SCM. Given an

SCM M, we constructs an interventioned SCM M̃ by replacing one (or several) of the structural as-

signments. Let I the set of variables that were targeted by the intervention; if I = ∅, M̃ = M. For

each variable j ∈ I, the interventions consists in one or multiple of the following actions: replacing the

assignment function ζj by ζ̃j ; replacing the parents PAGj by P̃A
G
j ; changing the noise variable εj by ε̃j .

The SCM M̃ generally has a different entailed distribution, called the intervention distribution:

pM̃(X) =
∏
j /∈I

pM(xj |PAGj )
∏
j∈I

pM;do
(
xj :=ζ̃j(P̃AGj ,ε̃j)

)(xj |PAGj ). (2.3)

If there are K possible interventions, we denote the corresponding sets of target variables as I(k), for

k = 1, ...,K, and the corresponding SCMs by M̃(k).

We divide the types of interventions into: atomic, if the target variable xj is set to a constant value;

stochastic, if xj is set to a random variable ε̃j ; imperfect (or soft), if the intervention embedding and the

set of parents are changed, as long as it does not become empty. We do not consider interventions

that are able to add new elements to PAGj . This means that the intervention graph only differs from the

observational by the removal of edges.

Figure 2.4 contains an example of an intervention to the SCM from Figure 2.2. In Figure 2.5, we

present scatter plots from sampling according to these SCMs.

Intervention example. A prototypical example of intervention in the real world is a randomized control

trials (RCT). In a RCT, a group of subjects is randomly selected from the population and is subject to

a given treatment. Generally, the study designers intend to understand if the given treatment causes a

particular response. While the study designers calculate various statistics between the treatment and

the response with samples from the intervention distribution, they are confident that any correlation
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x2

x1

x3 x2

x1

x3

do(x3)

x2

x1

x3 x2

x1

x3

do(x3)

Figure 2.3: On the left, Example of two I-Markov equivalent graphs where I is composed of a single
intervention on the node x3. On the right, the graphs resulting from performing the interventions from I
to the graphs on the left. As expected, the graph on the right are Markov equivalent graphs.

G̃

x2

x1

x3


x1 := ε1

x2 := 2

x3 := 5 sin(x1) + x2 + ε3

, ε1, ε3 ∼ N (0, 1)

pM̃(X) = pM;do(x2:=2)(X), I = {2}

Figure 2.4: Example of an intervention SCM and the corresponding causal graph. The source SCM is
the one present in Fig. 2.2. This is an instance of an atomic intervention.

Figure 2.5: Samples from the observational SCM in Figure 2.2, and intervention SCM in Figure 2.4.
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x2

x1

x3 x2

x1

x3 x2

x1

x3

Figure 2.6: Example of three Markov-equivalent graphs.

found implie causation. This is because the treatment was attributed indeed at random and hence is

not confounded by hidden factors. This stands in stark contrast with calculating the same statistics, but

on the observational distribution where a person’s decision to incur or not in treatment may be due to

unknown external factors that could correlate with the response. In our SCM framework, the factors

would be the incoming edges from PAGj .

2.1.3 Faithfulness and Markov equivalence classes

Given a set F where each element fi is sufficiently dependent on all of the elements of its input

PAGi , we obtain an SCMM whose computations strictly follow the structure of G. In this scenario, G and

pM(X) are said to be mutually faithful since G encodes all and only the conditional independencies that

hold in the entailed distribution. Therefore, G is both a compact description of the set of conditional inde-

pendence properties, and the high-level causal dependencies present in the SCMM. In essence, the

Markovian model mentioned before. The set of faithful graphs that could entail a particular joint distribu-

tion is denominated the Markov equivalence class (MEC) [13]. In other words, the set of faithful graphs

that share exactly the same conditional independence assumptions. Figure 2.6 contains an example of

three Markov equivalent graphs. If there is access to intervention data (in a set of interventions I), it is

possible to shrink the MEC to the so-called I-MEC [14]: the subset of graphs in the MEC that have the

same conditional independencies after applying the interventions in I. Figure 2.3 contains an example

of two I-Markov equivalent graphs.

Independence of cause and mechanisms.

We defined the intervention distribution in equation 2.3 as the product of conditional distributions

entailed in M for the unperturbed variables and distinct distributions for the perturbed ones. Like

in the source SCM, the entailed distribution of the intervention SCM is defined as the product of all

pM̃(xj |PAGj ). However, interventions are defined as infinitely precise, so we can swap out pM̃(xj |PAGj )

by pM(xj |PAGj ) for the unaffected variables. This is nevertheless a very strong assumption. We consider

that the underlying data generating process is modular and composed of autonomous units, modeled

with assignments, that do not influence each other.

The assumption is what is generally referred to as independence of cause and mechanism(ICM)

[9, 15, 16]. It enables us to define interventions that exchange some of the mechanisms leaving the

remaining ones intact. Even though this is intuitive and inspired by physical reality, note however that it
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might not be how some phenomena operate, and some popular examples do not follow this assumption,

as noted in [9]. However, we follow this assumption in this dissertation.

2.1.4 Identifiability

Causal questions, such as “does variable x2 cause x3?”, can be answered easily once we know the

correct causal graph. We only need to check if there is a directed path in the causal graph connecting

variable x2 to x3. However, discovering a faithful directed acyclic graph from samples of the entailed

distribution is a challenging combinatorial problem, primarily due to the intractable search space, which

is super-exponential in the number of variables. Furthermore, if our goal is to find the causal graph of

the SCM that originated the data, just a faithful graph, which is to say an element of the MEC, does not

suffice. Interventions are therefore a way to inspect the data generating process and generally allow us

to shrink the MEC to the I-MEC. When we perform enough interventions, the graph becomes exactly

identifiable, hence with a consistent method we have guarantees of identifying the structure of the true

underlying causal model.

With a limited number of interventions, the graphs that share the MEC are impossible to distinguish

using observational data, even with an unlimited supply of data. The graphs that share the I-MEC are

impossible to distinguish, even when we consider the interventions distributions obtained after applying

the interventions in I. The work in [13, 17] explores this topic in detail and present all of the technical

conditions that we mostly gloss over for brevity. In the context of this thesis, we highlight as particularly

relevant the following results:

• For any SCMM, d− 1 single node interventions (of any type) are sufficient, and necessary in the

worst case to obtain full identifiability [18].

• For any SCMM, with no restriction on the number of intervention targets per intervention and let

c be the size of the largest clique, blog2(c)c + 1 interventions are sufficient, and necessary in the

worst case to obtain full identifiability [19].

• For any SCMM, where we consider interventions that affect up to k variables, where k < n
2 , we

only need d dk e logd dk e
(d) interventions to obtain full identifiability [20].

More recently, within this framework of SCMs, when we confine ourselves to assumptions such

as non-Gaussianity [21], nonlinearity [22, 23], or equal noise variances [24], we can guarantee full

identifiability of structures in the limit of infinite data from the observational distribution.
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2.1.5 Causal Structure Learning

There are generally three approaches for discovering the causal structure when given independent

and identically distributed samples from the observational distribution and/or intervention distributions:

constrained-based methods, score-based methods, and hybrid methods. We describe each of them

bellow.

Constrained-based methods test for conditional independence using the samples from the entailed

distribution or intervention distributions and propose a set of constraints that the underlying causal struc-

ture must meet. Then, using various graph construction procedures, these methods identify the struc-

tures that are congruent with all of the constraints and identify some or all of the elements of the MEC.

However, testing for independence is not simple, and spurious dependencies that are an artifact of the

independence hypothesis testing procedure may lead to failure regardless of the guarantees around

the effectiveness of the graph construction algorithm. Typical examples of constrained-based methods

that work with samples from the observation distribution are the Peter and Clark (PC) algorithm [25],

Spirtes, Glymour and Scheines (SGS) [25], Inductive Causation (IC) [26], and Fast Causal Inference

(FCI) [27, 28] algorithms.

Methods that incorporate data from the intervention distributions include COmbINE [29], and HEJ

[30], which rely as a graph construction procedure on Boolean satisfiability solvers, and [31] that does

this by extending the FCI algorithm. Additionally, the Joint causal inference framework(JCI) enables one

to incorporate intervention data into existing algorithms designed for causal discovery with observational

data, even when a priori, the interventions’ targets are unknown. Lastly, another family of constrained-

based methods that support intervention distributions is the Invariant Causal Prediction(ICP) [32, 33],

which relies mainly on the invariance of causal mechanisms across intervention distributions, and is

exclusively concerned with uncovering the causal parents of a particular variable of choice.

Score-based methods formulate the problem of structure estimation as the by-product of learning

a statistical model. Each method defines a hypothesis space of potential structures. For simplicity,

consider the space of DAGs and a scoring function S that measures how well the statistical model fits

the data when given a particular structure. The computational task is to find the graph that achieves

the highest score. This search problem generally has an intractable search space, super-exponential in

the number of variables. For that reason, even with a consistent scoring function that effectively gives a

higher score to the structures in the MEC and the I-MEC, this problem is still an profoundly challenging

problem, and most approaches resort to heuristic search. More concretely, the estimated DAG Ĝ is given

by

Ĝ = arg max
G∈DAG

S(G). (2.4)

There are many score function methods with guarantees of convergence to the MEC and some

for the I-MEC. Popular score functions include BIC [34], MDL [35], BDe(u) [36] and BGe [37]. For
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small problems there are algorithms for solving Equation 2.4 to global optimality [38–43]. There is

a vast literature on approximate algorithms based on order search [44] and more classical methods

such as greedy search [36, 45, 46] and coordinate descent [47–49]. In order search, we first search

over the space of topological orderings. As a result, we avoid the acyclicity constraint since, given

a correct ordering in the form of a permutation matrix P , we can write any DAG’s adjacency matrix

as PTWP , where W is an upper triangular matrix. Notable examples of score-based greedy-search

algorithms that support perfect interventions are GIES [14] and CAM [50]. More recently, a new family

of approximate algorithms for structure learning initiated in [51] treats the problem in 2.4 as a continuous

constrained optimization problem. What enables the use of continuous optimization is fundamentally the

smooth characterization of the acyclicity constraint. The work of [52], the DCDI algorithm, extends this

contiguous constrained formulation to intervention data, with perfect and imperfect interventions, and

also supports interventions with unknown intervention targets.

Hybrid methods combine constraint and score-based approaches. Recent hybrid methods that sup-

port data from interventions include IGSP [53, 54], which optimize a score based on conditional inde-

pendence tests. It also supports interventions with unknown targets with the extensions from UT-IGSP

[55].

Continuous constrained optimization for structure learning

As we have mentioned in the previous exposition of the available causal discovery methods, a new

line of research initiated by [51] uses continuous constrained optimization to solve the score-based

formulation. This work and the work from [52], which extends this approach for when we have data from

intervention distributions, form the basis of our work. For this reason, we will briefly present how they

characterize the problem and their solutions in some detail.

In general, these methods adopt the maximum a posteriori (MAP) criterion (a.k.a. penalized maxi-

mum likelihood). Based on a generative/sampling model p(D|G, θ) for data D, given the graph structure

G and parameters θ, and on a prior p(G) over graphs, they seek a graph that maximizes the score

function

S(G) := max
θ

log p(D|G, θ) + log p(G). (2.5)

The prior p(G) penalizes graph complexity to avoid over-fitting. A typical choice is p(G) ∝ exp(−λ|G|),

for λ > 0 and |G| is some graph complexity measure (e.g., number of edges). With finite data, exact

independence seldom occurs, thus graphs maximizing log p(D|G, θ) alone would almost always be fully

connected. If D is a collection of i.i.d. observations, then p(D|G, θ) =
∏n
i=1 p(xi|G, θ).

Central to this class of methods is the weighted adjacency matrix WG ∈ Rd×d≥0 , where (WG)ij > 0

is equivalent to (i, j) ∈ G, which is treated as a parameter itself or as a function of the parameters. To
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ensure the estimated graph is a DAG, Zheng et al. [51] proposed the constraint

trace
(
eWG

)
− d = 0, (2.6)

where eWG is the matrix exponential, and the trace function is the sum of the elements of the main

diagonal. The intuition is that if (WG
n)ii > 0,∀n ∈ N, the ith element of the main diagonal of the matrix

after performing the nth power operation is greater than zero, than exists a n steps loop in G. Since the

exponential operation is a weighted sum of all power matrices including the one raised to the power 0 if

(eWG )ii > 1 there exists at least one loop in G.

The work from NOTEARS [51], assume a linear Gaussian model with equal variances where θ ∈

Rd×d is the matrix of regression coefficients, the prior distribution is proportional to exp(−λ|θ|) and

WG = θ � θ. Altogether the joint optimization problem takes the following form:

max
θ

log p(D|θ)− λ||θ||1 s.t. trace
(
eWG

)
− d = 0, (2.7)

where the sampling model log p(D|θ) takes the form :

log p(D|θ) = − 1

2σ2
(X −Xθ)ᵀ(X −XW ) + c

where c ∈ R is a constant.

Several other methods apply non-linear models such as neural networks [56, 57] and define WG

differently. The works from [52, 58, 59] treat the adjacency matrix as a random variable and relax the

score from Equation 2.5 in the following way:

S?(Λ) := max
θ

E
G∼Bern

(
G;σ(Λ)

)[ log p(D|G, θ) + log p(G)
]
, (2.8)

where σ(Λ) is the sigmoid transformation applied element-wise to the parameter matrix Λ ∈ Rd×d,

Bern
(
G;σ(Λ)

)
is a distribution over graphs, with mutually independent edges, with expected value σ(Λ).

This score tends asymptotically to S(G) as σ(Λ) progressively concentrates its mass on a single DAG G.

Constrained Optimization Most works, and particularly [51], solve the constrained problem using the

augmented Lagrangian procedure. The augmented Lagrangian procedure [60–62] consists of trans-

forming, for instance Equation 2.7, into a sequence of unconstrained optimization sub-problems which

are then solved with a simple method such as stochastic gradient descent. By denoting the acyclicity

constraint by h(Λ) = 0, each unconstrained sub problem t is written as follows:

Λ∗t , θ
∗
t = arg max

θt,Λt

log p(D|θt)− λ‖W‖1 − ϕth(Λt)−
µt
2
h(Λt)

2. (2.9)

Each sub-problem t is initialized using the previous sub-problem’s solution (Λ∗t−1,θ∗t−1). The parame-
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ters γt and µt are updated in the end of each sub-problem as follows:

ϕt+1 ←ϕt + µth(Λ∗t ),

µt+1 ←

ηµt if h(Λ∗t ) > δh(Λ∗t−1)

µt otherwise
.

(2.10)

The optimization stops when h(Λ∗t ) ≤ 10−8. The parameter δ ∈ ]0, 1[ controls the schedule of

µt, more concretely, when the relative reduction in the constraint is higher than δ, µt is multiplied by

η > 0 hence the squared penalization has a greater impact on the objective function. The parameters

(ϕ0, µ0, η, δ) are respectively set to (0.0, 10−8, 2.0, 0.9).

2.2 Latent Variable Models

The fundamental construct behind latent variable models is that besides the random variable repre-

senting the observed data x, we assume the existence of latent variable z. Formally, this means that the

model is a probability distribution over the joint p(x, z; θ), where θ are the model parameters.

The motivation behind such an assumption is that there could be an underlying process happening,

and our observed variables are just a manifestation of such process. We are then able to make assump-

tions about this underlying process (through the prior p(z; θ)) and about how it influences the observable

data (through the conditional p(x|z; θ)).

As an example, consider the case where x is a sequence of discrete random variables x = (x1, . . . , xD)

with xt ∈ {1, . . . , V }. We can make the assumption that each xt is conditionally independent from each

other given a common categorical latent random variable z ∈ {1, . . . , N} associated with prior p(z; θ).

This translates to model

p(x1, . . . , xD, z; θ) = p(z; θ)

D∏
t=1

p(xt|z; θ). (2.11)

This is known as the Naive Bayes model, and while it makes very strong independence assumptions,

it allows us to construct from a simple joint distribution a sophisticated distribution over the observed

variables.

2.2.1 Learning under Exact Inference

With a joint distribution p(x, z; θ) over the observed and latent variables, an exciting problem surfaces:

how can we learn the model’s parameters θ without data for the latent variables? We can start by noting

that we can obtain a distribution over the observed variables alone, the evidence, by marginalizing over

the latent variable space, i.e.:

p(x; θ) =

∫
p(x, z; θ)dz = Ez∼p(z)[p(x|z; θ)]. (2.12)

Here the integral can be swapped for a summation when discrete latent variables are used. The goal
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of a learning algorithm would be, in this case, to find the parameters to maximize the log-evidence over

the training set x(1:N) = [x1, . . . , xN ]:

L(θ) = log p(x(1:N); θ) =

N∑
i=1

log p(x(i); θ), (2.13)

θ∗ = arg max
θ

L(θ). (2.14)

Typically, if the model is differentiable with respect to the parameters (as is the case with latent

variable models parameterized by neural networks), we can run gradient-based optimization to solve

this optimization problem. In case we have access to the latent variable’s posterior, we can write the

gradient of this log-evidence as the following (derivation in Appendix A.1):

∇θL(x, θ) =

N∑
i=1

Ez∼p(z|x(i);θ)

[
∇θ log p(x(i), z; θ)

]
. (2.15)

2.2.2 Variational Inference

As mentioned before, maximizing the true log-evidence requires either differentiating over a marginal-

ization or, if it is possible to do exact posterior inference, calculate the expectation of the gradient of the

log-likehood over the latent variable’s posterior. However, such computation is generally intractable

when we are using deep neural network since we cannot find an analytical formulation for the posterior.

One way to overcome this is to instead do aproximate inference. To do so, we start by introduc-

ing a new (parameterized) distribution, q(z|x;φ) ≈ p(z|x; θ), the approximate posterior. We can then

decompose the log-evidence into two terms (derivation in Appendix A.2):

log p(x; θ, φ) = Ez∼q(z|x;φ)

[
log

p(x, z; θ)

q(z|x;φ)

]
+DKL

(
q(z|x;φ)||p(z|x; θ)

)
. (2.16)

The first term is known as the evidence lower bound (ELBO), the second is a measure of the

distance between the true posterior and the proposed approximate posterior. Since the Kullback-Leibler

divergence is always positive, the first term is a lower bound on the log-evidence (hence the name), i.e.:

log p(x; θ, φ) ≥ Ez∼q(z|x;φ)

[
log

p(x, z; θ)

q(z|x;φ)

]
︸ ︷︷ ︸

ELBO(x,θ,φ)

. (2.17)

For different choices of q(z|x;φ) we get different ranges of approximations to evidence, and in the

case where this distribution is equal to the true posterior, q(z|x;φ) = p(z|x; θ), the approximation is

perfect (however it is assumed that such approximation is intractable).

By observing Equation (2.16), we notice that maximizing the ELBO has two effects: it maximizes the

log-likelihood, our end-goal, and minimizes the Kullback–Leibler divergence between the approximate

posterior and the true posterior, leading to a better approximation of the latter by the former. Thus, we
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define the objective function (parameterized by θ and φ) that we want to jointly optimize to be given by

L(x, θ, φ) =

N∑
i=1

ELBO(x(i), θ, φ). (2.18)

We can write the gradients of the ELBO with respect to the latent variable parameters and the variational

parameters as:

∇θ,φ ELBO(x, θ, φ) = ∇θ,φEz∼q(z|x;φ)

[
log

p(x, z; θ)

q(z|x;φ)

]
= ∇θ,φ Ez∼q(z|x;φ) [log p(x, z; θ)− log q(z|x;φ)] .

(2.19)

Gradient Estimation

We could try to compute these gradients directly by marginalizing over the approximate posterior

distribution q(z|x, φ). However, this is impossible for most cases. If we use a continuous latent variable

space, for all but the simplest models, the integral is intractable, whereas if we have a discrete space,

the summation grows exponentially with the latent variable’s dimension size, as is the case for causal

structures we consider in this work.

For the model parameters θ, we can however obtain low-variance estimates for the gradients. No-

tice that the approximate posterior does not depend on the latent variables parameters θ, thus we get

∇θ Ez∼q(z|x;φ) [log q(z|x;φ)] = 0, and we can move the gradient inside the expectation of the log joint

probability, i.e:

∇θ Ez∼q(z|x;φ) [log p(x, z; θ)] = Ez∼q(z|x;φ) [∇θ log p(x, z; θ)] . (2.20)

We can use a simple Monte Carlo estimate of this gradient by sampling from the posterior, i.e, simply

sample a few samples from the posterior and use the average resulting gradient. However getting a

good estimate for the gradients with respect to the variational parameters φ, is a bit trickier. For this

computation, we cannot move the gradient inside the expectation as that is taken with respect to the

approximate posterior that explicitly depends on φ.

One way to go around this is to instead make use of the score-function estimator (also known as

REINFORCE [63])(derivation in Appendix A.3):

∇φ Ez∼q(z|x;φ)[f(z)] = Ez∼q(z|x;φ)[f(z)∇φ log q(z|x;φ)], (2.21)

where f is an arbitrary function. This allows us to write the gradient w.r.t. the variational parameters φ

as the expectation:

∇φ L(x, θ, φ) = Ez∼q(z|x;φ)[
(

log p(x, z; θ)− log q(z|x;φ)
)
∇φ log q(z|x;φ)]

= Ez∼q(z|x;φ)

[
log p(x, z; θ)

log q(z|x;φ)
∇φ log q(z|x;φ)

]
.

(2.22)

This gradient estimation is reminiscent of the policy gradient theorem [64] from the reinforcement

learning literature. Therefore, the gradient estimation methods developed in that context such as using
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Monte Carlo, popularized as the REINFORCE [63, 65], or other score function estimators, such as using

baselines to reduce the variance of the estimator [66, 67], are commonly used.

Finding different methods for estimating these gradients has been a recent topic of interest in the

literature. An exceedingly popular approach is the pathwise gradient estimator (or the reparametriza-

tion trick) [68, 69]. The idea is that we assume that q(z|x;φ) is a reparameterization T (ε;φ) of some

base distribution q0(ε). Since the expectation with the respect to q0(ε) there is no dependence on the

parameters φ we can write the gradient as follows :

∇φL =

N∑
i=1

Eε∼q0(ε)

[
∇z log

p
(
z = T (ε;φ), xi; θ

)
q
(
z = T (ε;φ)|xi, φ

)∇φT (ε;φ)

]
. (2.23)

The gradient is also estimated using Monte Carlo but notice that now we differentiate through the joint

likelihood. This gradient estimation method has empirically been shown to yield much lower variance

estimators compared to the score function methods [70]. Note that by doing this variable transformation

we are able to differentiate through random operations.

However, such reparametrizations are only applicable to continuous latent variables. For the dis-

crete case, we are forced to use the score-function estimator, apply a continuous relaxation [71–74] or

construct the latent distribution such that it results in a sparse expectation [75].

Continuous Relaxations

Since the introduction of the reparametrization trick, there has been significant interest in applying

it for discrete latent variables, particularly in the context of structured prediction where sometimes we

cannot even evaluate a density (as required by the score-function estimator) due to complex partition

functions. We now present two continuous relaxations that we employ in our work.

Gumbel-softmax. The Gumbel-softmax distribution [71, 73] also called concrete distribution is a con-

tinuous relaxation of a categorical distribution. It is based on the Gumbel-max trick [76, 77] that allows

for sampling efficiently a categorical variable z with class probabilities π, in the following manner:

z = arg max
i

(gi + log πi) , (2.24)

where g1, . . . , gk are i.i.d samples drawn from the distribution Gumbel(0,1). However, instead of using

arg max, a continuous approximation thereof is adopted, the softmax function. Therefore, the Gumbel-

max trick coupled with the softmax and a temperature parameter τ can be written as follows:

yi =
exp

((
gi + log(πi)

)
/τ
)

∑k
j=1 exp

((
gj + log(πj)

)
/τ
) for i = 1, . . . , k. (2.25)

The samples from this distribution lie in the k-th dimentional probability simplex. As τ goes to zero,

the softmax becomes the arg max function, and all the samples lie in the corners of the simplex. In this
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extreme case, the gradient estimate’s variance grows significantly. Typically, the temperature is annealed

such that it is high at the beginning of training and close to zero at the end.

Straight-Through Gumbel-softmax Some sampling models require that the samples are discrete.

In cases like this, where we cannot use a relaxed sample, we use the Straight-Through (ST) gradient

estimator [78]. During the forward phase, we use a discretized version of the samples from the Gumbel-

softmax distribution, and during the backward phase, we use the samples themselves. Therefore, given

a sample y from the Gumbel-softmax distribution, we obtain the ST sample ŷ as follows:

ŷ := discretize(y) + (y − grad-block(y)), (2.26)

where the grad-block function is such that grad-block(z) = z and∇zgrad-block(z) = 0 and discretize(y)i =

1 if yi ≥ maxj yj and is zero otherwise.

2.3 The Dirichlet Process

The Dirichlet process, first introduced in [79], DP(α, P0), is a distribution of distributions. It has two

parameters, α > 0 (the scaling parameter) and P0 (the base distribution). A random distribution P of

the variable η is distributed according to a Dirichlet process if, for all natural numbers k and partitions

{A0, A1, A2, . . . , Ak}, the following holds:

(
P (A0), P (A1), . . . , P (Ak)

)
∼ Dir

(
αP (A0), αP (A1), . . . , αP (Ak)

)
. (2.27)

To obtain a distribution over n variables η, we can marginalize w.r.t G as follows:

p(η0, η1, . . . , ηn) =

∫
p(P )

n∏
i=0

p(ηi|P )dP. (2.28)

The marginalization, inevitably creates a dependency between successive ηs. The resulting joint distri-

bution factorizes as the product of the following full conditionals:

p(η|η0, η1, . . . , ηn) =
α

α+ n
p(η|P0) +

1

α+ n

n∑
i=0

δηi(η). (2.29)

This is what is generally called the Chinese restaurant process [80] representation of the Dirichlet

process. Under this interpretation, for each new costumer that is given a new table, here denoted by η,

the particular table is drawn according to the base distribution P0. However, if the costumer does not go

to a new table, the probability of the costumer going to a particular existing table is proportional to the

number of costumers already in that table. This evidently creates a clustering effect. The probability of

the costumer being drawn a new table, if we denote by n the number of existing tables, is α
α+n . This

probability shrinks as more costumers are already in the restaurant.

While this formulation of the Dirichlet process is intuitive, in order to use variational inference with it,
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we would have to use Kullback–Leibler divergences between distributions that are both continuous and

discrete. For this reason, we employ the stick-breaking process representation from [81]. Consider two

infinite collection of independent random variables vk ∼ Beta(1, α) and ηk ∼ P0, for k = {0, 1, 2, . . .}.

The stick-breaking process representation of P is as follows:

βk(vk, vk−1, . . . , v1) = vk

<k∏
k′=0

(1− vk′);

G =

∞∑
k=0

βk(vk, vk−1, . . . , v1)δηk(η).

(2.30)

With this representation, we can see that P is discrete (with probability one), and the support consists

of a countably infinite set of atoms drawn independently from P0. For now on, we use βk to refer to

βk(vk, vk−1, . . . , v1, v0). We will denote the set of random variables {v0, v1, v2, . . . , vk} by Vk.

The Dirichlet process mixture model Under this hierarchical Bayesian model, the DP is used as a

non-parametric prior. The collection of variables {β0, β1, . . .} act as the mixing proportions and {η0, η1, . . .}

are the atoms representing the mixture components. If we then define variable z(i) to be an assignment

variable of the mixture component with which the data point x(i) is associated, the sampling process can

be described as follows:

1. Draw vk|α ∼ Beta(1, α), k = {0, 1, . . .}

2. Draw ηk ∼ P0, k = {0, 1, . . .}

3. For the ith sample:

• Draw z(i)|{v0, v1, . . .} ∼ Cat(β)

• Draw η(i)|z, η0, η1, . . . ∼
∑∞
k=0 δηk(η(i))

zk

• Draw x(i)|η(i) ∼ p(x(i)|η(i))

The joint distribution can be factorized as follows:

p(x, z, η,η0, η1, . . . , v0, v1, . . . |α, P0) =

p(x|η)p(η|z, η0, η1, . . .)p(z|v0, v1, . . .)

∞∏
k=0

p(vk|α)

∞∏
k=0

p(ηk|P0)
(2.31)

The Dirichlet process mixture model is popular as a model-based approach for clustering. Primarily

because it can be used when the number of clusters is unknown and is to be inferred from data.

Truncated Dirichlet process For practical purposes, it might not be possible to work with the stick-

breaking formulation due to the infinity of mixture components. For this reason we can truncate the

Dirichlet process to have only K+1 components by defining an atom with subscript >K , that aggregates
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and models all of the components greater than K. The probability of this component is given by:

β>K =

∞∑
k=K+1

βk =

K∏
k=0

(1− vk′) = βK
(1− vK)

vK
. (2.32)
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Chapter 3

Intervention Recovery

In this chapter, we consider the problem and propose an algorithmic solution for identifying latent

interventions in an unsupervised manner when given the underlying causal graph. We begin by defin-

ing a joint distribution over the unobserved intervention assignments and the collected data. We then

use variational inference to approximate the posterior over intervention assignments and to learn the

parameters of an SCM. Lastly, we experimentally validate our algorithm using a range of synthetic data

sets.

3.1 A joint distribution for latent interventions

3.1.1 Mixture of intervention distributions

We assume that the dataset D is produced by a mixture of SCMs, each resulting from an intervention

applied to a base SCMM. More specifically, D is partitioned intoK+1 exchangeable groups, with group

k containing i.i.d. samples from the intervention SCM M̃(k) resulting from applying the kth intervention

to the base SCM M with causal graph G; the index k = 0 indicates the absence of intervention, i.e.,

M̃(0) =M (observational model). We denote by M̃ = (M̃(0), . . . ,M̃(K)) the ensemble of SCMs.

The latent variables z(i) ∈ {0, . . . ,K} indicate which SCM generated each sample: z(i) = k if and

only if x(i) is a sample of the SCM M̃(k). We denote by Z = (z(1), . . . , zN ) the set of correspondences.

We call the scenario where both M̃ and z(i) are unknown as fully latent interventions.

Marginalizing with respect to the latent z(i) yields the mixture model

p(x(i)|M̃) =

K∑
k=0

p(z(i) = k) p(x(i)|z(i) = k,M̃) =

K∑
k=0

τk pM̃(k)(x
(i)), (3.1)

where we define τk = p(z(i) = k). Conditioning on z(i) and invoking Equation 2.3 leads to

p(x(i)|z(i),M̃) =

K∑
k=0

I(z(i) = k)
∏
j /∈I(k)

pM(x
(i)
j |PAGj )

∏
j∈I(k)

pM;do(xj :=ζ̃kj (PAGj ,ε̃j))
(x

(i)
j |PAGj ).
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We also consider that, like the group memberships, the set of targets I(k) of each intervention k is

unknown (except for I(0) = ∅).

3.1.2 Intervention embeddings and shared intervention space

We use density estimators, e.g., neural networks and normalizing flows [82], to model the conditional

densities in both the observational and interventional distributions. With this goal in mind, we use an

appropriate encoding of the changes in the intervened assignments and the intervention targets. The

set of targets in the kth intervention M̃(k) is indicated by a d-dimensional binary vector rk = [rk1, . . . , rkd],

where rkj = 1 if and only if j ∈ I(k), and rkj = 0 otherwise. Since I(0) has no targets (it corresponds to

the observational SCMM), we have r0 = [0, 0, . . . , 0]. To encode the type of intervention, we introduce

the intervention embedding vector uk ∈ Rh, where h is an hyper-parameter. The vector uk represents

the changes in the affected assignments for intervention M̃(k). We denote by R = [r0, r1, . . . , rK ] ∈

RK×d the matrix of intervention targets, and by U = [u0, u1, . . . , uK ] ∈ RK×h the matrix of intervention

embeddings. We use (R,U) as the representation of the interventions M̃. We represent the causal

graph G via the adjacency matrix AG ∈ {0, 1}d×d.

Putting everything together, when given the graph G, interventions M̃, indicator z, and assuming the

intervention is imperfect, the log-probability of single data-point x is given by

log p(x|z,M̃,G; θ) =

=

K∑
k=0

I(z = k)

d∑
j=1

(1− rkj) log gj(xj |AGj � x, u0; θj)︸ ︷︷ ︸
=: pM(xj |PAGj )

+rkj log gj(xj |AGj � x, uk; θj)︸ ︷︷ ︸
=: pM̃(k) (xj |PAGj )

=

d∑
j=1

log gj(xj |AGj � x, (e
>
z R)j (e>z U − u0) + u0; θj), (3.2)

where ez ∈ RK is a one-hot vector indicating z, and AGj � x is the Hadamard (elementwise) product

between the jth column of the adjacency matrix of G and x, which is equivalent to selecting the entries

of x in PAGj . The parameters θ = (θ1, . . . , θd) parameterize the conditional densities g1, . . . , gd. We will

consider in the sequel several forms for these conditional densities, e.g., using parametric families and

normalizing flows. Crucially, each conditional density gj is a distribution of xj , and the parameters θj are

shared between all of the interventions—only the intervention-specific intervention embedding vector uk

changes depending on the intervention. This enables dealing with an unlimited number of interventions,

as we shall see.

Conditional density for perfect interventions. If we assume that the intervention is perfect (stochas-

tic or atomic), the log-probability of single data-point is given by

log p(x|z,M̃,G; θ) =

d∑
j=1

log gj(xj |(e>z R)j
(
AGj � x

)
, (e>z R)j (e>z U − u0) + u0; θj), (3.3)
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that is, we make the conditional density of xj be only dependent on uk when intervened.

3.1.3 Modeling the conditional densities

In Section 3.1.2, we described the conditional probability of particular data-point x in terms of the

parametric conditional densities g1, . . . , gd. There is no limitation in our formulation that would restrict us

to a particular family of sampling models gj .

A simple nonlinear model for the conditional densities gj can be constructed using neural networks.

We use a neural network NN([uk, A
G
j � x]; θj) : R(h+d) → Rm, a parametric non-linear mapping, param-

eterized by θj , that receives the concatenation of the parents of xj and the intervention embedding uk

and outputs m parameters of some distribution f(xj ; NN([uk, A
G
j � x]; θj)) of the variable xj . There are

many possible choices for the distribution f , depending on the problem at hand and on whether xj is

discrete or continuous: Poisson (m = 1), Bernoulli (m = 1), univariate Gaussian (m = 2), categorical,

etc. In this paper, we focus on three density families in R, which we experiment with in Section 4.5.

Linear Gaussian We use a neural network NN(uk; θj) to output coefficients ãj ∈ Rd, and σ̃j , b̃j ∈ R.

Then, we use these as parameters of a Gaussian distribution whose mean is an affine transformation of

the values of the parents of xj :

gj(xj |AGj � x, uk) = N
(
ã>j
(
AGj � x

)
+ b̃j , σ̃

2
j

)
.

Non-Linear Gaussian We use a neural network NN([uk, A
G
j � x]; θj) to output coefficients µ̃j ∈ R and

σ̃j ∈ R, given the values of the parents of xj as input. Then, we use these as parameters of a Gaussian

distribution:

gj(xj |AGj � x, uk) = N
(
µ̃j , σ̃

2
j

)
.

Normalizing flows To model non-linear non-Gaussian conditional densities, we employ normalizing

flows. A normalizing flow [82] is a transformation of a base probability density (in our case a Gaussian)

through a sequence of invertible mappings τ(xj ; W̃j) = τl ◦τl−1 · · ·◦τ1(xj ;ω1), where W̃j = {ω1, . . . , ωl}.

We use a model introduced in [83], called deep sigmoidal flows (DSF), where each of the invertible

mappings has the following form:

τl(x) = σ−1(w>l σ(alx+ bl)), wl ∈ 4F−1, al ∈ RF+, bl ∈ RF .

where4F−1 is the probability simplex and F is an hyper-parameter. We use a neural network NN([uk, A
G
j �

x]; θj) to output the parameters W̃j . With the former, we obtain a controllable flow τ(xj ; W̃j) that when

given xj , outputs the parameters of a Gaussian distribution µ̃, σ̃. Altogether, the joint density has the
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following form:

gj(xj |AGj � x, uk) =

∣∣∣∣∣det

(
∂τ
(
xj ; W̃j

)
∂xj

)∣∣∣∣∣N(µ̃, σ̃2
)
.

3.1.4 Modeling latent interventions with Dirichlet processes

To obtain a complete statistical description of the data-generating process, we still need to design

a prior distribution for the latent interventions, apart from the sampling model gj . Namely, we need

a prior distribution for the correspondence z, the intervention embeddings U , and the intervention tar-

gets R. Furthermore, while experimentally, we can design scenarios where K, the number of latent

interventions, is known, in general, given a data set, it will not be clear what the number of latent in-

terventions is. Therefore, we will formulate the model to support a potentially non-specified number of

latent interventions K.

We do this by using a Dirichlet process prior with a stick-breaking process representation ( as de-

scribed in Section 2.3 ) as the prior distribution of the variables associated with the latent interventions.

We consider the base distribution P0(uk, rk), with the following form:

P0(uk, rk)
.
= N (uk; 0, Ih)

d∏
j=1

Bern
(
rkj ;σ(γ)

)
. (3.4)

In this way, associated with each mixture component k, or intervention distribution, we have both the

intervention targets rk, which are assumed to come from d independent Bernoulli and a intervention em-

bedding uk, which is assumed to come from a h-dimensional standard Gaussian. With the stick-breaking

weights v0, v1, . . . we obtain the mixing coefficients β0, β1, . . . which serve as the prior distribution for the

categorical variable z.

The generative story is as follows. For k = 0, 1, . . . , we sample the variables uk and rk, associated

with each intervention M̃(k), as well as the probability βk of picking that intervention as a stick-breaking

process, with scaling parameter α > 0 (which controls the clustering effect of the Dirichlet process) and

hyperparameter γ (which controls the sparsity of the intervention targets), as follows:

uk ∼ N (0, Ih)

rkj ∼ Bern(σ(γ)), j = 1, . . . , d

βk = vk

k−1∏
k′=0

(1− vk′), with vk ∼ Beta(1, α).

(3.5)

Then, to generate the data, we first sample the intervention index z(i), and then sample a point x(i)
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Figure 3.1: Graphical model representation of the Dirichlet Process Mixture model as applied to the
latent intervention identification problem.

conditioning on the corresponding intervention M̃(z(i)):

z(i) ∼ Cat(β0, β1, . . . , βk, . . .)

x
(i)
j ∼


gj(xj |AGj � x(i), u0) if rz(i)j = 0

gj(xj |AGj � x(i), uz(i)) if rz(i)j = 1.

(3.6)

Figure 3.1 contains a graphical model representation of this joint distribution. The joint distribution this

model is written as:

p(D,Z,M̃|G; θ) =

N∏
i=1

p(x(i)|z(i),M̃,G; θ)︸ ︷︷ ︸
p
M̃(z(i))

(x(i))

p(z(i)|β0, β1, . . . )︸ ︷︷ ︸
p(z(i)|M̃)

∞∏
k=0

p(uk)p(rk|γ)p(vk|α)︸ ︷︷ ︸
p(M̃)

. (3.7)

3.2 Approximate posterior inference

Given a collection of data D = {x(1), x(2), . . . , x(N)}, our goal is to recover the associated set of inter-

vention correspondences Z = {z(1), z(2), . . . , z(N)}, and the intervention family M̃. In general, the poste-

rior p(Z,M̃|D,G) is impossible to obtain in closed form, thus we resort to variational inference [84]. Fol-

lowing Section 2.2.2, we take an optimization approach by seek an approximate distribution q?(Z,M̃),

the closest (in the Kullback–Leibler – KL – sense) approximation to the posterior in a variational familyQ.

We design the family Q of tractable variational distributions q(Z,M̃) = p(M̃)
∏N
i=1 q(z

(i)|M̃). Where for

the variables associated with latent interventions M̃ we propose the fully factorized and finite variational

distribution

q(M̃) =

K∏
k=0

( d∏
j=1

qR(rkj)
)( h∏

l=1

qU (ukl)
)
qV (vk), (3.8)
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where here the hyper-parameter K defines the truncation level of the variational approximation, and the

distributions associated with vk, ukl, and rkj take the following form:

qV (vk; ρk, wk) = Beta
(
ρkwk, (1− ρk)wk

)
;

qU (ukl;µkl, σkl) = N (µkl, σ
2
kl);

qR(rkj ;πkj) = Bern(πkj).

(3.9)

where πkj , µkl, σkl, ρk, wk are free parameters to be optimized, for each k ∈ {0, . . . ,K}, l ∈ {1, . . . , h}

and j ∈ {1, . . . , d}. For the distribution of interventional assignments z, we propose the following varia-

tional posterior:

qZ(z) ∝ exp

(
u>z NN(x;φZ)√

h

)
, k = 1, . . . ,K ,

(3.10)

where NN(x;φZ) : Rd → Rh is a neural network. In Appendix B we describe the architecture of the

neural networks used in our experiments. We use the shorthand φ to denote the vector of all vari-

ational parameters, which includes φZ , µkl, σkl, ρk, wk, πkj for all k ∈ {0, . . .K}, l ∈ {1, . . . , h}, and

j ∈ {1, . . . , d}.

For the choice of variational posterior q(M̃), we opted by the mean-field variational family for tractabil-

ity reasons. However, why choose the variational posterior qZ(z) as stated in Equation 3.10?

Statistical arguments Without making further assumption, the true posterior p(z(i), |M̃, x(i),G; θ) should

be considered dependent not only on x(i), but all of the variables associated with M̃. So, having an ap-

proximate posterior that depends on the latent embeddings, not exclusively on x(i), should help reduce

the gap between the ELBO and the log-likelihood.

Computational arguments The approximate distribution qZ(z) is constructed to allow a shared global

model for distinct interventions, whose parameters do not scale with the truncation level K, in the same

manner attention weights are computed in sequence modeling. In this analogy, the sequence’s elements

are the intervention embeddings. Furthermore, like attention mechanisms, if we reorder U , the discrete

distribution qZ(z) remains the same. Meaning, that the vectors uk, in the first ordering, and uk′ , in the

second ordering, retain the same probability ( it is a operation on sets ).

Modeling arguments We interpret the transformation NN(x;φZ) from Equation 3.10, as a prediction

for the intervention embedding ûi that generated xi. Therefore, the probability of intervention k being

assigned to the ith sample is higher the more compatible ûi and uk are, as measured using the dot-

product kernel. We conjecture, that the free parameters µk, and σk associated with the variational
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posterior qU
(
uk;µk,diag(σk)

)
of the kth intervention, will converge to the equilibrium point:

µk =
( N∑
i=1

qZ(k;xi) NN(xi;φZ)
)
, σ2

k =
( N∑
i=1

qZ(k;xi)NN(xi;φZ)2
)
− µ2

k. (3.11)

So we are implicitly doing fuzzy clustering in the intervention latent space.

Given the ingredients above, we obtain the following lower bound for the marginal likelihood from

Equation 4.2:

log p(D|G; θ) ≥
N∑
i=1

Ez(i),M̃∼q(z(i),M̃;φ)

[
log p(x(i)|z(i),M̃,G; θ)

]
−DKL

[
q(z(i),M̃)||p(z(i),M̃)

]︸ ︷︷ ︸
ELBO

q(z(i),M̃;φ)
(x(i),G;θ)

. (3.12)

For different choices of φ, we get different lower bound approximations to the marginal likelihood. By

maximizing the ELBO w.r.t. φ we minimize the approximation gap, which equals he Kullback–Leibler

divergence between the approximate and the true posterior.

The Kullback–Leibler divergence present in Equation 3.12 can be written in the following way :

DKL

[
q(M̃, z(i))||p(M̃, z(i))

]
=

= EM̃,z∼q(M̃,z)

[
log

q(z|u0, . . . , uT )
∏T
k=0

(∏d
j=1 qR(rkj)

)(∏h
l=1 qU (ukl)

)
qV (vk)

p(z|β0, . . . , βT )
∏T
k=0

(∏d
j=1 p(rkj |γ)

)(∏h
l=1 p(ukl)

)
p(vk|α)

]

=

T∑
k=0

h∑
l=1

DKL

(
q(ukl)||N (0, 1)

)
+

T∑
k=0

d∑
j=1

DKL

(
q(rkj)||Bern(γ)

)
+

T∑
k=0

DKL

(
q(vk)||pθ(vk|α)

)
+ EM̃,z∼q(M̃,z)

[
log

q(z|u0, . . . , uT )

p(z|β0, . . . , βT )

]
.

(3.13)

The closed form expressions, for each of the resulting Kullback–Leibler divergences is contained in Table

3.1. Derivations are contained in Appendix A.

DKL

(
q(vk)||pθ(vk|α)

) log
(B
(
ρkwk, (1− ρk)wk

)
B(1, α)

)
+ (1− ρkwk)ψ(1)+(

α− (1− ρk)wk
)
ψ(α) + (−1 + wk − α)ψ(1 + α)

DKL

(
q(ukl)||N (0, 1)

) σ2
kl + µ2

kl − 1

2
− log σkl

DKL

(
q(rkj)||Bernoulli(γ)

)
πkj

(
logit(πkj)− logit(γ)

)
+ log

1− πkj
1− γ

EM̃∼q(M̃)

[
DKL

(
q(z)||pθ(z|β0, β1, . . . , βT )

)] K∑
k=0

Euk∼q(uk)

[
q(zk)

(
log q(zk)− EVk∼q(Vk) [log βk]

)]]

Table 3.1: On the left, Kullback–Leibler divergences between the prior distribution of the latent variables
and the corresponding variational posteriors. On the right the corresponding close-form expression. The
function B(a, b) is the beta function, ψ is the digamma function, and EVk∼q(Vk) [log βk] is given in closed
form in A.10.
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Algorithm 1 Intervention recovery algorithm based on amortized variational inference.
θ,φ← Initialize parameters
repeat

x(1) . . . x(B) ← Random minibatch of B datapoints. (drawn from D)
for each x(i) ∈ x(1) . . . x(B) do

q(u(i)), q(r(i)), q(v(i)), q(z(i))← Compute the variational posteriors
u∗0

(i), . . . , u∗T
(i), r∗0

(i), . . . , r∗T
(i), z∗(i) ← Sample via the reparameterization trick.

g(i) ← ∇θ,φL(θ,φ, u∗0
(i), . . . , u∗T

(i), r∗0
(i), . . . , r∗T

(i), z∗(i);x(i), AG)
end for
g← 1

B

∑B
i=1 g(i) (Average gradients)

θ,φ← Update parameters using gradients g (with SGD or Adam )
until convergence of (θ,φ)
return θ,φ

Figure 3.2: A diagram of the variational model we propose for the intervention identification problem.

3.3 Inference Algorithm

We use mini-batch gradient descent to maximize the ELBO w.r.t to the model parameters θ and

the variational parameters φ. We estimate the gradients using path-wise gradient estimation method

described in Sub-Section 2.2.2. This amounts to sampling z∗(i),M̃∗ from the variational posterior using

the reparametrization trick, and minimizing the following objective function:

L(θ, φ, z∗(i),M̃∗;x(i),G) = − log p(x(i), z∗(i),M̃∗,G; θ) + Ω(φ) (3.14)

where Ω(φ) is a representation of the sum of the Kullback–Leibler divergence terms present in Table 3.1.

To employ the reparametrization trick with distributions of discrete variables we use the Gumbel-softmax

continuous relaxation, also presented in 2.2.2. Having estimated the gradients, for each sample, we

average them and feed it to a first order stochastic optimization algorithm Adam [85].

The proposed learning algorithm is described in Algorithm 1. We implemented the Algorithm with

the PyTorch deep learning framework [2]. With PyTorch we define our model and calculate the gradient

estimates using reverse-mode automatic differentiation. Figure 3.2 contains a diagram of the proposed

model.
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Figure 3.3: The underlying graph is has two variables and one edge. The cause is in the horizontal
axis, the effect is in the vertical axis. The rows correspond to different models, particularly, Linear
Gaussian, non-linear Gaussian and non-linear non-Gaussian. The columns correspond to distinct types
of interventions. Particularly, atomic, stochastic and imperfect. Red observational. Green intervention
on the effect variable. blue intervention on the causal variables.

3.4 Experimental Setup

We tested our method on several synthetic data. The synthetic datasets allow us to do a systematic,

controlled comparison of different methods under different scenarios (graph size and density, interven-

tion and assignment types). In order to generate SCMs, perform interventions on them and sample

the corresponding entailed distributions, we created an open source Python package named PyCausal,

which is available on GitHub1.

We evaluate our method using the rand index measure. The rand index [86] is a measure of similarity

between two data clustering. Let Z(1) and Z(2) be two partitions of the set X, a be the number of pairs of

elements in X that are in the same subset in Z(1) and the same subset in Z(2), and b be the number of

pairs of elements in X that in different subsets in Z(1) and in different subset Z(2), rand index measure

is defined as follows:

R
.
=
a+ b(|X|

2

) (3.15)

Single-node interventions We generated SCMs with d ∈ {10, 20} variables with a Erdős-Rényi

scheme with expected number of edges per node e ∈ {1, 4}. We provide a detailed description of

how we generate SCMs in Appendix D. We generated 10 SCMs for each combination of e, conditional

1https://github.com/goncalorafaria/PyCausal
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Model Type
d = 10 d = 20

ER1 ER4 ER1 ER4

Stochastic Interventions:

Linear Gaussian 0.9816± 0.019 0.9492± 0.007 0.9815± 0.005 0.9785± 0.006

Non-Linear Gaussian 0.9643± 0.015 0.9242± 0.006 0.9655± 0.005 0.9431± 0.003

Non-Linear Non-Gaussian 0.8314± 0.062 0.7812± 0.1074 0.8929± 0.027 0.8412± 0.087

Imperfect Interventions:

Linear Gaussian 0.9262± 0.030 0.8802± 0.040 0.8072± 0.098 0.7819± 0.054

Non-Linear Gaussian 0.9541± 0.012 0.9205± 0.005 0.9670± 0.007 0.9434± 0.004

Non-Linear Non-Gaussian 0.9103± 0.004 0.9090± 0.004 0.9345± 0.005 0.9196± 0.005

Atomic Interventions:

Linear Gaussian 0.9141± 0.0018 0.9148± 0.0021 0.9507± 0.0059 0.9461± 0.0030

Non-Linear Gaussian 0.9138± 0.0053 0.9195± 0.0041 0.9506± 0.0056 0.9435± 0.0032

Non-Linear Non-Gaussian 0.9100± 0.0056 0.9034± 0.0115 0.9314± 0.0104 0.9306± 0.0041

Table 3.2: Results for the single-node intervention experiment. The metric used is the average rand
index.

density (linear Gaussian, non-linear Gaussian, and normalizing flow), and intervention type (stochastic,

atomic and imperfect). In each of the SCMs, we performed 1 interventions for every variable. For each

SCM within each configuration, we explored the following hyperparameter range: γ ∈ {−.1,−.01}. For

the remaining hyperparameters, we set α = 9, h = 248 and the truncation level K = 11—the hyper-

parameter configuration that achieved the best log-likelihood on a validation set. From the generated

SCM, we produced a dataset with n = 10000 samples, where each intervention has b n
d+1c elements.

This dataset was split into training (80%) and validation (20%). Figure D.1 contains 9 scatter plots off all

the settings we consider in this experiment, however for visualization proposes we consider SCMs with

d = 2. The results for this experiment can be found in Table 3.2. The results show that we can con-

sistently recover a significant portion of the correspondences, using our variational inference algorithm,

when intervention affect a single variable. When the graphs are denser the problem appears to become

harder.

Multi-Node interventions We generated SCMs with d = 20 variables with a Erdős-Rényi scheme

with expected number of edges per node e = 1. We generated 10 SCMs for each combination of e,

conditional density (linear Gaussian, non-linear Gaussian, and normalizing flow), and intervention type

(stochastic, imperfect and atomic). In each of the SCMs, we performed a random number of interven-

tions. The number of interventions was sampled from a maximum entropy discrete distribution on the set

{1, 2, . . . , 7}. For each SCM within each configuration, we explored the following hyperparameter range:

γ ∈ {−.1,−.01,−.001,−.0001}. From the generated SCM, we produced a dataset with n = 10000 sam-

ples, where each intervention has b n
d+1c elements. The results for this experiment can be found in Table
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Model Type
d = 20, ER1

Fixed single node Random multi node

Stochastic Interventions:

Linear Gaussian 0.9815± 0.005 0.9618± 0.0002

Non-Linear Gaussian 0.9655± 0.005 0.9617± 0.0006

Non-Linear Non-Gaussian 0.8929± 0.027 0.9543± 0.0049

Imperfect Interventions:

Linear Gaussian 0.8072± 0.098 0.9322± 0.0096

Non-Linear Gaussian 0.9670± 0.007 0.9617± 0.0001

Non-Linear Non-Gaussian 0.9345± 0.005 0.9591± 0.0040

Atomic Interventions:

Linear Gaussian 0.9507± 0.0059 0.9685± 0.0022

Non-Linear Gaussian 0.9506± 0.0056 0.9657± 0.0020

Non-Linear Non-Gaussian 0.9314± 0.0104 0.9527± 0.0101

Table 3.3: Results for the multi-node intervention experiment. The metric used is the average rand index.

3.3. The results show that we can also consistently recover a significant portion of the correspondences

when intervention affect multiple variables.

Model assumptions ablation We compared the results of our method when the selected model does

not match the SCM that generated the data. We follow the same dataset generation procedure from

the single-node interventions experiment. We considered only SCMs with d = 10, e = 1, and imperfect

interventions. We additionally, compared our method with the clustering algorithm kmeans++ [87]. The

results for these settings can be found in Table 3.4. The results show that our method is generally robust,

regardless of the conditional density estimator used and problem type. Furthermore, the experimental

results show that, as expected, our method outperforms kmeans++ in our scenario.

Model Type
Underlying SCM Type

Linear Gaussian Non-Linear Gaussian Non-Linear Non-Gaussian

Linear Gaussian 0.9262± 0.030 0.9068± 0.0201 0.9367± 0.0287

Non-Linear Gaussian 0.9133± 0.0009 0.9541± 0.012 0.9133± 0.0011

Non-Linear Non-Gaussian 0.9136± 0.0051 0.9093± 0.0044 0.9103± 0.004

Kmeans++ 0.8860± 0.0265 0.9049± 0.0188 0.8807± 0.0243

Table 3.4: Results for the model assumptions ablation experiment. The metric used is the average rand
index.

31



3.5 Discussion

We introduced an intervention recovery algorithm based on neural networks and variational infer-

ence. Experiments with synthetic data show that our approach can recover latent interventions and their

associated correspondences to samples.

The proposed method is not simply a new clustering algorithm. Our model adds a few degrees of

freedom for each new ”cluster” ( intervention distribution), particularly when considering a sparse prior

for the intervention targets ( γ < 0 ), most of the parameters (the assignments in the underlying SCM)

between the observation and intervention distributions are shared, this can potentially make the problem

easier to identify.

A limitation of our method is that interventions on causes tend to be more challenging to identify. We

believe this is because, given a marginal distribution with sufficient variance, the data samples coming

from interventions on causes overlap with the ones from the observational distribution(and with a prior

distribution that encourages sparse intervention targets can lead to not identifying this scenario).
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Chapter 4

Differentiable causal discovery under

latent interventions

In this chapter, we propose a data-driven causal discovery method that assumes latent interven-

tions in the dataset. We achieve this by augmenting the statistical model presented in Chapter 3 and

constructing an approximate score function that we maximize using a continuous constrained formula-

tion. We experimentally validate our algorithm using a range of synthetic data sets and show that latent

interventions improve the structure learning task.

4.1 A model for causal discovery under latent interventions

We assume that the dataset D is produced by a mixture of SCMs, each resulting from an intervention

applied to a base SCMM. More specifically, D is partitioned intoK+1 exchangeable groups, with group

k containing i.i.d. samples from the intervention SCM M̃(k) resulting from applying the kth intervention to

the base SCMM. Our goal is to discover, the causal structure G, that is shared between the intervention

SCMs, more concretely the causal graph of source SCMM. We reuse the full statistical model proposed

in Chapter 3.

We represent the causal graph G via the adjacency matrix AG ∈ {0, 1}d×d. Following previous

work, our prior p(G) models each entry AGij , corresponding to edge xi → xj , as a Bernoulli variable

independent of all the others,

p(G) =

d∏
i,j=1

σ(λij)
AGij
(
1− σ(λij)

)1−AGij , (4.1)

where σ(u) = eu/(1+eu) is the usual logistic transformation (sigmoid) and the λij are hyper-parameters.

This prior over graphs is simplistic since it does not encode that G has to be a DAG. In this paper, we

set λij = λG , for all i, j; however, in practice, a domain expert using the proposed method can embed

prior knowledge in these hyper-parameters (our method can be straightforwardly adapted to that case).

Figure 4.1 contains the graphical model representation, of the augmented statistical model for causal
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Figure 4.1: Graphical model representation of the Dirichlet process mixture model augmented for the
causal discovery problem.

discovery under latent interventions.

4.2 A score for latent interventions

We adopt a score-based formulation of the causal discovery problem (see Section 2.1.5) using the

MAP criterion, as presented in Equation 2.5, i.e.:

S(G) := max
θ

log p(D|G, θ) + log p(G).

The log-likelihood log p(D|G, θ), under our statistical model can be written as:

log p(D|G; θ) =

N∑
i=1

log p(x(i)|G; θ) =

N∑
i=1

logEz(i),M̃∼p(z(i),M̃)

[
p(x(i)|z(i),M̃,G; θ)

]
, (4.2)

the logarithm of the marginalization of the joint distribution. Alternatively, it can also be written, via the

evidence decomposition (see Section 2.16), as:

log p(D|G; θ) =

N∑
i=1

Ez(i),M̃∼p(z(i),M̃|x(i),G;θ)

[
log p(x(i)|z(i),M̃,G; θ)

]
. (4.3)

both of these ways of writing the log-likelihood make it intractable the evaluate the score on a particular

graph let alone search over a the space of DAGs. Exact maximization of this marginal log-likelihood

(which involves a product of Gaussians, Beta distributions, and complex conditional distributions gener-

ated by neural networks), is also intractable to obtain in closed form. Therefore, we resort to approximate

variational inference [84].

Fortunately, in Section 3.2, we already designed a tractable variational family Q, that we can use to

approximate the true posterior p(z(i),M̃|x(i),G; θ), i. e.:

q(z(i),M̃|x(i)) = q(z(i)|M̃, x(i))

K∏
k=0

( d∏
j=1

qR(rkj)
)( h∏

l=1

qU (ukl)
)
qV (vk), (4.4)
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where the particular form of these variational posteriors is described in Section 3.2, and the associated

Kullback–Leibler divergences are contained in Table 3.1. Using this approximate posterior, we can

lower-bound to the marginal log-likelihood from Equation 4.3. Giving us

log p(D|G; θ) ≥
N∑
i=1

Ez(i),M̃∼q(z(i),M̃;φ)

[
log p(x(i)|z(i),M̃,G; θ)

]
−DKL

[
q(z(i),M̃)||p(z(i),M̃)

]︸ ︷︷ ︸
ELBO

q(z(i),M̃;φ)
(x(i),G;θ)

.

Using this lower-bound, associated with the variational family Q, we can approximate the score S(G)

with the surrogate score SQ(G;φ), for any φ, as follows:

S(G) ≥ max
θ

N∑
i=1

ELBOq(z(i),M̃;φ)(x
(i),G; θ) + log p(G)︸ ︷︷ ︸

SQ(G;φ)

.
(4.5)

Observing equation

SQ(G;φ) = S(G)− DKL

[
q(z(i),M̃;φ)||p(z(i),M̃|x(i),G; θ∗)

]
, (4.6)

we notice that, by maximizing the SQ(G;φ) w.r.t. φ we minimize the approximation gap between S(G) and

SQ(G;φ), which equals the Kullback–Leibler divergence between the approximate and the true posterior.

Given this insight, we propose the surrogate score SQ(G), where the following inequality holds for all φ:

S(G) ≥ max
θ,φ

N∑
i=1

ELBOq(z(i),M̃;φ)(x
(i),G; θ) + log p(G)︸ ︷︷ ︸

SQ(G)

≥ SQ(G;φ).
(4.7)

As many score-based causal discovery methods do, we can relax the surrogate score from Equation

4.7, yielding

S∗Q(Λ) = E
G∼Bern

(
G;σ(Λ)

)[max
θ,φ

N∑
i=1

ELBOq(z(i),M̃;φ)(x
(i),G; θ) + log p(G)

]
. (4.8)

4.3 Inference algorithm

The surrogate score, coupled with the acyclicity constraint from [51], enables us to formulate causal

discovery under latent interventions as the following optimization problem:

Λ∗ = arg max
Λ

S∗Q(Λ) s.t. Tr
(
eσ(Λ)

)
− d︸ ︷︷ ︸

h(Λ)

= 0,
(4.9)

Following Zheng et al. [51], we use the augmented Lagrangian procedure [60–62] (see Section 2.1.5)

to transform the problem in Equation 4.9 into a sequence of unconstrained optimization subproblems.

When we estimate the gradients using the path-wise gradient estimator [68, 69], each unconstrained
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optimization subproblem reduces to sampling the graph and the latent variables from the variational

posteriors using the reparametrization trick, minimizing the following objective:

L(θ, φ,Λ, z,M̃, AG ;x, µt, ϕt) = − log p(x|z,M̃, AG ; θ) + Ω(φ)− λG ||Λ||1 + ϕth(Λ) +
µt
2
h(Λ)2,

where Ω(φ) denotes the sum of the Kullback–Leibler divergences, and µt and ϕt are the parameters

of the augmented Lagrangian at the tth iteration. For estimating the gradients of Λ, q(z) and q(rkj) we

used a Gumbel-softmax continuous relaxation [71, 73] which, for the causal graph’s distribution, was

combined with the straight-through gradient estimator [78], to make sure the graph samples actually

represented the hard dependencies of the SCM, instead of fractional ones. Having estimated the gradi-

ents, for each sample, we average them and feed them to the first order stochastic optimization algorithm

Adam [85].

The proposed differentiable causal structure learning algorithm is described in Algorithm 2. We

implemented our method with the PyTorch framework [2].

Algorithm 2 Amortized Variational Inference version of the inference algorithm. We set B = 248, η = 2
and δ = 0.9 in our experiments.
θ,φ,Λ← Initialize model parameters
µ0,ϕ0 ← 10−6, 0
t← 0
while h(Λ) > 10−8 do

Λt ← Λ
repeat

x(1) . . . x(B) ← Random mini-batch of B data points. (drawn from D)
for each x(i) ∈ x(1) . . . x(B) do

q(z(i),M̃)← Compute the variational posteriors
M̃(i), AG

(i)
, z(i) ← Sample via the reparameterization trick.

g(i) ← ∇θ,φ,ΛL(θ,φ,Λ, z(i),M̃(i), AG
(i)

;x(i),µt,ϕt)
end for
g← 1

B

∑B
i=1 g(i) (Average gradients)

θ,φ,Λ← Update parameters using Adam.
until convergence of (θ,φ,Λ)
if h(Λ) > δh(Λt) then
µt+1 ← ηµt

end if
ϕt+1 ← ϕt + µt+1h(Λ)
t← t+ 1

end while
return θ,φ,Λ

4.4 Semi-supervised extensions

The causal discovery algorithm can be extended to cases where we have information about the

correspondences z(i) and/or the intervention targets I(k). To achieve this, we only have to ignore the

corresponding variational posteriors and use the observed values z(i) and r(i) as constants. We desig-

nate the original version of our model the latent variant, the one with observed z(i) the unknown variant,
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and the one with observed z(i) and r(i) the known variant. It is straightforward to extend our method

to a semi-supervised setting—a scenario where we only observe the correspondence z for a fraction

of the samples. Under this scenario, we still use the samples from the variational posterior to predict

the unobserved values of z and use the observed ones to improve the variational posterior. In essence,

with the semi-supervised variant, we obtain a model that interpolates between the latent variant and

the unknown variant. We follow the approach from [88] and extend the ELBO objective (in our case,

the lower bound of the distribution p(D|G; θ)). Let O be the set of the indices for which the intervention

assignment z is known, and with ẑ(i) its particular value. We rewrite the bound on the log-likelihood as :

log p(D|G; θ) ≥
N∑
i=1

ELBOθ,q(ẑ(i),M̃)(x
(i),G) + κ I(i ∈ O) EM̃∼q(M̃)

[
log q(ẑ(i)|x(i),M̃;φz)

]
,

where in the first term, when i ∈ O, we do not sample from q(z(i)|x(i),M̃;φz), using the observed

value ẑ(i) instead. The variable κ ∈]0, 1[ is an hyper-parameter that controls the relative importance of

supervised component of the objective. Using this bound, we can write a new relaxed surrogate score

S∗SLL(Λ) as:

S∗SSL(Λ) = E
G∼Bern

(
G;σ(Λ)

)[ N∑
i=1

ELBOθ,q(ẑ(i),M̃)(x
(i),G) + κ I(i ∈ O) EM̃∼q(M̃)

[
log q(ẑ(i)|x(i),M̃;φz)

]]
.

4.5 Experiments

We tested our method on synthetic and real data. The synthetic datasets allow us to do a systematic,

controlled comparison of different methods in different scenarios (graph size and density, intervention

and assignment types). In order to generate SCMs, perform interventions on them and sample the

corresponding entailed distributions, we created an open source Python package named PyCausal,

which is available on GitHub1.

We evaluate our method using the structural hamming distance (SHD) metric. The SHD between

two graphs is the `1 norm between their adjacency matrices, as described by the following expression:

SHD(AG
∗
, AG) =

d∑
i,j=1

|AG
∗

ij −A
G
ij |. (4.10)

Single-node interventions. We generated SCMs with d = 10 variables with a Erdős-Rényi scheme

with expected number of edges per node e ∈ {1, 4}. We provide a detailed description of how we

generate SCMs in Appendix D. We generated 10 SCMs for each combination of e, conditional density

(linear Gaussian, non-linear Gaussian, and normalizing flow), and intervention type (stochastic and

imperfect). In each of the SCMs, we performed 1 interventions for every variable. For each SCM within

each configuration, we explored the following hyperparameter range: λG ∈ {−.1,−.01, 0, .01, .1}, and

γ ∈ {−.1,−.01}. For the remaining hyperparameters, we set α = 9, h = 248 and the truncation level
1https://github.com/goncalorafaria/PyCausal
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K = 11—the hyperparameter configuration that achieved the best log-likelihood on a validation set.

From the generated SCM, we produced a dataset with n = 10000 samples, where each intervention has

b n
d+1c elements. This dataset was split into training (80%) and validation (20%). The models were trained

for 500 epochs for the first iteration of the augmented Lagrangian and 50 epochs for the remaining ones,

with a full batch(B = 8000) until h(Λ) < 10−8, and learning rate of 10−2.5.

The results from these experiments are shown in Table 4.1. The metric we use is SHD between

the adjacency matrices of the ground-truth graph and the estimated one. The columns from Table 4.1

correspond to the different variants we present in Section 4.4: latent refers to our model, unknown

assumes that the correspondences are known (as Brouillard et al. [52]), and known assumes that both

correspondences and intervention targets are known. We additionally include a “naive” observational

model (a baseline which ignores the existence of intervention data, i.e., that assumes K = 1 as if all

data was generated by the observational model). The experimental results preponderantly show that

our method (the latent variant) consistently outperforms the observational baseline and is worst than the

unknown variant, as expected, but only slightly. This indicates that taking account latent interventions,

when these are present, improves the recovery of the causal graph.

Model Type e latent unknown known observational

Stochastic Interventions:

Linear Gaussian 5.9± 6.2 3.4± 3.2 0.5± 1.3 10.3± 7.8

Non-Linear Gaussian 1 12.2± 3.9 10.3± 2.5 7.0± 3.6 13.7± 3.8

Non-Linear Non-Gaussian 8.7± 6.6 8.0± 2.7 6.6± 2.2 11.3± 5.0

Linear Gaussian 27.2± 6.2 24.1± 5.8 15.6± 6.0 39.6± 5.0

Non-Linear Gaussian 4 35.8± 3.8 30.3± 5.3 27.7± 4.3 37.5± 5.2

Non-Linear Non-Gaussian 36.1± 4.4 35.5± 8.1 31.5± 5.6 40.2± 6.9

Imperfect Interventions:

Linear Gaussian 5.8± 4.2 6.2± 3.06 4.7± 3.6 10.4± 2.9

Non-Linear Gaussian 1 9.3± 2.4 8.9± 2.5 7.8± 3.9 10.5± 2.8

Non-Linear Non-Gaussian 8.8± 3.0 9.1± 3.5 7.9± 1.4 11.5± 5.4

Linear Gaussian 35.9± 8.3 29.7± 5.6 17.7± 7.9 39.1± 9.1

Non-Linear Gaussian 4 32.1± 6.0 32.6± 5.8 32.8± 5.4 39.8± 9.3

Non-Linear Non-Gaussian 30.4± 12.2 30.2± 11.2 25.8± 3.9 36.7± 9.8

Table 4.1: Hamming distances on synthetic 10 variable SCMs.

Single-node interventions on cause-effect pairs. We generated two-variable linear Gaussian SCMs

(cause-effect pairs) with edge probability e = 2
3 (equal probability for each of the three possible graphs).

The SCMs were generated as described in Appendix D. We sampled 60 SCMs, and generate a dataset

of n = 999 samples, where each intervention has 333 elements. The sampled graph G, with variables A
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and B is one of 3 possible graphs, A causes B, B causes A, or A and B have no cause-effect relation.

All of the possible graphs share the MEC. We compare the variants presented in Section 4.4 in addition

to the naive observational baseline. Figure 4.2 contains an histogram of Hamming distances for each of

the variants. Edges in the anti-causal direction cost SHD = 2, missing edge or wrong edge is SHD = 1,

and correct graph is SHD = 0. The results show for this simple problem that cannot be identified using

observational data alone, that our method correctly identifies a significant majority of the cause-effect

pairs, even without information about the intervention assignments.

Cause-Effect Pairs

known unknown latent observational
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Figure 4.2: Histogram of Hamming distance in the experiments with cause-effect pairs.

Real-world data set Finally, we tested our method on the flow cytometry data set of Sachs et al. [89].

The measurements are the level of expression of phosphoproteins and phospholipids in humans cells.

Interventions were performed by using reagents to activate or inhibit the measured proteins. The dataset

comprises 7466 items with 11 variables each. Figure 4.3 contains an illustration of the consensus graph

from Sachs et al. [89]. This graph contains 11 edges. Table 4.2 compares the estimated graph, under

different conditional density assumptions but assuming imperfect interventions, to the consensus graph

from Sachs et al. [89]. The results from the real-world data set show that our method outperforms

several baselines, even with methods that use information regarding intervention correspondences and

targets. The reasons that might justify relatively good results on this standard problem is that i) the

causal sufficiency assumption may not hold, ii) the interventions may not be as specific as stated, and

iii) the ground truth network is possibly not a DAG since feedback loops are common in cellular signaling

networks as noted by Brouillard et al. [52]. These reasons can potentially be detrimental to the other

methods and our method appears to be robust to them.
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Figure 4.3: Classic signaling network and points of intervention. This is a graphical illustration of the
conventionally accepted signaling molecule interactions, the events measured, and the points of inter-
vention by small-molecule inhibitors. This illustration was obtained from Sachs et al. [89].

SHD tp fn fp rev F1 score

IGSP [53] 18 4 6 5 7 0.42

GIES [14] 38 10 0 41 7 0.33

CAM [50] 35 12 1 30 4 0.51

DCDI-G [52] 36 6 2 25 9 0.31

DCDI-DSF [52] 33 6 2 22 9 0.33

Linear Gaussian (imperfect) (ours) 33 7 11 22 3 0.30

Non-Linear Gaussian (imperfect) (ours) 19 7 11 8 0 0.42

Normalizing Flow (imperfect) (ours) 30 9 9 21 1 0.38

Table 4.2: Results for the flow cytometry dataset. The results for the baselines are reproduced from [52].

Semi-supervised learning experiments We test our semi-supervised method, on 10 variable linear

SCMs generated according to Appendix D. We consider stochastic and imperfect interventions. We sam-

pled a 10000 samples dataset from each SCM. For each dataset, we created multiple semi-supervised

learning datasets by splitting the original 10000 samples into labelled (with intervention assignments )

and unlabelled ( without intervention assignments ) according to some fraction f . The fraction f goes

from 0 to 1, sampled every interval of 0.2. This means that, for each fraction f , we have 10 distinct

semi-supervised datasets for both perfect and imperfect interventions. We picked the default hyper-

parameters, particularly, λG = −0.1, and γ = −0.01. The results are contained in Figure 4.4.

The results suggest, there is no significant improvement from using a the correspondences for a

fraction of the samples under the tested conditions.
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Figure 4.4: Semi supervised experiments on 10 variable Linear SCMs with an expected value of 1 edge
per node. On the left, perfect interventions. On the right, imperfect interventions.

4.6 Related work

The previous work that is closest to ours in that by Brouillard et al. [52]. As they do, we assume

that the data is clustered in intervention groups, but we relax their assumption that the correspondence

between intervention groups and samples is known, opening the door to more realistic scenarios.

The so-called “known” and “unknown” variants of our method share the assumptions made by Brouil-

lard et al. [52]; however, contrary to them, the number of distinct neural networks in our model is not

dependent on the number of interventions, which allows scaling well to many interventions. We achieve

this by encoding the change in assignments associated with each intervention using a specific latent

variable u that we call intervention embedding and conditioning a shared model on it when computing

the log-probability.

Our method can be seen as a variational autoencoder (VAE) with a Dirichlet process (DP) prior, with

a stick-breaking process representatoion. The work by nalisnick2017stickbreaking introduces a VAE

where the stick-breaking weights are the latent variables. Our model differs from theirs in that we use

the entire DP (including the atoms). We only use the stick-breaking weights in the Kullback–Leibler

divergence of the correspondence variable z. This Kullback–Leibler divergence has a closed-form, so

we do not sample the stick-breaking weights as they do. van den Oord et al. [90] proposes a VQ-

VAE model with discrete latent variables, each represented as a latent embedding vector (an atom).

Our approach is similar in that we use atoms (the intervention embeddings and intervention targets) to

represent discrete latent variables. However, we do it in a statistically sounder way that more naturally

fits our application.

4.7 Discussion

We introduced an efficient variational optimization algorithm for causal structure learning under latent

interventions. Our results are competitive with other state-of-the-art algorithms on the flow cytometry

data set. Experiments with synthetic data show that our approach can recover causal relations even in
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our more challenging scenario, and it can consistently outperform our purely observational alternative.

A limitation of our method is the variational family we use. The proposal for variational posterior

considers that the stick-breaking weights, the intervention embeddings, and intervention targets are

independent of each other. Since most of these conditional independencies, in general, are not present

in the true posterior, there will inevitably be an approximation gap. This approximation gap, in some

cases, can potentially create a surrogate score whose maximum structure does not maximize the score

S(G).
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Chapter 5

Conclusions

In this chapter, in Section 5.1, we start by summarizing our work. Furthermore, we present some

interesting avenues for future research, in Section 5.2. Finally, we discuss the broader impact of our

work, in Section 5.3.

5.1 Achievements

We proposed a causal discovery method based on neural networks and variational inference that

leverages interventional data with gradient-based methods when interventions and their correspondence

to samples are unknown beforehand. Our results are competitive with other state-of-the-art algorithms

on the flow cytometry data set. Experiments with synthetic data show that our approach can recover

causal relations, even in our more challenging scenario containing latent interventions. It can consis-

tently outperform our purely observational alternative. When given the underlying causal graph, we also

evaluated our method on approximating the posterior over the unknown interventions and correspon-

dences, i.e., recovering the latent intervention, on synthetic datasets. It can outperform a clustering

baseline on this task.

5.2 Future Work

The research we have carried out opens up interesting possibilities of future work. Our framework

is particularly appealing for problems where performing interventions explicitly is expensive or unethical,

but where interventions occur naturally in the data without being explicitly observed. We consider the

following methodological improvements as promising research directions.

Variational approximation Experimenting with more flexible variational families seems appealing, al-

beit this may come at the cost of the closed-form expressions for the Kullback–Leibler divergences.

Another direction is focusing on particular families of sampling models, i.e., linear models, and using

algorithms with more guarantees such as the expectation-maximization algorithm.
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Acyclicity constraint Methods that avoid computing the acyclicity constraint, but that can still pre-

serve the acyclicity of the underlying graph—for instance, exploiting the fact that, given the topological

ordering of DAG, one can represent the adjacency matrix as a triangular matrix with zeros in the main di-

agonal. Many continuous relaxation can use the path-wise-gradient estimators to estimate expectations

of distributions over orderings.

5.3 Broader Impact

High-quality and reliable causal discovery algorithms are general tools for understanding complex

systems. The proposed method combats limitations, of data-driven causal discovery, and can recover

causal relations in a scenario where the system of interest was subject to fully latent interventions. We

envision a positive impact of our work in areas like astrophysics, where we are too far to intervene,

history research, where the system of interest is no longer available, and in science more generally. A

concrete example of an application of our method is the flow cytometry data set from Section 4.5. Some

researchers claimed that this dataset was problematic because the interventions may not be as specific

as stated. As a result, this is difficult for causal discovery methods that do not assume interventions as

latent. However, as we have shown, our method compares favorably in this setting. Applications are

likely to extend beyond these examples, which seem straightforward from our current position.

Like any general tool, our work can have unwanted applications that could have negative impacts.

Moreover, it is crucial for anyone that uses our method to understand its underlying assumptions:

• Causal sufficiency.

• Presence of latent interventions.

• Faithfulness.

• Intervention faithfulness.

• Causal relations form acyclic graphs.

• For a specific intervention distribution, the data is assumed independently and identically dis-

tributed.

• Within the proposed variational family we can find a sufficiently approximate distribution to approx-

imate the latent interventions’ posterior.

Therefore, it is imperative to analyze the results and deeply consider their predictions before making

decisions.
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[14] A. Hauser and P. Bühlmann. Characterization and greedy learning of interventional markov equiva-

lence classes of directed acyclic graphs. J. Mach. Learn. Res., 13(1):2409–2464, Aug. 2012. ISSN

1532-4435.

[15] N. Shajarisales, D. Janzing, B. Schoelkopf, and M. Besserve. Telling cause from effect in de-

terministic linear dynamical systems. In F. Bach and D. Blei, editors, Proceedings of the 32nd

International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning

Research, pages 285–294, Lille, France, 07–09 Jul 2015. PMLR. URL http://proceedings.mlr.

press/v37/shajarisales15.html.

[16] P. Daniusis, D. Janzing, J. M. Mooij, J. Zscheischler, B. Steudel, K. Zhang, and B. Schölkopf.

Inferring deterministic causal relations. CoRR, abs/1203.3475, 2012. URL http://arxiv.org/

abs/1203.3475.

[17] K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf. Kernel measures of conditional dependence.

In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing

Systems, volume 20. Curran Associates, Inc., 2008. URL https://proceedings.neurips.cc/

paper/2007/file/3a0772443a0739141292a5429b952fe6-Paper.pdf.

[18] F. Eberhardt and R. Scheines. Interventions and causal inference. Philosophy of Science, 74

(5):981–995, 2007. ISSN 00318248, 1539767X. URL http://www.jstor.org/stable/10.1086/

525638.
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Appendix A

Variational Inference proofs

A.1 Gradient of the log evidence

∇θL(x, θ) = ∇θ
N∑
i=1

log p(x(i); θ)

= ∇θ
N∑
i=1

log
∑
z

p(x(i), z; θ)

=

N∑
i=1

∇θ
∑
z p(x

(i), z; θ)

p(x(i); θ)

=

N∑
i=1

∑
z

p(x(i), z; θ)

p(x(i); θ)
∇θ log p(x(i), z; θ)

=

N∑
i=1

Ez∼p(z|x(i);θ)

[
∇θ log p(x(i), z; θ)

]

(A.1)

A.2 Evidence decomposition

log p(x|θ) =
∑
z

q(z) log p(x|θ)

=
∑
z

q(z) log
p(x, z|θ)
p(z|x, θ)

=
∑
z

q(z) log
p(x, z|θ)q(z)
p(z|x, θ)q(z)

=
∑
z

q(z) log
p(x, z|θ)
q(z)

−
∑
z

q(z) log
p(z|x, θ)
q(z)

= Ez∼q[log p(z, x|θ)] +DKL(q(z)||p(z|x, θ)) +H[q(z)]

= Ez∼q[log p(x|z, θ)] +DKL(q(z)||p(z|x, θ))−DKL(q(z)||p(z))

(A.2)
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A.3 Score-Function Estimator

∇φ Ez∼q(z|x;φ)[f(z)] = ∇φ
∑
z

q(z|x;φ)f(z)

=
∑
z

∇φq(z|x;φ)f(z)

=
∑
z

q(z|x;φ)∇φ log q(z|x;φ)f(z)

= Ez∼q(z|x;φ)∇φ [f(z) log q(z|x;φ)]

(A.3)

A.4 Beta KL

DKL(X1||X2) =

∫ 1

0

f(x;α, β) ln

(
f(x;α, β)

f(x;α′, β′)

)
dx

=

(∫ 1

0

f(x;α, β) ln(f(x;α, β)) dx

)
−
(∫ 1

0

f(x;α, β) ln(f(x;α′, β′)) dx

)
= −h(X1) +H(X1, X2)

= ln

(
B(α′, β′)

B(α, β)

)
+ (α− α′)ψ(α) + (β − β′)ψ(β) + (α′ − α+ β′ − β)ψ(α+ β)

(A.4)

A.5 Gaussian KL

DKL(p, q) = −
∫
p(x) log q(x)dx+

∫
p(x) log p(x)dx

=
1

2
log(2πσ2

2) +
σ2

1 + (µ1 − µ2)2

2σ2
2

− 1

2
(1 + log 2πσ2

1)

= log
σ2

σ1
+
σ2

1 + (µ1 − µ2)2

2σ2
2

− 1

2
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A.6 Kullback–Leibler from our variational approximation

DKL

[
q(M̃, z(i))||p(M̃, z(i))

]
=

= EM̃,z∼q(M̃,z)

[
log

q(z|u0, . . . , uT )
∏T
k=0

(∏d
j=1 qR(rkj)

)(∏h
l=1 qU (ukl)

)
qV (vk)

p(z|β0, . . . , βT )
∏T
k=0

(∏d
j=1 p(rkj |γ)

)(∏h
l=1 p(ukl)

)
p(vk|α)

]

=

T∑
k=0

h∑
l=1

DKL

(
q(ukl)||N (0, 1)

)
+

T∑
k=0

d∑
j=1

DKL

(
q(rkj)||Bern(γ)

)
+

T∑
k=0

DKL

(
q(vk)||pθ(vk|α)

)
+ EM̃,z∼q(M̃,z)

[
log

q(z|u0, . . . , uT )

p(z|β0, . . . , βT )

]
(A.5)

Stick-breaking weights

DKL

(
q(vk)||pθ(vk|α)

)
= log

(B
(
ρkwk, (1− ρk)wk

)
B(1, α)

)
+ (1− ρkwk)ψ(1)+(

α− (1− ρk)wk
)
ψ(α) + (−1 + wk − α)ψ(1 + α)

(A.6)

Intervention embeddings

DKL

(
q(uk)||N (0, Ih)

)
=

h∑
j=1

σ2
kj + µ2

kj − 1

2
− log σkj (A.7)

Intervention targets

DKL

(
q(rkj)||Bernoulli(γ)

)
= πkj

(
logit(πkj)− γ

)
+ log

1− πkj
1− σ(γ)

(A.8)

Correspondence

EVk,u0,...,uK∼q(Vk)q(u0)...q(uK)

[
DKL

(
q(z)||pθ(z|β0, β1, . . . , βK)

)]
=

=

K∑
k=0

Euk∼q(uk)

[
q(zk)

(
log q(zk)− EVk∼q(Vk) [log βk]

)]] (A.9)

where

EVk∼q(Vk)[log βk] = Evk∼q(vk)[log vk] +

k−1∑
k′=0

Evk′∼q(vk′ )[log 1− vk′ ]

= ψ(ρkwk) +

k−1∑
k′=0

ψ
(
(1− ρk′)wk′

)
−

k∑
k′=0

ψ(wk′),
(A.10)

and ψ is the digamma function. We approximate using the Taylor series expansion, where we use the

reparametrization trick on uk to estimate the expectations.
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Appendix B

Neural Networks

Neural networks are biologically inspired parametric non-linear mappings. The particular neural

network we use in our work is the feed forward neural network. Given an vector x ∈ Rdin , we parameterize

with a vector of “weights” θ a non-linear mapping FFN : Rdin → Rdout . This mapping is a composition of

linear transformations interchanged with a non-linear element-wise operation.

We use many tricks that have been shown to improve the capabilities of Neural Network models,

particularly dropout [91], SiLU activation function [92], layer normalization [93], and residual connections

[94]. We group these techniques into a sub-layer that form the building block of our relatively more

complex models, as shown in Figure B.1.

Figure B.1: On the left, diagram of the neural network block sub-layer. On the right, diagram of full neural
network we use, where N is ab hyper-parameter.

To enable the use of skip connections, we have to make sure that the inputs and outputs of the

sub-layer have the same dimension. For this reason, before applying the stack of sub-layers we apply a

linear transformation from Rdin to Rdh and after passing the stack from Rdh to Rdout , as shown in diagram

on the right of Figure B.1.

In supervised machine learning, neural works are commonly used to parameterize non-linear condi-
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tional densities, particularly for distributions of y in the exponential family, we write that

p(y|x, θ) = h(y)g(φ(x; θ)) exp
(
η(φ(x; θ))ᵀT (y)

)
, (B.1)

where h(y), g(φ(x; θ)), η(φ(x; θ)), and T (y) are known functions, such that p(y|x, θ) is a proper density

function of y, and φ(x; θ) is a neural network that maps values of x into parameter vectors.

Loss function Given, a finite dataset D of independent and identically distributed pairs (xi, yi) ∈

D. The parameters θ for the network FFN(x; θ) are learned based on the optimization of a proposed

loss function L(θ;D). The loss function is generally based on the maximum likelihood or maximum

a posteriori principles. The optimization problem, considering a loss function that is the negative log-

likelihood of the model from Equation B.1, can be written as follows:

θ∗ = arg min
θ

∑
(xi,yi)∈D

− log h(yi)− log g(φ(xi; θ))− η(φ(xi; θ))
ᵀT (yi)︸ ︷︷ ︸

L(θ;D)=log
∏

(xi,yi)∈D
p(yi|xi,φ)

(B.2)

Back-propagation Optimizing Equation B.2 for complex neural network models φ(x; θ), can be a diffi-

cult. Primarily because the loss L(θ;D) generally will not be convex, and the dataset D might be really

big. A usual approach is stochastic gradient descent (SGD), that requires the calculation of the gradient

of the loss L(θ;D) with respect to the model’s parameters θ. This can be efficiently done using the gradi-

ent back-propagation algorithm [95], a special case of reverse mode ( reverse accumulation ) automatic

differentiation.
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Appendix C

PyCausal: Package for defining large

scale Structural Causal Models

C.1 Design Principles

Our goal was to create a package that allowed the creation of SCMs in a declarative using Compu-

tational Graphs. There are two types of nodes in this computational graph. Source Nodes which are the

source of randomness and Auxiliary nodes which are the result of some operation on already created

nodes. The nodes can either be visible or not. The visible nodes are the nodes in the left side of the

assignments. Source nodes are marked by default. We can sample the graph or specific variables using

ancestor sampling or recursively using a simple graph coloring algorithm.

Having this computational structure, we can easily define functions that perform interventions by

slightly altering the underlying computational graph. For sampling from intervention graphs, we have

this two stage sampling process. We first sample the distributions associated with the intervention and

only then the i.i.d samples from the general SCM.

For simplicity we overloaded the python arithmetic operators and added a few mathematical functions

and probability distributions. We can use this package using hardware accelerators like GPUs and TPUs.

C.2 Example

Let’s consider the following SCM:


X := NX , NX ∼ N (0, 1)

Z := NZ , NZ ∼ Beta(0.5, 0.5)

Y := exp(X2) + ZNY , NY ∼ N (0, 1)

(C.1)

Using PyCausal, we can define this SCM in the following way:
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Figure C.1: Illustration of the example causal graph.

from pycausal import *

model = SCM("Simple Causal Graph")

X = Variable("X", stats.norm(loc=0,scale=1))

Z = Variable("Z", stats.beta(0.5,0.5))

Ny = HiddenVariable("Ny", stats.norm(loc=0,scale=1))

Y = Ny * Z + exp( X** 2 ) << "Y"

model.draw()

This gives the graph in Figure C.1.

We can sample from a SCM in the following way:

model.sample(2)

or

(~model)(2)

which gives

{’Z’: array([0.99181398 , 0.02439115]),

’X’: array([-0.07538367 , 1.69771261]),

’Y’: array([ 2.64181855 , 17.87651557])}

We can obtain intervention SCMs, in this case an atomic intervention on X, in the following way:

imodel = model&{ X: 0 }
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If we sample this model we obtain:

{’X’: array([0, 0]),

’Z’: array([0.34692997 , 0.16893219]),

’Y’: array([1.42016021 , 0.86607793])}

We also can assign stochastic interventions, either by giving a distribution as argument or a SCM

Variable.(Be careful to not create loops)

imodel = model&{ X: stats.norm(loc=0,scale=1) }

We can even stack interventions

imodel = model&{ X: 0, Ny: 2}

or

imodel = model&{X: 0}&{Ny: 2}

or

imodel = model&{X: 0}

jmodel = imodel&{Ny: 2}

We can sample individual variables:

( ~Y )(2)

or

Y.sample(2)

which gives

array([ 2.64181855 , 17.87651557])

We can even do independence tests, graphical or statistical

Y.independent_of(Ny, significance=0.05)

equivalently, we can write

Y | Ny

which gives:

False

The api contains already many mathematical functions for defining the SCMs. However, we can add

new ones in the following way:

model = SCM("Matrix assignments model")

new_op = func( torch.nn.softmax , name="softmax")

X = Variable("X", stats.uniform(-2,5), shape=[2,2])
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Ny = HiddenVariable("Ny",stats.beta(0.4,0.1), shape=[1,1])

y2 = -(sin(X)*2)@np.ones(shape=[2,2])

y3 = new_op(y2)

Y = reduce_sum(y3 + Ny, axis=[-1,-2], keepdims=False) << "Y"
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Appendix D

Description of the Synthetic data sets

To generate the SCMs, we first generated the causal graph. The graphs were generated going in

order from node 1 to node N and adding edges from the already visited nodes to the current node i

with probability p obtaining the adjacency matrix AG . In order to obtain graphs that weren’t topologically

ordered we applied a random permutation P to AG . Then, given the causal graph, we sampled the

noise distributions and the assignments as described in Table D.1. For every SCM, we generate d

interventions, one for each variable. How we sample the new assignment for each intervened variables

is described in Table D.2. Before fitting the model, the data is always normalized. We subtract the mean

and divide by the standard deviation.

For each setting, we sample n/(d + 1) examples. We used n = 10000 in the 10 variable data set.

Before using our method, the data is always normalized. We subtract the mean and divide by the

standard deviation. For stochastic interventions in variable j, we sampled a new Gaussian variable εj ,

as described in Table D.2, and assigned it to xj . Using imperfect interventions, we go to the last layer

of the neural network ( in the case of linear model its the weight vectors ) representing the assignment,

and sample new weights according to Table D.2. Table D.1 contains a description of how we sample

assignments. Particularly, the architecture of the neural network, when it is non-linear SCM. Figure D.1

contains scatter plots obtained after sampling the generated two variable SCMs.

Model Name p(E) weights activation layers #hidden units

Linear Gaussian
∏d
j=1N (0, 0.015) N (0, 2.0) identity 1 -

Non-Linear Gaussian
∏d
j=1N (0, 0.015) N (0, 2.0) relu 2 5

Non-Linear Non-Gaussian
∏d
j=1N (0, 0.015) N (0, 2.0) relu 2 5

Table D.1: Where k ∼ N (0.1, 0.005) and ` ∼ N (0, 0.4).
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Figure D.1: The underlying graph is has two variables and one edge. The cause is in the horizontal axis,
the effect is in the vertical axis. The rows correspond to different models, particularly, Linear Gaussian,
Non-Linear Gaussian and Non-Linear Non-Gaussian. The columns correspond to distinct types of inter-
ventions. Particularly, atomic, stochastic and imperfect. Red observational. Green intervention on the
effect variable. blue intervention on the causal variables.
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Intervention type new p(E) new weights

Atomic (1− 2b) · u 0

Stochastic N ((1− 2b) · u, 0.1) 0

Imperfect N ((1− 2b) · u, 0.1) N (0, 2.0)

Table D.2: Where u ∼ U [1.2, 2.2] and b ∼ Bernoulli(0.5)
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